环境科学  2024, Vol. 45 Issue (10): 6129-6138   PDF    
典型微塑料生物膜上病原菌的富集特征与生态风险预测
王帆1,2, 胡志勋1,2,3, 王万军1,2, 肖咏茵1,2, 麦渭聪1,2, 李桂英1,2, 安太成1,2     
1. 广东工业大学环境健康与污染控制研究院, 广东省环境催化与健康风险控制重点实验室, 广州 510006;
2. 广东工业大学环境科学与工程学院, 广州市环境催化与污染控制重点实验室, 广州 510006;
3. 深圳市环境水务集团有限公司, 深圳 518031
摘要: 微塑料作为水体环境中微生物定殖的新兴生态位可能会选择性富集病原菌, 从而导致严重的生态风险和对公众健康的潜在威胁, 然而不同微塑料生物膜上病原菌的富集特征及其生态风险尚不明晰. 通过野外原位孵育试验, 使用16S rRNA高通量测序技术探究了聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)这5种典型微塑料生物膜上细菌群落结构的差异、人类病原菌的赋存特征以及生态风险的预测. 结果显示, 经过28 d原位孵育后所有微塑料表面均形成了明显的生物膜, 并且所有微塑料生物膜上细菌群落的多样性和丰富度均高于周围水体, 表明微塑料对周围水体中的微生物具有显著的富集作用. 每种类型微塑料生物膜上均形成了独特的细菌群落结构, 特别是PVC更倾向于选择性富集变形菌门(Proteobacteria)的细菌. 使用HPB数据库共注释出47种人类病原菌, 有6种被识别为Ⅰ类重点控制的抗生素耐药性病原菌. 微塑料生物膜上人类病原菌的检出种类和相对丰度均高于周围水体, 巴尔通氏体(Bartonella)、伯克霍尔德氏菌属(Burkholderia)和布鲁氏菌属(Brucella)等优势病原菌均选择性富集在微塑料生物膜上. 基于BugBase的微生物功能表型预测结果显示, 微塑料生物膜上生物膜形成、移动元件和潜在致病性3种功能表型的占比分别增加了2.38%~5.57%、0.82%~7.13%和3.04%~8.30%, 主要是由属于α-变形菌纲(α-Proteobacteria)和γ-变形菌纲(γ-Proteobacteria)的细菌贡献. 研究结果不仅揭示了微塑料生物膜上选择性富集的机会性病原菌可能会导致水体环境中致病性和抗生素耐药性传播风险的加剧, 也为正确评估水体环境中微塑料污染带来的生态风险提供参考依据.
关键词: 微塑料(MPs)      生物膜      细菌群落结构      人类病原菌      生态风险     
Enrichment Characteristics and Ecological Risk Prediction of Pathogens on Typical Microplastic Biofilms
WANG Fan1,2 , HU Zhi-xun1,2,3 , WANG Wan-jun1,2 , XIAO Yong-yin1,2 , MAI Wei-cong1,2 , LI Gui-ying1,2 , AN Tai-cheng1,2     
1. Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China;
2. Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China;
3. Shenzhen Water and Environment Group Co., Ltd., Shenzhen 518031, China
Abstract: As an emerging niche colonized by microorganisms, microplastics may selectively enrich pathogens, resulting in crucial ecological risks and potential threats to public health in aquatic environments. However, the enrichment characteristics and ecological risks of pathogens on different microplastic biofilms remain unclear. In this study, 16S rRNA high-throughput sequencing technology was used to investigate the differences in the bacterial community structure, occurrence characteristics of pathogens, and prediction of ecological risks on five typical microplastic biofilms of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) through a field in-situ incubation experiment. The results showed that after 28 d of in situ incubation, the macroscopic biofilms were formed on the surface of all microplastics, and the diversity and richness of the bacterial community on all microplastic biofilms were higher than in the surrounding water, indicating that the microorganisms in the surrounding water were selectively enriched on microplastics. Each type of microplastic biofilm had formed a unique bacterial community structure; in particular, PVC microplastics were more inclined to selectively enrich the members of Proteobacteria. A total of 47 human pathogens were identified using the HPB database, including six antibiotic resistance pathogens belonging to the lists of critical priority control. The number and total abundance of human pathogens detected on microplastic biofilm were higher than those in the surrounding water, and the dominant pathogens such as Bartonella, Burkholderia, and Brucella were selectively enriched on microplastic biofilms. Microbial phenotype prediction results based on BugBase showed that three functional phenotypes including biofilm formation, mobile element contained, and potentially pathogenic on microplastic biofilms had significantly increased by 2.38%-5.57%, 0.82%-7.13%, and 3.04%-8.30%, respectively, which were mainly contributed by α-Proteobacteria and γ-Proteobacteria. These results not only indicate that the selective enrichment of opportunistic pathogens on microplastic biofilms may lead to the increased risk of pathogenicity and antibiotic resistance co-spread but also provide reference for the accurate assessment of ecological risks caused by microplastic pollution in aquatic environments.
Key words: microplastics(MPs)      biofilms      bacterial community structure      human pathogens      ecological risks     

塑料的过度使用和不当处置导致微塑料(尺寸小于5 mm的塑料碎片, MPs)已成为全球性的新污染物[1~3], 因其生态风险的升高和对公众健康的潜在不利影响而备受学界的广泛关注[4, 5]. 微塑料因其具有疏水性强、比表面积大等特性为水环境中微生物的定殖提供了一个独特的生态位, 即“塑料圈”[6~8]. “塑料圈”被认为是水生环境中包括人类病原菌等有害微生物传播的重要载体, 可能会对生物安全和人类健康产生严重的威胁[9, 10]. 因此, 探明不同微塑料表面生物膜上细菌群落的组成差异和人类病原菌的富集特征, 对深入理解微塑料污染带来的生态风险和健康威胁具有重要意义.

目前关于微塑料生物膜群落特征的研究方法主要包括野外采样、实验室模拟和原位培养[11]. 野外采样的方法能够反映“塑料圈”真实的细菌群落特征, 但很难分辨出不同类型聚合物表面的群落结构差异[12, 13]. 实验室模拟的方法可以研究一种或几种环境因子对微塑料生物膜上细菌群落特征的影响, 但无法真实地反映水体环境的复杂条件[9, 14]. 相比于野外采样和实验室模拟, 原位培养法既可有针对性地选择不同类型微塑料, 亦可在真实环境条件下进行微塑料生物膜培养, 同时也可比较微塑料生物膜和其他自然基质生物膜的群落差异. 以往的研究报道了原位暴露于海水、潟湖和红树林系统湖水中微塑料表面生物膜上细菌群落结构的赋存特征[15~17], 但均未报道微塑料生物膜上人类病原菌的富集特征. 因此, 亟需通过原位培养的方法研究真实水体中微塑料生物膜上人类病原菌的富集特征.

此外, 以往的研究大多数集中于海洋环境[4], 当前对于淡水塑料圈中人类病原菌富集特征及其对生物安全和人类健康的影响尚不清晰. 因此, 深入了解实际淡水环境中典型微塑料生物膜上人类病原菌的赋存特征及其潜在的生态风险是十分必要的. Zhang等[18]在系统梳理了全球范围内开展的环境微塑料污染调查结果的基础上, 提出以聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)等6种聚合物作为监测环境微塑料污染的指标. 鉴于此, 本研究选择了5种(PE、PP、PS、PET和PVC)具有代表性的微塑料投放至淡水湖中进行了为期28 d的微塑料生物膜原位孵育试验, 通过探究淡水湖中典型微塑料生物膜上细菌群落和人类病原菌的赋存特征, 并进一步基于BugBase算法预测了微塑料污染引起的生态风险, 以期为水环境中微塑料污染的治理及其生态风险的评估提供参考依据.

1 材料与方法 1.1 微塑料表面生物膜的原位孵育试验

本研究选取广东工业大学大学城校区人工湖(113.23°E, 23.04°N)作为微塑料表面生物膜的原位孵育试验区. 用于微塑料表面生物膜孵育的5种微塑料颗粒(PE、PP、PS、PET和PVC)购自广东惠州廷凯塑料有限公司, 所有塑料颗粒的直径均为2~3 mm. 在进行生物膜孵育前, 使用去离子水将所有塑料颗粒清洗3次, 并在室温黑暗条件下干燥备用. 随后, 将所有处理过的塑料颗粒分装至无菌不锈钢笼中, 每个笼中装500粒塑料颗粒, 每种类型微塑料设置3个平行的处理组, 投入至湖水中进行微塑料表面生物膜的原位孵育, 用无机玻璃作为对照组(CK). 孵育28 d后, 采集微塑料生物膜和周围水样(SW), 立即在低温条件下运回实验室. 在超净台上将微塑料生物膜样品分成两份, 一份用于微塑料表面生物膜的形貌表征, 另一份用于后续的16S rRNA基因高通量测序分析.

1.2 微塑料表面生物膜的形貌表征

使用扫描电子显微镜(SEM)对微塑料表面生物膜的微观形貌进行表征. 参照Wu等[4]的方法对微塑料生物膜样品进行前处理. 具体方法为:首先将微塑料生物膜用无菌的PBS缓冲液冲洗, 然后用2%的戊二醛固定, 再用乙醇梯度脱水, 放入冷冻干燥机中过夜干燥, 而后将样品直接粘在导电胶上, 用离子溅射仪进行喷金45 s(喷金电流为10 mA), 使用SEM在3 kV加速电压下观察生物膜的形貌. 用原始微塑料作为空白对照.

1.3 DNA提取和16S rRNA基因测序

DNA提取前, 将塑料颗粒用无菌PBS冲洗3次, 浸泡在无菌PBS中超声以获得微塑料生物膜样品. 用0.22 μm无菌聚碳酸酯滤膜(Merck Millipore Ltd., Ireland)过滤500 mL周围水样, 收集滤膜用于周围水的DNA提取. 根据E.Z.N.A.®土壤DNA试剂盒(Omega Bio-Tek, Norcross, GA, U.S.)说明书进行生物膜和水样滤膜的总基因组DNA提取, 使用1%的琼脂糖凝胶电泳检测DNA的提取质量, 使用Qubit 3.0荧光仪(Thermo Fisher Scientific Inc., Waltham, USA)定量DNA浓度, 并于-80 ℃下保存(每个样本3个平行). 使用16S rRNA基因高通量测序技术分析微塑料表面生物膜上细菌群落结构的变化, 具体步骤如下:使用引物338F和806R对细菌16S rRNA基因V3-V4可变区进行PCR扩增, 使用NEXTFLEX Rapid DNA-Seq Kit进行建库, 在上海美吉生物医药科技有限公司的Illumina MiSeq PE300平台上进行测序.

1.4 生物信息学分析

测序数据在美吉生物云平台(https://www.majorbio.com)进行在线分析. 使用Fastp软件(https://github.com/OpenGene/fastp, v0.20.0)对原始测序序列进行质控, 使用FLASH软件(http://www.cbcb.umd.edu/software/flash, v1.2.7)进行拼接, 使用UPARSE软件(http://drive5.com/uparse, v7.1), 根据97%的相似度对序列进行OTU聚类, 利用RDP classifier(http://rdp.cme.msu.edu, v2.2)对每条序列进行物种分类注释, 比对Silva 16S rRNA数据库(v138)和人体病原菌HPB 16S rRNA数据库, 设置比对阈值为70%. 基于BugBase算法(https://bugbase.cs.umn.edu)预测微塑料生物膜上微生物组的功能表型.

2 结果与讨论 2.1 微塑料表面生物膜的微观形貌

图 1所示, 5种微塑料颗粒在湖水中原位孵育28 d后, 其表面的颜色由白色/透明色逐渐变为不同程度的浅黄色/黄色, 尤其是PET表面的颜色变化最为明显, 说明经过原位孵育后微塑料表面可能富集了大量微生物. 进一步使用SEM对所有颗粒表面的微观形貌进行了表征, 发现所有孵育后的微塑料表面都观察到了杆状、球菌状和椭圆形微生物, 并且一些细菌细胞被丝状胞外聚合物包裹着, 与以往研究发现的微塑料生物膜表面形态结构特征类似[14, 17]. 以上结果表明所有颗粒在湖水中孵育28 d后表面都形成了明显的生物膜.

图 1 孵育前后微塑料生物膜的形貌变化 Fig. 1 Morphology changes in microplastic biofilms before and after incubation

2.2 微塑料生物膜上细菌群落多样性分析

通过对微塑料表面生物膜和周围水样进行16S rRNA基因高通量测序分析, 获得了OTU水平上物种分类学注释的统计结果, 如表 1所示. 所有样品的有效序列数总计为290 441, 每个样品的高质量序列数为28 472 ~ 52 506, 将其标准化为每个样品28 472个序列数, 并以97%的相似度聚类为4 172个OTU. 所有样品的细菌群落覆盖度指数(Good's coverage)均大于0.97, 表明样品序列的覆盖度高, 测序深度满足分析需求. 细菌群落多样性指数(Shannon和Simpson)和丰富度指数(Chao和ACE)的结果显示, 所有微塑料生物膜上细菌群落多样性和丰富度均高于周围水体. 进一步发现不同类型微塑料生物膜上细菌群落的多样性和丰富度各不相同. 例如, PET生物膜细菌群落的多样性最高, 而丰富度最高的却是PP生物膜. Qiang等[14]的研究发现河口水体中PET生物膜群落的多样性和丰富度指数均高于PS和PE. Miao等[19]的研究也发现3个淡水湖中PP塑料圈细菌群落的丰富度指数均最高. 以上结果表明微塑料生物膜上细菌群落多样性可能与微塑料的类型及其表面性质有关.

表 1 微塑料生物膜和周围水中细菌Alpha多样性指数 Table 1 Alpha diversity index of bacteria in the microplastic biofilms and surrounding water

进一步分析了不同类型微塑料表面生物膜和周围水中细菌OTU数的差异(图 2), 所有生物膜和周围水中鉴定出的OTU数依次为:PET > PP > CK > PS > PVC > PE > SW, 其特有的OTU数的比例分别为4.75%、3.33%、7.29%、2.23%、5.01%、1.32%和2.37%. 同时, 生物膜和周围水共享的OTU数仅为172个(占比为4.12%), 而各种类型的微塑料之间共享的OTU数为709个(占比为18.90%). 以上结果表明湖水中的微生物会选择性地定殖在微塑料表面, 且各种类型的微塑料生物膜上OTU数的差异可能归因于微塑料本身理化性质的差异. 早期的微生物定殖者可以通过形成生物膜和排泄代谢物来改变微塑料的表面特性, 使周围水中的微生物能够栖息在微塑料表面, 在生物膜逐渐成熟后又会选择性地富集河水中的特定微生物, 微生物和基质的双向选择塑造出了生物膜上独特的微生物群落结构[4, 20].

(a)微塑料生物膜和周围水间OTU数的差异;(b)不同类型微塑料生物膜间OTU数的差异 图 2 微塑料生物膜和周围水中细菌群落OTU数的差异 Fig. 2 Differences of bacterial OTUs between microplastic biofilms and surrounding water

图 3(a)所示, 基于Bray-curtis距离算法的样本层级聚类热图可以发现, 孵育28 d后的所有类型微塑料与周围水之间的距离均超过了0.88, 表明微塑料生物膜上细菌群落结构与周围水中的存在显著的差异. 如图 3(b)所示, 基于Bray-curtis距离算法的主坐标分析(PCoA)结果显示PS、PET、PP和CK紧密地聚集在一起, 而PVC则明显远离于它们, 表明PS、PET、PP和CK生物膜上的细菌群落结构更相似, 而PVC生物膜上的细菌群落结构则更为独特, 这与此前的研究结果一致[17]. 塑料圈上定殖的细菌主要来源于周围水环境, 但由于微塑料表面特殊的理化性质使其在水环境中形成了一个独特的生态位, 从而形成了独特的生物膜细菌群落[13, 21~23]. 该结果表明微塑料本身的理化性质和周围水体细菌群落的组成均会影响微塑料表面生物膜上形成的细菌群落.

(a)样本层级聚类;(b)主坐标分析(PCoA) 图 3 微塑料生物膜和周围水中细菌群落的Beta多样性 Fig. 3 Beta diversity of bacterial community in the microplastic biofilms and surrounding water

2.3 微塑料生物膜上细菌群落结构变化

基于OTU水平上物种分类学注释结果发现, 微塑料生物膜上的细菌群落共注释到了47个门、141个纲、326个目、520个科、892个属和1 607个种, 而周围水中的细菌群落共注释到了27个门、75个纲、176个目、271个科、403个属和521个种, 进一步证实了微塑料生物膜上细菌群落多样性高于周围水中. 在门水平上细菌群落的组成如图 4(a)所示, 微塑料生物膜上相对丰度前5位的细菌门依次为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteriota)、放线菌门(Actinobacteria)和绿弯菌门(Chloroflexi), 而周围水中相对丰度前5位的细菌门则依次为变形菌门、蓝藻门(Cyanobacteria)、拟杆菌门、绿弯菌门和疣微菌门(Verrucomicrobiota). 与周围水相比, 所有微塑料生物膜上变形菌门的相对丰度均显著增加了1.28~2.08倍. 相反, 所有微塑料生物膜上蓝藻门、拟杆菌门、绿弯菌门、放线菌门和疣微菌门的相对丰度分别降低了19.57%~21.32%、2.47%~8.66%、7.02%~9.19%、1.98%~4.55%和6.30%~7.54%. 与其他类型的微塑料生物膜相比, PVC生物膜上变形菌门的相对丰度最高, 但拟杆菌门的相对丰度最低. 这是由于变形菌门是微塑料表面细菌群落中最丰富的细菌门, 变形菌门的细菌作为早期定殖者更倾向于优先定殖在PVC表面, 而蓝藻门、绿弯菌门和疣微菌门等次级定殖者在生物膜增殖过程中逐渐被淘汰[14, 17, 19, 24~26].

(a)门水平;(b)纲水平;(c)属水平(色柱为细菌属相对丰度标准化后的颜色差异);1. norank α-Proteobacteria, 2. norank NB1-j, 3. Hyphomicrobium, 4. norank Ga0077536, 5. Rubrivivax, 6. unclassified Hyphomicrobiaceae, 7. Prochlorothrix PCC-9006, 8. norank NS11-12 marine group, 9. Bryobacter, 10. Clostridium sensu stricto 1, 11. norank Steroidobacteraceae, 12. norank Microscillaceae, 13. Ilumatobacter, 14. norank TRA3-20, 15. Lacibacter, 16. Bdellovibrio, 17. CL500-29 marine group, 18. Rhodobacter, 19. Acidibacter, 20. norank 0319-6G20, 21. Amphiplicatus, 22. norank Methylacidiphilaceae, 23. Ellin6067, 24. Candidatus Chloroploca, 25. Nitratireductor, 26. norank Rhodospirillales, 27. OM27 clade, 28. Pedomicrobium, 29. unclassified Leptolyngbyaceae, 30. norank SAR324 clade Marine group B, 31. norank Saccharimonadales, 32. unclassified Rhizobiales, 33. norank Rhizobiales Incertae Sedis, 34. Cyanobium PCC-6307, 35. Haliscomenobacter, 36. norank 11-24, 37. unclassified γ-Proteobacteria, 38. unclassified Rhodobacteraceae, 39. norank A4b, 40. SM1A02, 41. norank SM2D12, 42. unclassified α-Proteobacteria, 43. Hirschia, 44. Sphingomonas, 45. SWB02, 46. norank Saprospiraceae, 47. unclassified Comamonadaceae, 48. Nevskia, 49. norank A0839 图 4 微塑料生物膜和周围水中细菌群落组成的差异 Fig. 4 Differences in bacterial community composition in the microplastic biofilms and surrounding water

在纲水平上细菌群落的组成如图 4(b)所示, 微塑料生物膜上相对丰度前5位的细菌纲依次为α-变形菌纲、γ-变形菌纲、拟杆菌纲(Bacteroidia)、厌氧绳菌纲(Anaerolineae)和酸微菌纲(Acidimicrobiia), 而周围水中相对丰度前5位的细菌门则依次为蓝藻纲(Cyanobacteriia)、拟杆菌纲、α-变形菌纲、γ-变形菌纲和疣微菌纲(Verrucomicrobiae). 其中, α-变形菌纲更倾向于定殖在PE(占比为68.55%)、PP(占比为71.23%)和PS(占比为68.09%)表面, 而γ-变形菌纲则更倾向于定殖在PVC表面(占比为69.33%). 进一步分析了相对丰度排名前49位的细菌属在微塑料生物膜和周围水之间的差异, 结果如图 4(c)所示. 微塑料生物膜上的主要优势细菌属为norank A0839、涅瓦河菌属(Nevskia)、SWB02、鞘氨醇单胞菌属(Sphingomonas)、SM1A02和赫奇氏菌属(Hirschia), 而周围水中的主要优势细菌属为双色藻属PCC-6307Cyanobium PCC-6307)、CL500-29 marine groupCandidatus Chloroploca和原绿丝蓝细菌属PCC-9006Prochlorothrix PCC-9006). 俞锦丽等[21]发现鄱阳湖候鸟栖息地水体中微塑料生物膜上的优势细菌属为假单胞菌属(Pseudomonas)、马赛菌属(Massilia)和紫色杆菌属(Janthinobacterium). Xu等[27]发现太湖“塑料圈”中的优势细菌属为沉积物杆状菌属(Sediminibacterium)、慢生根瘤菌属(Bradyrhizobium)和贪噬菌属(Variovorax), 这与本研究的结果不同, 表明微塑料表面优先定殖的微生物与水体地理位置的不同有关. 此外, 不同类型微塑料生物膜上的优势细菌属也有所差异. 例如, PE、PET和PP生物膜上相对丰度最高的细菌属均为norank A0839, 其相对丰度分别为8.18%、6.04%和6.48%, PS生物膜上相对丰度最高的细菌属为鞘氨醇单胞菌属(7.14%), 而PVC生物膜上涅瓦河菌属的相对丰度则高达29.30%. 其中, 鞘氨醇菌属(Sphingobium)仅在PVC生物膜上被检出, 而嗜酸杆菌属(Acidibacter)、两侧折叠菌属(Amphiplicatus)、红细菌属(Rhodobacter)、涅瓦河菌属、norank Steroidobacteraceaenorank NB1-jnorank Rhizobiales Incertae Sedis等则是微塑料生物膜上特有的细菌属.以上结果进一步证实了每种类型的微塑料生物膜上都形成了独特的细菌群落结构, 不同类型的微塑料会选择性富集特定的微生物类群.

2.4 微塑料生物膜上人类病原菌的定殖

有研究发现塑料圈上可能会富集人类病原菌, 从而加剧水生环境中的生态风险[27~29]. 为探明人类病原菌的富集特征, 进一步使用Human HPB数据库注释了微塑料生物膜和周围水中人类病原菌的赋存情况. 结果共注释出了47种人类病原菌, 其中24种属于变形菌门(51.06%)、12种属于厚壁菌门(25.53%)、5种属于放线菌门(10.64%)和3种属于拟杆菌门(6.38%)等. 各微塑料生物膜和周围水中人类病原菌的检出种类依次为:CK > PP > PET > PE > PVC > PS > SW, 相对丰度依次为:PVC > PE > PS > CK > PET > PP > SW(图 5). 微塑料生物膜上人类病原菌的检出数量和总丰度均高于周围水体, 表明微塑料生物膜比周围水中存在更高的致病风险. 微塑料生物膜上和周围水中在属水平上的主要优势人类病原菌为巴尔通氏体、伯克霍尔德氏菌属、分枝杆菌属(Mycobacterium)、布鲁氏菌属、Clostridium sensu stricto 1和军团菌属(Legionella). 微塑料生物膜上巴尔通氏体、伯克霍尔德氏菌属和布鲁氏菌属的相对丰度分别增加了4.72%~20.74%、2.97%~38.20%和1.68%~6.14%, 而分枝杆菌属、Clostridium sensu stricto 1和军团菌属的相对丰度分别降低了0.29%~4.97%、0.37%~1.00%和0.40%~1.21%. 需要注意的是, PE生物膜上巴尔通氏体和PVC生物膜上伯克霍尔德氏菌属的相对丰度分别高达29.82%和41.74%. 以上机会性病原菌在生物膜[4, 27, 30]、污水处理厂进出水[31, 32]、河水[33]和饮用水源[34, 35]中也被频繁检出, 说明以上病原菌进入自然水体后会选择性定殖在微塑料表面, 并利用塑料圈作为其栖息地和庇护场所, 极大提高了其水生环境中的持留及致病性传播风险.

(a)检出种类;(b)相对丰度;(c)种水平病原菌的丰度热图(色柱为病原菌相对丰度标准化后的颜色差异);1. Bartonella henselae str. Houston-1, 2. unclassified Bartonella, 3. unclassified Brucella, 4. unclassified Rhizobiales, 5. Bordetella pertussis CS, 6. unclassified Bordetella, 7. unclassified Burkholderia, 8. unclassified Burkholderiales, 9. unclassified β-Proteobacteria, 10. unclassified Helicobacter, 11. unclassified Campylobacterales, 12. Escherichia coli O157H7 str. EDL933, 13. Salmonella enterica subsp. enterica serovar Typhi str. CT18, 14. Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, 15. unclassified Enterobacteriaceae, 16. unclassified Yersinia, 17. Yersinia enterocolitica subsp. enterocolitica 8081, 18. Legionella pneumophila subsp. pneumophila str. Philadelphia 1, 19. Haemophilus influenzae R2846, 20. unclassified Acinetobacter, 21. Pseudomonas aeruginosa PAO1, 22. unclassified γ-Proteobacteria, 23. Vibrio cholerae O1 biovar El Tor str. N16961, 24. unclassified Proteobacteria, 25. Bacillus anthracis str. H9401, 26. Bacillus cereus E33L, 27. unclassified Bacillus, 28. unclassified Bacillales, 29. Enterococcus faecalis OG1RF, 30. unclassified Streptococcus, 31. unclassified Lactobacillales, 32. unclassified Bacilli, 33. Clostridium perfringens str. 13, 34. Clostridium botulinum A str. Hall, 35. Clostridium novyiNT, 36. unclassified Clostridiaceae-1, 37. Corynebacterium jeikeium K411, 38. Mycobacterium tuberculosis H37Rv, 39. Mycobacterium ulcerans Agy99, 40. unclassified Mycobacterium, 41. unclassified Corynebacteriales, 42. Bacteroides coprosuis DSM 18011, 43. Bacteroides salanitronis DSM 18170, 44. unclassified Bacteroides, 45. Chlamydia trachomatis DUW-3CX, 46. unclassified Fusobacterium, 47. unclassified Mycoplasma 图 5 微塑料生物膜和周围水中人类病原菌的赋存差异 Fig. 5 Occurrence variations of human pathogens in the microplastic biofilms and surrounding water

对于种水平上的人类病原菌, Bartonella henselae str. Houston-1Mycobacterium ulcerans Agy99Clostridium perfringens str. 13、Legionella pneumophila subsp. Pneumophila str. Philadelphia 1Bacteroides coprosuis DSM 18011Chlamydia trachomatis DUW-3CXMycobacterium tuberculosis H37RvBordetella pertussis CS和铜绿假单胞菌(Pseudomonas aeruginosa)在微塑料生物膜和周围水中均被检出, 其中Bartonella henselae str. Houston-1的相对丰度在微塑料生物膜中是最高的, 尤其是PE生物膜上高达22.85%. Bartonella henselae str. Houston-1是从休斯顿的人类血液中分离出来的, 是引起猫抓病的主要病原菌[36]. 铜绿假单胞菌也是临床上常见的机会性病原菌, 可以引起如血液感染和肺炎等严重且致命的感染[37~39]. 此外, 有研究发现水生环境中的人类病原菌能够通过基因水平转移的方式获得抗生素抗性基因(ARGs), 从而对抗生素产生耐药性, 进一步加剧抗生素耐药性和致病性的共传播风险[40]. 根据世界卫生组织颁布的抗生素耐药性病原菌优先控制清单, 发现本研究中鉴定出的47种人类病原菌中有6种属于Ⅰ类重点(极为重要)控制的抗生素耐药性病原菌, 包括铜绿假单胞菌和5种属于肠杆菌科(Enterobacteriaceae)的病原菌, 并且发现其相对丰度均高于周围水体, 表明微塑料生物膜上也会选择性富集抗生素耐药性病原菌, 对生物安全和人类健康造成更严重的威胁.

2.5 微塑料污染生态风险预测

为了进一步评估微塑料污染对水生环境的生态风险, 基于BugBase算法预测了微塑料表面微生物组的功能表型, 包括革兰氏阴性、好氧、生物膜形成、移动元件、潜在致病性、革兰氏阳性、胁迫耐受、厌氧和兼性厌氧等9大类表型. 如图 6(a)所示, 与周围水体相比, 微塑料生物膜上生物膜形成、移动元件和潜在致病性3种功能表型的占比分别增加了2.38%~5.57%、0.82%~7.13%和3.04%~8.30%. 俞锦丽等[21]在鄱阳湖“塑料圈”表面细菌群落中也发现生物膜形成、移动元件和潜在致病性等功能表型的占比相较水体细菌群落是增加的. PVC和PP生物膜上潜在致病性功能表型的占比分别是最高的和最低的, 与本文中PVC和PP生物膜上病原菌的丰度相对应, 也进一步证实了PVC生物膜的致病风险更高. 进一步分析了物种-表型贡献度, 如图 6(b)所示, 生物膜形成、移动元件和潜在致病性3种功能表型主要是由属于α-变形菌纲和γ-变形菌纲的细菌贡献, 并且其对微塑料生物膜上3种功能表型的贡献显著高于周围水体. 总体而言, α-变形菌纲对微塑料表面生物膜形成和移动元件的贡献更高, 而γ-变形菌纲对微塑料表面潜在致病性的贡献更高.

(a)表型组成的差异(A.革兰氏阴性, B.好氧, C.生物膜形成, D.移动元件, E.潜在致病性, F.革兰氏阳性, G.胁迫耐受, H.厌氧, I.兼性厌氧);(b)生物膜形成、移动元件和潜在致病性的物种贡献度 图 6 BugBase表型预测和物种-表型贡献度 Fig. 6 BugBase phenotypic prediction and phenotypic contribution of species

最近的研究报道表明, 微塑料是水生环境中基因水平转移的热区, 不同细菌类群可以利用塑料圈作为媒介促进ARGs和毒力因子(VFs)等遗传物质的交换, 甚至会导致同时携带ARGs和VFs的致病性抗生素耐药菌的出现[41~43]. ARGs和VFs都可以编码在可移动遗传元件上并且通过基因水平转移的方式传播, 从而导致更严重的公共安全问题[44]. 微塑料生物膜的形成会促进ARGs的增殖并且加剧抗生素耐药性和致病性的共传播风险[45]. 本研究发现微塑料生物膜上生物膜形成、移动元件和潜在致病性这3种表型占比的增加进一步证实了微塑料污染会造成严重的水环境生态风险. 因此, 未来的研究需要高度重视微塑料作为环境载体对人类病原菌的富集作用及其带来的生态风险.

3 结论

(1)通过原位孵育试验发现PE、PP、PS、PET和PVC这5种典型微塑料生物膜上都形成了独特的细菌群落结构, 并且更倾向于选择性富集变形菌门的细菌, 其中PVC生物膜上细菌群落结构最独特, 微塑料的理化性质和周围水体细菌群落均会影响微塑料生物膜上细菌群落的组成.

(2)微塑料生物膜对人类病原菌具有选择性富集作用, 其中巴尔通氏体、伯克霍尔德氏菌属和布鲁氏菌属等机会性病原菌以及铜绿假单胞菌等致病性抗生素耐药菌的选择性富集, 可能会加剧水体环境中致病性和抗生素耐药性的共传播风险.

(3)BugBase预测结果显示, 微塑料生物膜群落中生物膜形成、移动元件和潜在致病性这3种功能表型的占比较周围水体显著增加, 表明微塑料污染会加剧水生环境的生态风险.

参考文献
[1] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7). DOI:10.1126/sciadv.1700782
[2] Lebreton L C M, Van der Zwet J, Damsteeg J W, et al. River plastic emissions to the world's oceans[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15611
[3] Zhu L J, Li R L, Yang K, et al. Quantifying health risks of plastisphere antibiotic resistome and deciphering driving mechanisms in an urbanizing watershed[J]. Water Research, 2023, 245. DOI:10.1016/j.watres.2023.120574
[4] Wu X J, Pan J, Li M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm[J]. Water Research, 2019, 165. DOI:10.1016/j.watres.2019.114979
[5] Shen M C, Zeng Z T, Li L, et al. Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection[J]. Journal of Cleaner Production, 2021, 315. DOI:10.1016/j.jclepro.2021.128188
[6] Zettler E R, Mincer T J, Amaral-Zettler L A. Life in the "Plastisphere": microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137-7146.
[7] McCormick A, Hoellein T J, Mason S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863-11871.
[8] Song R P, Sun Y Z, Li X F, et al. Biodegradable microplastics induced the dissemination of antibiotic resistance genes and virulence factors in soil: a metagenomic perspective[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154596
[9] Yang K, Chen Q L, Chen M L, et al. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization[J]. Environmental Science & Technology, 2020, 54(18): 11322-11332.
[10] Lamb J B, Willis B L, Fiorenza E A, et al. Plastic waste associated with disease on coral reefs[J]. Science, 2018, 359(6374): 460-462. DOI:10.1126/science.aar3320
[11] Sun Y Z, Wu M C, Zang J X, et al. Plastisphere microbiome: methodology, diversity, and functionality[J]. iMeta, 2023, 2(2). DOI:10.1002/imt2.101
[12] Li C C, Wang L F, Ji S P, et al. The ecology of the plastisphere: microbial composition, function, assembly, and network in the freshwater and seawater ecosystems[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117428
[13] Wu N, Zhang Y, Zhao Z, et al. Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.134876
[14] Qiang L Y, Cheng J P, Mirzoyan S, et al. Characterization of microplastic-associated biofilm development along a freshwater-estuarine gradient[J]. Environmental Science & Technology, 2021, 55(24): 16402-16412.
[15] Xu X Y, Wang S, Gao F L, et al. Marine microplastic-associated bacterial community succession in response to geography, exposure time, and plastic type in China's coastal seawaters[J]. Marine Pollution Bulletin, 2019, 145: 278-286. DOI:10.1016/j.marpolbul.2019.05.036
[16] Pinnell L J, Turner J W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment[J]. Frontiers in Microbiology, 2019, 10. DOI:10.3389/fmicb.2019.01252
[17] 付茜茜, 李大圳, 章宇晴, 等. 城市红树林系统中微塑料表面细菌群落结构特征分析[J]. 热带作物学报, 2021, 42(12): 3692-3698.
Fu Q Q, Li D Z, Zhang Y Q, et al. Microbial colonization and communities on microplastics in urban mangrove system[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3692-3698. DOI:10.3969/j.issn.1000-2561.2021.12.041
[18] Zhang Y, Wu H W, Xu L, et al. Promising indicators for monitoring microplastic pollution[J]. Marine Pollution Bulletin, 2022, 182. DOI:10.1016/j.marpolbul.2022.113952
[19] Miao L Z, Li W Y, Adyel T M, et al. Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems[J]. Water Research, 2023, 229. DOI:10.1016/j.watres.2022.119406
[20] Zhao Y F, Gao J F, Wang Z Q, et al. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment[J]. Journal of Hazardous Materials, 2021, 402. DOI:10.1016/j.jhazmat.2020.123550
[21] 俞锦丽, 赵俊凯, 罗思琦, 等. 鄱阳湖候鸟栖息地微塑料表面细菌群落结构特征与生态风险预测[J]. 环境科学, 2024, 45(5): 3098-3106.
Yu J L, Zhan J K, Luo S Q, et al. Characterization of microplastic surface bacterial community structure and prediction of ecological risk in Poyang Lake, China[J]. Environmental Science, 2024, 45(5): 3098-3106.
[22] Ahmad M, Li J L, Wang P D, et al. Environmental perspectives of microplastic pollution in the aquatic environment: a review[J]. Marine Life Science & Technology, 2020, 2(4): 414-430.
[23] Sun X M, Chen B J, Xia B, et al. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: a case in situ study on the Sungo Bay, China[J]. Environmental Pollution, 2020, 262. DOI:10.1016/j.envpol.2020.114336
[24] 刘淑丽, 简敏菲, 邹龙, 等. 鄱阳湖白鹤保护区微塑料表面微生物群落结构特征[J]. 环境科学, 2022, 43(3): 1447-1454.
Liu S L, Jian M F, Zou L, et al. Microbial community structure on microplastic surface in the grus leucogeranus reserve of Poyang Lake[J]. Environmental Science, 2022, 43(3): 1447-1454.
[25] 赵俊凯, 陈旭, 胡婷婷, 等. 鄱阳湖湿地淹水与非淹水状态下微塑料表面细菌群落分布特征[J]. 环境科学, 2023, 44(9): 5063-5070.
Zhao J K, Chen X, Hu T T, et al. Distribution characteristics of microplastic surface bacterial communities under flooded and non-flooded conditions in Nanjishan wetland of Poyang Lake[J]. Environmental Science, 2023, 44(9): 5063-5070.
[26] 俞锦丽, 陈旭, 张颖, 等. 鄱阳湖湿地水体、沉积物及微塑料表面细菌群落结构特征[J]. 应用生态学报, 2023, 34(7): 1968-1974.
Yu J L, Chen X, Zhang Y, et al. Bacterial community structure of water, sediment and microplastics in Poyang Lake wetland[J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1968-1974.
[27] Xu C Y, Hu C, Lu J W, et al. Lake plastisphere as a new biotope in the Anthropocene: potential pathogen colonization and distinct microbial functionality[J]. Journal of Hazardous Materials, 2024, 461. DOI:10.1016/j.jhazmat.2023.132693
[28] Feng L M, He L, Jiang S Q, et al. Investigating the composition and distribution of microplastics surface biofilms in coral areas[J]. Chemosphere, 2020, 252. DOI:10.1016/j.chemosphere.2020.126565
[29] Ya H, Xing Y, Zhang T, et al. LDPE microplastics affect soil microbial community and form a unique plastisphere on microplastics[J]. Applied Soil Ecology, 2022, 180. DOI:10.1016/j.apsoil.2022.104623
[30] Gomez-Smith C K, LaPara T M, Hozalski R M. Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system[J]. Environmental Science & Technology, 2015, 49(14): 8432-8440.
[31] Ju F, Beck K, Yin X L, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes[J]. The ISME Journal, 2019, 13(2): 346-360. DOI:10.1038/s41396-018-0277-8
[32] Wu Y, Li S, Yu K, et al. Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: metagenomic analysis and risk assessment[J]. Journal of Hazardous Materials, 2023, 460. DOI:10.1016/j.jhazmat.2023.132528
[33] Davis B C, Riquelme M V, Ramirez-Toro G, et al. Demonstrating an integrated antibiotic resistance gene surveillance approach in Puerto Rican watersheds post-Hurricane Maria[J]. Environmental Science & Technology, 2020, 54(23): 15108-15119.
[34] Dang C Y, Xia Y, Zheng M S, et al. Metagenomic insights into the profile of antibiotic resistomes in a large drinking water reservoir[J]. Environment International, 2020, 136. DOI:10.1016/j.envint.2019.105449
[35] Han Z M, Zhang Y, An W, et al. Antibiotic resistomes in drinking water sources across a large geographical scale: multiple drivers and co-occurrence with opportunistic bacterial pathogens[J]. Water Research, 2020, 183. DOI:10.1016/j.watres.2020.116088
[36] Alsmark C M, Frank A C, Karlberg E O, et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9716-9721.
[37] Lyczak J B, Cannon C L, Pier G B. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist[J]. Microbes and Infection, 2000, 2(9): 1051-1060. DOI:10.1016/S1286-4579(00)01259-4
[38] Patel G, Huprikar S, Factor S H, et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies[J]. Infection Control & Hospital Epidemiology, 2008, 29(12): 1099-1106.
[39] Sun Y Z, Cao N, Duan C X, et al. Selection of antibiotic resistance genes on biodegradable and non-biodegradable microplastics[J]. Journal of Hazardous Materials, 2021, 409. DOI:10.1016/j.jhazmat.2020.124979
[40] Jiang X L, Ellabaan M M H, Charusanti P, et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens[J]. Nature Communications, 2017, 8. DOI:10.1038/ncomms15784
[41] Eckert E M, Di Cesare A, Kettner M T, et al. Microplastics increase impact of treated wastewater on freshwater microbial community[J]. Environmental Pollution, 2018, 234: 495-502. DOI:10.1016/j.envpol.2017.11.070
[42] Arias-Andres M, Klümper U, Rojas-Jimenez K, et al. Microplastic pollution increases gene exchange in aquatic ecosystems[J]. Environmental Pollution, 2018, 237: 253-261. DOI:10.1016/j.envpol.2018.02.058
[43] Liu Y, Liu W Z, Yang X M, et al. Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145643
[44] Zhao Z, Zhang K, Wu N, et al. Estuarine sediments are key hotspots of intracellular and extracellular antibiotic resistance genes: a high-throughput analysis in Haihe Estuary in China[J]. Environment International, 2020, 135. DOI:10.1016/j.envint.2019.105385
[45] Li H, Luo Q P, Zhao S, et al. Watershed urbanization enhances the enrichment of pathogenic bacteria and antibiotic resistance genes on microplastics in the water environment[J]. Environmental Pollution, 2022, 313. DOI:10.1016/j.envpol.2022.120185