首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
常年淹水和干旱对三峡库区消落带菖蒲生长恢复的影响
摘要点击 2826  全文点击 1165  投稿时间:2011-10-26  修订日期:2011-12-21
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  菖蒲  三峡库区  淹水  干旱  生长发育
英文关键词  Acorus calamus  Three Gorges Reservoir  flooding  drought  growth and development
作者单位E-mail
李强 重庆文理学院化学与环境工程学院, 重庆 402160 lq1973_2002@163.com 
高祥 重庆文理学院化学与环境工程学院, 重庆 402160  
丁武泉 重庆文理学院化学与环境工程学院, 重庆 402160  
朱启红 重庆文理学院化学与环境工程学院, 重庆 402160  
欧媛 重庆文理学院化学与环境工程学院, 重庆 402160  
刘瑜 重庆文理学院化学与环境工程学院, 重庆 402160  
中文摘要
      菖蒲是三峡库区常见的一种湿生植物,本研究探讨了常年淹水对菖蒲生长恢复的影响,并分析了干旱对露水后菖蒲生长恢复的影响,为三峡库区消落带植被恢复物种的选择提供科学依据.分别于2009年9月和2010年9月前后2次将菖蒲(Acorus calamus L.)植株完全淹水,分别于翌年3、4、5月将植株露水(分别记为S1、S2和S3),2011年定期统计植株数和叶片数,测定叶长、叶宽.结果表明,淹水导致植株萌发数显著低于对照,且随着淹水时间增加植株萌发数呈显著降低趋势; 淹水显著促进3月和4月露水植株叶片的伸长和形成,其叶长、叶片数、株叶长和总叶长显著高于对照,而5月露水植株的叶长、叶宽、叶片数、株叶长、总叶长和总叶片数均显著低于对照.随着淹水时间的增加露水后植株死亡数呈显著增大趋势,S1和S2组的叶长、叶宽显著增长,叶片数显著降低,而S3组植株叶长、叶宽、叶片数、株叶长、总叶长和总叶片数均显著降低.干旱导致对照、S1和S2组植株叶长、叶宽、株叶长、总叶长、叶片数和总叶片数均显著降低,植株存活数显著降低; 干旱胁迫去除25 d后,对照、S1和S2组植株的叶片数分别增加了67.0%、66.7%和36.2%,且S1和S2组植株的株叶长、总叶长和总叶片数分别增加了48.2%、18.1%,66.7%、35.0%,75.0%、64.3%,差异显著(P<0.05).因此,菖蒲不仅对淹水的适应和耐受能力较强,而且露水后的生长恢复能力及对干旱的恢复能力也较强,可作为三峡库区消落带(特别是3月和4月露水区域)的恢复、重建物种.
英文摘要
      Acorus calamus L. is a common kind of wetland plant species in the Three Gorges Reservoir. In this study, we investigated the influence of perennial flooding on growth restoration of A. calamus in the lightless conditions and the drought stress on this plant species' growth after flooding. Our research provided the scientific basis for the selection of candidate species for vegetations restoration in water-level-fluctuation zone of the Three Gorges Reservoir. A. calamus plants were exposed to waters in the lightless conditions in September 2009 and September 2010 respectively and taken away from the waters and grew in natural conditions in the following March, April and May (named as S1, S2, S3). All plants in the control, S1 and S2 groups were challenged with drought stress in May for 20 days. During the experiment, the plant number and leaf number were recorded regularly, as well as leaf length and leaf width. The results showed that flooding restrained the germination of the plants with much less plant in flooding groups than the control, and the plant germination rate had inverse relation to the flooding time. Flooding promoted formation and elongation of the leaves in S1 and S2 groups, which showed higher leaf growth parameters, such as leaf length, leaf number, total leaf length of one plant and total leaf length of all plants than the control. However, all of these growth parameters in S3 group had significantly lower values compared to the control. The survival rate of the plants after flooding decreased significantly with longer flooding time. Besides, the leaf length and leaf width in S1 and S2 groups increased significantly but with decreased leaf number. Additionally, all growth parameters (leaf length, leaf width, leaf number, total leaf number, total leaf length of one plant, total leaf length of all plants) in S3 group decreased remarkably. Furthermore, drought decreased the values of all growth parameters and the plant number in the control, S1 and S2 groups notably. When drought stress was removed for 25 days, the leaf number in the control, S1 and S2 groups increased by 67.0% (P<0.05), 66.7% (P<0.05)and 36.2% (P<0.05), respectively, and the total leaf length of one plant, total leaf length of all plants and total leaf number in S1 and S2 groups increased by 48.2%, 18.1%, 66.7%, 35.0%, 75.0% and 64.3%, respectively (P<0.05). Therefore, A. calamus exhibited not only strong adaption and tolerance to flooding,but also robust growth restoration ability after flooding, as well as good restoration ability to the drought stress. In summary, A. calamus could be used as one kind of restoration or reconstruction species in water-level-fluctuation zone (especially not exposed to flooding in March or April) of the Three Gorges Reservoir.

您是第53143282位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2