首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
高铁酸钾氧化降解三氯生的动力学模拟及反应机制研究
摘要点击 1177  全文点击 1604  投稿时间:2010-10-09  修订日期:2010-12-13
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  高铁酸钾  三氯生  氧化  二级反应动力学  线性自由能关系
英文关键词  ferrate(Ⅵ)  triclosan (TCS)  oxidation  second-order reaction kinetics  linear free-energy relationship
作者单位
杨滨 中国科学院广州地球化学研究所有机地球化学国家重点实验室广州 510640 
应光国 中国科学院广州地球化学研究所有机地球化学国家重点实验室广州 510640 
赵建亮 中国科学院广州地球化学研究所有机地球化学国家重点实验室广州 510640 
中文摘要
      对高铁酸钾氧化降解水中微量三氯生(TCS)的反应动力学、反应机制及降解效果进行了实验研究.结果表明,高铁酸钾氧化降解TCS符合二级反应动力学模式,pH 8.5时表观二级反应动力学速率常数为531.9 L·(mol·s)-1,以10 mg·L-1的高铁酸钾计算,反应的半衰期是25.8 s.表观二级反应动力学速率常数随着pH值的增加逐渐降低,这种趋势可由高铁酸钾的各形态分布和TCS的酸碱解离常数来进行模拟.HFeO-4与TCS的非解离态和解离态的反应速率常数分别为(4.1±3.5)×102 L·(mol·s)-1和(1.8±0.1)×104 L·(mol·s)-1,且HFeO-4与解离态TCS的反应占主导作用.线性自由能关系表明其反应机制为亲电氧化反应,反应的初始步骤是HFeO-4亲电攻击TCS的酚羟基.当n[Fe(Ⅵ)]∶n(TCS)>7∶1时,TCS完全去除,低浓度的腐殖酸有助于提高高铁酸钾氧化降解TCS的速率.因此,高铁氧化技术是一种极具应用前景的新型水处理技术.
英文摘要
      Triclosan (TCS) is a broad-spectrum antibacterial agent widely used in many personal care products. We investigated oxidation of TCS by aqueous ferrate Fe(Ⅵ) to determine reaction kinetics, interpreted the reaction mechanism by a linear free-energy relationship, and evaluated the degradation efficiency. Second-order reaction kinetics was used to model Fe(Ⅵ) oxidation of TCS, with the apparent second-order rate constant (kapp) being 531.9 L·(mol·s)-1 at pH 8.5 and (24±1) ℃. The half life (t1/2) is 25.8 s for an Fe(Ⅵ) concentration of 10 mg·L-1. The rate constants of the reaction decrease with increasing pH values. These pH-dependent variations in kapp could be distributed by considering species-specific reactions between Fe(Ⅵ) species and acid-base species of an ionizable TCS. Species-specific second-order reaction rate constants, k, were determined for reaction of HFeO-4 with each of TCS's acid-base species. The value of k determined for neutral TCS was (4.1±3.5)×102L·(mol·s)-1, while that measured for anionic TCS was (1.8±0.1)×104L·(mol·s)-1. The reaction between HFeO-4 and the dissociated TCS controls the overall reaction. A linear free-energy relationship illustrated the electrophilic oxidation mechanism. Fe(Ⅵ) reacts initially with TCS by electrophilic attack at the latter's phenol moiety. At a n[Fe(Ⅵ)]∶n(TCS)>7∶1, complete removal of TCS was achieved. And lower concentration of the humic acid could enhance the kapp of Fe(Ⅵ) with TCS. In conclusion, Fe(Ⅵ) oxidation technology appears to be a promising tool for applications of WWTPs effluents and other decontamination processes.

您是第53258827位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2