环境科学  2024, Vol. 45 Issue (8): 4484-4492   PDF    
漯河市典型工业源挥发性有机物源成分谱特征及影响
杜宇彬1,2, 吴丽萍2, 牛大伟3, 冷海斌1, 薛爽1, 张楠1, 杨文1     
1. 中国环境科学研究院,北京 100012;
2. 天津城建大学环境与市政工程学院,天津 300384;
3. 漯河市环境监控中心,漯河 462000
摘要: 选取漯河市10类典型工业企业开展有组织排放挥发性有机物(VOCs)样品采集, 分析各行业VOCs排放特征及其影响. 结果表明, 包装印刷行业排放VOCs以OVOC(60.9%)为主;工业涂装行业VOCs排放以芳香烃(42.4%)和OVOC(38.9%)为主;制鞋、家具制造和造纸行业的VOCs排放特征相似, 以OVOC(32.3%~42.6%)和芳香烃(20.7%~33.7%)为主, 且卤代烃排放也不容忽视;化工和制药行业排放的VOCs中卤代烃占比最高, 分别为59.3%和46.6%;砖瓦制品行业的VOCs排放以烷烃为主(62.7%);热力生产与供应行业的VOCs排放特征以OVOC(48.5%)为主, 其次为卤代烃(19.7%);食品制造行业的VOCs排放则以OVOC(48.1%)和烷烃(29.4%)为主. 不同行业的VOCs特征物种存在差异, 但整体上, 丙酮、异丙醇、苯、甲苯、间/对-二甲苯、乙烷、乙醛和二氯甲烷是漯河市多数行业VOCs排放的特征物种. 漯河市典型工业有组织排放的VOCs对臭氧生成潜势贡献较大的组分以OVOC和芳香烃为主, 对二次有机气溶胶生成潜势较大的组分为芳香烃. 食品制造和家具制造行业排放的VOCs生成O3的源活性因子[SR(O3)]较高, 分别为3.7 g·g-1和3.5 g·g-1;工业涂装、家具制造和制鞋行业排放的VOCs生成二次有机气溶胶的源活性因子[SR(SOA)]较高, 分别为0.021、0.017和0.014 g·g-1;基于PM2.5和O3协同管控视角, 食品制造、工业涂装和家具制造是漯河市应当优先管控的行业, 家具制造行业则是优控行业中的重中之重.
关键词: 挥发性有机物(VOCs)      工业排放      源成分谱      臭氧生成潜势(OFP)      二次有机气溶胶生成潜势(SOAP)     
Source Profiles and Impact of Volatile Organic Compounds in Typical Industries in Luohe City
DU Yu-bin1,2 , WU Li-ping2 , NIU Da-wei3 , LENG Hai-bin1 , XUE Shuang1 , ZHANG Nan1 , YANG Wen1     
1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China;
3. Environmental Monitoring Center of Luohe City, Luohe 462000, China
Abstract: Ten typical industries in Luohe City were selected for the sampling of organized emissions of volatile organic compounds (VOCs), and 114 VOCs components of each sample were detected to analyze their source characteristics and effects. The results showed that VOCs emissions of packaging and printing were mainly composed of OVOC (60.9%). In terms of the industrial coating, aromatic hydrocarbons (42.4%) and OVOC (38.9%) were the main VOCs species. The emissions of the footwear, furniture manufacturing, and paper industries were mainly composed of OVOC (32.3% - 42.6%) and aromatic hydrocarbons (20.7% - 33.7%), with noticeable halogenated hydrocarbons. Chemical and pharmaceutical industries mainly emitted halogenated hydrocarbons, with the proportions of 59.3% and 46.6%, respectively. The emissions of the brick industry were primarily composed of alkane (62.7%), and OVOC (48.5%), and halogenated hydrocarbons (19.7%) were the main contributors to VOCs emissions of the thermal industry. OVOC (48.1%) and alkane (29.4%) were the dominant species for the food manufacturing industry. In the packaging and printing industry, acetone (14.8%), isopropanol (14.0%), ethylacetate (11.1%), and toluene (10.2%) were the characteristic VOCs species. The emissions of industrial coating were dominated by isopropanol (25.6%), toluene (15.0%), m/p-xylene (12.4%), and acetone (7.1%). In the furniture manufacturing industry, m/p-xylene (15.8%), followed by hexanal (15.1%), 1,2-dichloroethane (9.6%), and acetone (8.4%) were the characteristic VOCs species. The emissions of the footwear industry were dominated by acetone (18.9%), toluene (18.1%), methylene chloride (8.0%), and acetaldehyde (6.8%). The characteristic species of the chemical industry were methylene chloride (23.9%), 1,2-dichloroethane (14.7%), acetone (12.7%), and trichloromethane (11.1%), and those for the pharmaceutical industry were bromoethane (36.7%), acetone (19.2%), benzene (5.0%), and vinyl acetate (3.0%). The emissions of the brick industry were mainly ethane, propane, ethylene, and benzene. Acetone, toluene, acetylene, and acetaldehyde were the primary VOCs species in the paper industry. The emissions of the food manufacturing industry were dominated by acetaldehyde, n-pentane, acrolein, and n-heptane. The emissions of the thermal industry were characterized by acetone, acetaldehyde, benzene, and toluene. Although different industries emitted various characteristic VOCs species, in general, acetone, isopropanol, benzene, toluene, m/p-xylene, ethane, acetaldehyde, and methylene chloride were the main characteristic species in most industries in Luohe. OVOC and aromatic hydrocarbons had higher contributions to ozone generation potential (OFP), and aromatic hydrocarbons contributed over 80.0% to secondary organic aerosol formation potential (SOAP). The source reactivity of ozone [SR(O3)] of the food and furniture manufacturing industries were higher, with values of 3.7 g·g-1 and 3.5 g·g-1, respectively, whereas the source reactivity of secondary organic aerosol SR(SOA) of the industrial coating, furniture manufacturing, and footwear industries were higher, with the values of 0.021, 0.017, and 0.014 g·g-1. Hence, the food manufacturing, industrial coating, and furniture manufacturing industries should be the primary industries for the collaborative control of PM2.5 and ozone in Luohe City, of which the furniture manufacturing industry was the top priority.
Key words: volatile organic compounds (VOCs)      industrial emission      source profile      ozone formation potential (OFP)      secondary organic aerosol formation potential (SOAP)     

随着“大气污染防治行动计划”、“打赢蓝天保卫战三年行动计划”和“大气污染综合治理攻坚行动”等一系列污染防治措施的深入实施, 我国环境空气质量明显改善, 污染特征也发生了改变. 城市细颗粒物(PM2.5)浓度水平有所下降但二次生成占比增高[1], 臭氧(O3)已成为影响城市环境空气质量的重要污染物[2]. 作为二次有机气溶胶(secondary organic aerosol, SOA)和O3的重要前体物[3 ~ 5], 挥发性有机化合物(volatile organic compounds, VOCs)已被列为我国大气防控重点污染物. 工业排放是城市VOCs的重要来源[5 ~ 7], 不同行业排放的VOCs组分特征不同, 对SOA和O3的生成贡献存在差异. 因此, 构建本地化典型工业VOCs源成分谱, 分析不同行业对SOA和O3的生成贡献与活性, 可以为估算分物种VOCs排放量提供基础数据, 对重点行业开展优势物种的精细化管控具有指导意义.

VOCs源成分谱研究起步于欧美等发达国家和地区, 建立了广泛使用的SPECIATE数据库和其它源成分谱数据库[8]. 我国也对不同地区和不同行业开展了大量VOCs源谱的建立工作[9 ~ 13], 任何等[10]采用排放清单和实地采样结合的方式对郑州市电气机械、器材制造、医药制造、印刷、橡胶制品、塑料制品、有色金属和设备制造行业的有组织及无组织排放建立了源谱, 同时分析VOCs排放的二次生成潜势并给出了减排与管理建议. 周子航等[11]和包亦姝等[13]分别针对工艺过程源和溶剂使用源, 建立了涉及包装印刷、人造板制造、家具制造、制鞋、化学品制造、人造板、医药制造和化工制品行业的VOCs源成分谱, 对各行业排放特征及优势物种进行了分析, 并对组分活性进行评估, 提出了针对生产水平、生产过程、废气治理和排放标准把控的具体意见. Mo等[14]在2016年针对自动喷漆、家具涂装、制鞋、印刷和化工等行业构建了含有75种VOCs物种的本土化VOCs成分谱数据库. Sha等[15]通过现场实测与文献检索, 构建了涵盖8类大源、101类子源和近400种VOCs物种的综合VOCs成分谱数据集. 工业源VOCs排放涉及生产工艺环节较多, 地域差异性大;早期研究的VOCs组分缺乏OVOC和卤代烃[15];部分行业[如造纸、食品制造(油炸)和酒精酿造等]的VOCs排放特征研究较少[16];我国产业结构逐步调整也导致工业源VOCs排放特征不断变化[17], 因此本地化VOCs源成分谱需要持续补充和更新. 此外, VOCs源排放对大气反应活性的影响也值得关注[18 ~ 20], 为O3和SOA的协同管控提供科学依据.

河南省漯河市位于苏皖鲁豫交界处, 秋冬季PM2.5污染严重, 夏季O3污染突出, 了解典型行业VOCs排放特征有助于当地空气污染管控. 本文以漯河市典型行业[包装印刷、工业涂装、制鞋、家具制造、化工、制药、砖瓦制造、造纸、食品制造和热力生产与供应(简称“热力”)等行业]为研究对象, 通过现场采样分析各行业VOCs排放特征, 比较各行业VOCs排放的OFP和SOAP, 筛选本地优控行业和VOCs物种, 以期为精细化VOCs排放清单的编制提供本地化基础数据, 并为漯河市大气污染治理提供技术支撑.

1 材料与方法 1.1 采样与分析 1.1.1 采样企业筛选

漯河市位于河南省中部偏南, 是我国首个“中国食品名城”;除食品制造行业以外, 家具制造及工业涂装行业也是漯河的支柱产业. 基于漯河市重污染天气应急减排清单, 筛选出包装印刷、工业涂装、制鞋、家具制造、化工和制药这6个涉VOCs重点行业以及砖瓦制造、造纸、食品制造和热力生产与供应4个涉NOx重点行业. 本着不重复和有差异的原则共选择26家企业, 于2022年3月至2023年3月进行VOCs源样品采集, 采样企业及样品数量见表 1.

表 1 企业VOCs采样信息 Table 1 Sampling information in VOCs enterprises

1.1.2 采样方法

为使得计算得出的VOCs源谱能代表不同行业实际排放到环境空气中的VOCs污染特征, 本研究选取各企业经废气处理设施后的有组织排放口作为采样点位. 使用容积为3 L的聚四氟乙烯(PVF)薄膜气袋进行VOCs源采样, 采样频次和采样时间的确定参照《固定源废气监测技术规范》(HJ/T 397-2007)[21], 采样仪器为崂应3036型废气VOCs采样仪. 具体采样方法参照《固定污染源废气挥发性有机物的采样气袋法》(HJ 732-2014)[22], 在企业处于正常生产工况下, 根据实际情况确认采样点位, 安装采样系统并进行气密性检查;随后使用样品气体润洗气袋3次, 降低老化气袋内表面因吸附导致的样品损失干扰;样品采集时, 在1 h内等时间间隔采集3个气袋样品并计算平均值, 同时记录样品编号、采样时环境温度和大气压力等信息.

1.1.3 分析方法

本研究采用美国热电公司生产的Thermo Scientific 5800GM型在线预浓缩-气相色谱/质谱联用(GC-MS/FID)分析仪, 使用标准气体CNEMC MIX-117(美国Linde公司)对114种VOCs物种(包括29种烷烃、11种烯烃、1种炔烃、17种芳香烃、35种卤代烃和21种OVOC)进行定性定量分析. 时间分辨率为1 h, 采样流量为14 mL·min-1, 采样时长为30 min. 分析时, 样品经采样系统采集后进入除湿模块干燥, 随后气体被冷阱富集器所捕集, 之后闪蒸加热从冷阱富集器中脱附与载气一同进入色谱/质谱分析仪[23].

1.1.4 质量控制与保证

样品采集时优先使用新气袋, 使用重复使用的采样气袋必须通过空白实验, 具体参照《固定污染源废气挥发性有机物的采样气袋法》(HJ 732-2014)[22]. 采样前需用样品气体润洗气袋3次, 采样管尽量靠近排放管道中心位置. 采样结束后, 气袋样品在避光保温条件下保存并尽量于8 h内完成分析. 气袋样品分析前需进行实验室空白测试, 使用标准气体(美国Linde公司)进行多点校准[体积分数(×10-9):0.5、2、4、6、8和10], 保证各物种标准曲线r2在0.99以上. 每周通一次体积分数为2×10-9的标气进行单点校准, 偏差阈值设置为20%. 样品分析结束后, 手动将所有样品谱图与标准物质谱图进行核对, 其他辅助设施符合相应规定[24].

1.2 有组织排放源成分谱建立

VOCs成分谱表示为各VOCs组分浓度占总挥发性有机物(total volatile organic compound, TVOC)浓度的质量分数, 计算公式如下:

(1)

式中, Fj为VOCs组分j的质量分数, %;cj为VOCs组分j的浓度, μg·m-3;TVOC为总挥发性有机物浓度, μg·m-3.

1.3 臭氧生成潜势分析方法

不同VOCs物种通过光化学反应生成O3的潜力不同, 本研究选用最大增量反应活性法(MIR)估算漯河市各行业有组织排放VOCs的臭氧生成潜势(OFP), 公式如下[25]

(2)

式中, OFPi为行业i有组织排放的总臭氧生成潜势量, μg∙m-3;[VOCs]ij为行业i有组织排放中VOCs组分j的平均浓度, μg∙m-3;MIRj为VOCs组分j的最大增量反应活性(MIR), 采用Carter基于SAPRC-07化学机制研究的MIR系数[26, 27].

1.4 SOA生成潜势分析方法

甲苯是SOA形成的重要人为排放前体物, 因此多用甲苯加权质量贡献法[20]估算其他VOCs物种的SOAP值, 公式如下:

(3)

式中, SOAPi为行业i有组织排放的总SOAP, μg∙m-3;SOAPj为VOCs组分j的SOAP, 取值Derwent等[20]的研究结果;FACtoluene为甲苯的气溶胶分数系数, 取值为5.4%[18, 28].

1.5 排放源二次污染排放活性因子计算

排放源活性(source reactivity, SR)因子, 用以表征每产生单位VOCs所导致的O3和SOA增加量, 更能反映在不考虑VOCs排放强度的情况下排放源生成O3和SOA的能力, 计算公式如下:

(4)
(5)

式中, SR(O3i为行业i生成O3的源活性因子;Fij为行业i中VOCs组分j的质量分数, %;SR(SOA)i为行业i生成SOA的源活性因子.

2 结果与讨论

每个样品检测出的114种VOCs物种的浓度之和即为TVOC浓度, 各企业有组织点位所有样品的平均值代表该企业VOCs排放情况, 各行业所有企业的平均值代表该行业的VOCs排放情况.

2.1 不同行业VOCs排放组分特征

图 1给出了各个行业有组织排放口的TVOC浓度和组成. 整体上, 涉VOCs行业有组织排放口的ρ(TVOC)较高, 特别是包装印刷、工业涂装和化工行业(46.6~268.6 mg·m-3);大部分涉NOx行业有组织排放口ρ(TVOC)较低(0.4~0.8 mg·m-3), 但砖瓦制品行业有组织排放口ρ(TVOC)较高, 与家具制造和制药行业排放水平相当(16.4~47.6 mg·m-3). 从VOCs组分特征来看, OVOC是包装印刷行业最重要的VOCs排放种类, 质量分数超过60.0%;工业涂装行业的VOCs组成以芳香烃(42.4%)为主, 其次为OVOC(38.9%);制鞋、家具制造和造纸行业的VOCs排放特征相似, 以OVOC为主(32.3% ~42.6%), 其次为芳香烃(20.7%~33.7%), 制鞋和家具制造行业排放卤代烃的质量分数均超过10.0%, 而造纸的乙炔排放质量分数偏高(12.8%);化工和制药行业排放的VOCs中卤代烃占比最高, 分别为59.3%和46.6%;砖瓦制品行业的VOCs排放以烷烃为主(62.7%), 其次为芳香烃(12.8%);热力行业VOCs排放特征相似, 以OVOC(48.5%)和卤代烃(19.7%)为主, 芳香烃排放占比也相对较高(15.3%);食品制造行业VOCs排放则以OVOC(48.1%)和烷烃(29.4%)为主.

1.包装印刷, 2.工业涂装, 3.制鞋, 4.家具制造, 5.化工, 6.制药, 7.砖瓦制品, 8.造纸, 9.食品制造, 10.热力 图 1 重点行业VOC浓度及组成 Fig. 1 Concentrations and compositions of VOCs in key industries

包装印刷行业的高占比OVOC排放与杨杨等[29]的研究结果相似, 主要原因为生产过程中油墨及润版液的使用;工业涂装行业所用涂料多含有芳香烃化合物[30], 被用作苯系物替代溶剂的乙酸乙酯和四氢呋喃[31]等OVOC的排放也不容忽视;制鞋和家具制造行业使用的胶粘剂中富含苯系物和氯代烃[32];化工和制药行业的原材料和副产物多为以二氯甲烷和溴甲烷为主的卤代烃[33, 34];砖瓦制品行业所用烧结机将长链VOCs分解为低碳类化合物[35];造纸行业使用的清洗剂的主要成分为OVOC[36];热力行业的煤炭燃烧则是芳香烃排放的主要来源[35];食品制造行业主要的污染物是高温和发酵等工艺产生的副产物, 以OVOC和烷烃为主[37].

2.2 不同行业VOCs源成分谱

各典型行业有组织排放的VOCs源成分谱如图 2所示. 各行业质量分数排名前10的物种占TVOC的60.0%以上, 依此确定各典型行业排放的VOCs特征物种.

1.乙烷, 2.丙烷, 3.正丁烷, 4.异丁烷, 5.2,2-二甲基丁烷, 6.2,3-二甲基丁烷, 7.正戊烷, 8.异戊烷, 9.环戊烷, 10.甲基环戊烷, 11.2-甲基戊烷, 12.3-甲基戊烷, 13.2,3-二甲基戊烷, 14.2,4-二甲基戊烷, 15.2,2,4-三甲基戊烷, 16.2,3,4-三甲基戊烷, 17.正己烷, 18.环己烷, 19.2-甲基己烷, 20.3-甲基己烷, 21.甲基环己烷, 22.正庚烷, 23.2-甲基庚烷, 24.3-甲基庚烷, 25.正辛烷, 26.正壬烷, 27.正癸烷, 28.正十一烷, 29.正十二烷, 30.乙烯, 31.丙烯, 32.1-丁烯, 33.顺式-2-丁烯, 34.反式-2-丁烯, 35.1,3-丁二烯, 36.1-戊烯, 37.顺式-2-戊烯, 38.反式-2-戊烯, 39.异戊二烯, 40.1-己烯, 41.一氯甲烷, 42.二氯甲烷, 43.三氯甲烷, 44.四氯化碳, 45.氯乙烷, 46.1,1-二氯乙烷, 47.1,2-二氯乙烷, 48.1,1,1-三氯乙烷, 49.1,1,2-三氯乙烷, 50.1,1,2,2-四氯乙烷, 51.1,2-二氯丙烷, 52.氯乙烯, 53.1,1-二氯乙烯, 54.顺-1,2-二氯乙烯, 55.反-1,2-二氯乙烯, 56.三氯乙烯, 57.四氯乙烯, 58.顺式-1,3-二氯丙烯, 59.反式-1,3-二氯丙烯, 60.六氯丁二烯, 61.氯苯, 62.氯甲苯, 63.1,2-二氯苯, 64.1,3-二氯苯, 65.1,4-二氯苯, 66.1,2,4-三氯苯, 67.溴甲烷, 68.一溴二氯甲烷, 69.二溴一氯甲烷, 70.三溴甲烷, 71.1,2-二溴乙烷, 72.氟里昂-11,73.氟里昂-12,74.氟里昂-113,75.氟里昂-114,76.苯, 77.甲苯, 78.间/对-二甲苯, 79.邻-二甲苯, 80.1,2,3-三甲基苯, 81.1,2,4-三甲基苯, 82.1,3,5-三甲基苯, 83.间-乙基甲苯, 84.邻-乙基甲苯, 85.对-乙基甲苯, 86.乙苯, 87.正丙苯, 88.异丙苯, 89.间-二乙基苯, 90.对-二乙基苯, 91.萘, 92.苯乙烯, 93.异丙醇, 94.乙醛, 95.丙醛, 96.正丁醛, 97.戊醛, 98.己醛, 99.丙烯醛, 100.甲基叔丁基醚, 101.丁烯醛, 102.异丁烯醛, 103.苯甲醛, 104.3-甲基苯甲醛, 105.丙酮, 106.2-丁酮, 107.4-甲基-2-戊酮, 108.2-己酮, 109.醋酸乙烯酯, 110.乙酸乙酯, 111.甲基丙烯酸甲酯, 112.四氢呋喃, 113.1,4二氧六环, 114.乙炔 图 2 重点行业VOCs源成分谱结果 Fig. 2 Comparison of source profiles of VOCs in key industries

包装印刷行业排放以丙酮(14.8%)、异丙醇(14.0%)、乙酸乙酯(11.1%)和甲苯(10.2%)等为主, 其中异丙醇是水性涂料的原材料[38], 印刷使用的油墨、清洗剂以及包装所用粘黏剂的主要成分是乙酸乙酯、丙酮和苯系物等[30, 34, 36];此外, UV光解同样容易产生如乙醛(6.2%)和己醛(3.5%)等不完全氧化的副产物[39]. 工业涂装行业使用的油性油漆的主要成分为甲苯和间/对-二甲苯等芳香烃[30], 水性涂料则为异丙醇和间/对-二甲苯等[40], 因此该行业VOCs排放以异丙醇(25.6%)、甲苯(15.0%)、间/对-二甲苯(12.4%)和丙酮(7.1%)为主. 家具制造行业排放以间/对-二甲苯(15.8%)、己醛(15.1%)、1,2-二氯乙烷(9.6%)和丙酮(8.4%)等为主, 制鞋行业排放以丙酮(18.9%)、甲苯(18.1%)、二氯甲烷(8.0%)和乙醛(6.8%)等为主, 这两个行业涉VOCs排放的主要工艺为面漆烘干, 主要排放丙酮[41]、甲苯和二氯甲烷[38], 1,2-二氯甲烷则主要源于清洗剂及硬化剂的使用[32]. 化工行业排放以二氯甲烷(23.9%)、1,2-二氯乙烷(14.7%)、丙酮(12.7%)和三氯甲烷(11.1%)等为主, 制药行业排放以溴甲烷(36.7%)、丙酮(19.2%)、苯(5.0%)和醋酸乙烯酯(3.0%)等为主, 卤代烃的排放主要与原材料(二氯甲烷等)以及产品(三甲基溴化亚砜等)装配车间挥发[42]有关, 而醋酸乙烯酯主要来自微生物代谢[43]. 砖瓦制品行业排放以乙烷(31.4%)、丙烷(13.8%)、乙烯(8.8%)和苯(5.9%)等为主, 该行业VOCs排放主要来自化石燃料燃烧, 而乙烷、丙烷、乙烯和苯等均为燃烧源VOCs特征物种[18];造纸行业排放以丙酮(22.4%)、甲苯(16.1%)、乙炔(12.8%)和乙醛(7.2%)等为主, 除燃烧以外, 制浆工艺以及清洁剂、漂白剂和粘合剂的使用均会排放丙酮[44];食品制造行业排放以乙醛(32.1%)、正戊烷(10.8%)、丙烯醛(4.8%)和正庚烷(3.6%)等为主, 高分子物质在高温油炸过程中会分解产生小分子VOCs物质[37, 45], 如乙醛和丙烯醛等[46, 47];热力行业排放以丙酮(24.2%)、乙醛(7.7%)、苯(4.6%)和甲苯(4.5%)等为主, 这与陈纯等[48]研究的结果一致, OVOC和芳香烃主要来自煤炭燃烧. 整体上, 丙酮、异丙醇、苯、甲苯、间/对-二甲苯、乙烷、乙醛和二氯甲烷等为漯河市多数行业VOCs排放的特征物种.

2.3 与其他研究的比较

目前针对砖瓦制品和造纸行业VOCs排放特征的研究较少, 化工及制药行业由于生产工艺和产品类型较多, VOCs排放特征差异较大[49, 50], 因此本研究选择家具制造、工业涂装、包装印刷、制鞋、食品制造和热力行业的源成分谱结果与其他研究进行比较.

图 2所示, 包装印刷行业有组织排放VOCs以OVOC为主, 这与珠三角[29, 39]和武汉[51]的研究结果一致, 特征物种均以异丙醇、乙酸乙酯、丙酮、乙醛和己醛等为主. 工业涂装行业有组织排放VOCs以芳香烃和OVOC为主, 这与四川[39]和郑州[30]的研究结果相近, 特征物种间/对-二甲苯、异丙醇和正十二烷的占比与四川[39]的研究结果相似, 但正十二烷的占比较郑州[30]的研究结果偏低. 制鞋行业有组织排放VOCs以OVOC和芳香烃为主, 而吴川[32]、郑州[52]和成都[53]的制鞋行业VOCs排放则以OVOC和烷烃为主, 这可能与原辅材料和鞋品的不同有关;本研究制鞋企业所用原辅材料以溶剂型硬化剂及胶粘剂为主, 甲苯和二氯甲烷排放较高, 胶鞋与泡沫塑料鞋制造在生产工艺上的不同也导致了正/异戊烷和正/异丁烷等烷烃的排放存在差异[32];家具制造行业有组织排放VOCs以OVOC和芳香烃为主, 这与郑州[52]和北京[54]的研究结果相近, 郑州家具制造行业排放的间/对-二甲苯(21.0%)、丙酮(12.5%)和1,2-二氯乙烷(8.0%)的质量分数与本研究结果相近, 但邻-二甲苯(16.8%)占比较本研究(5.0%)偏高. 食品制造行业中, 以油炸工艺为主的企业有组织排放VOCs物种主要为烷烃, 这与郑州[52]的研究结果相近, 烷烃排放主要与食用油的高温加热有关;以酒精制造工艺为主的企业有组织排放VOCs主要包括乙醛等OVOC. 热力行业有组织排放VOCs以OVOC和芳香烃为主, 这与关中的研究结果一致[55], 但与辽宁省热力行业以卤代烃为主的VOCs排放特征不同, 这与煤炭的含氯量不同有关[56]. 整体上, 漯河市家具制造、工业涂装、包装印刷、制鞋、食品制造和热力行业VOCs有组织排放特征与其他城市的研究结果既有相似性, 也存在差异, 这也体现了建立本地化VOCs源成分谱的必要性.

2.4 不同行业VOCs排放的环境影响

图 3给出了各行业VOCs排放的OFP和SOAP组成贡献以及源反应活性. 芳香烃对包装印刷和工业涂装行业OFP贡献较高, 分别为57.5%和70.0%;烯烃对砖瓦制品行业OFP的贡献占主导地位(57.3%);芳香烃和烯烃分别为造纸行业OFP贡献较高的VOCs组分, OFP贡献率在30.7%~31.2%;芳香烃为制鞋和家具制造行业OFP的主要贡献组分(43.9%~52.4%)其次为OVOC(37.4%~42.3%);OVOC对制药、化工和热力行业OFP贡献最高, 均超过50.0%, 其次为芳香烃;OVOC对食品制造行业OFP贡献则超过70.0%. 此外, 芳香烃对各行业SOAP贡献均为最高, 贡献率为83.6%~99.7%. 因此, 以PM2.5和O3协同控制为导向, 芳香烃和OVOC是漯河市工业源VOCs排放管控的关键物种.

1.包装印刷, 2.工业涂装, 3.制鞋, 4.家具制造, 5.化工, 6.制药, 7.砖瓦制品, 8.造纸, 9.食品制造, 10.热力 图 3 重点行业OFP和SOAP组成贡献和SR值 Fig. 3 Compositions of OFP, SOAP, and the values of SR in key industries

SR(O3)和SR(SOA)能够在不考虑VOCs排放强度的情况下评估各行业排放VOCs生成O3和SOA的能力. 如图 3所示, 食品制造和家具制造的SR(O3)较高, 均超过3.0 g·g-1;其次为包装印刷、造纸、工业涂装、制鞋、砖瓦制品和热力行业, SR(O3)分别为2.9、2.7、2.7、2.3、2.2和2.1 g·g-1;制药和化工行业的SR(O3)均低于2.0 g·g-1. 工业涂装、家具制造和制鞋的SR(SOA)较高, 分别为0.021、0.017和0.014 g·g-1;其次为造纸和包装印刷行业, SR(SOA)均为0.011 g·g-1;热力、砖瓦制品、食品制造、制药和化工行业的SR(SOA)均低于0.010 g·g-1. 因此, 基于PM2.5和O3协同管控视角, 食品制造、工业涂装和家具制造是漯河市应当优先管控的行业, 而家具制造行业则是优控行业中的重中之重.

3 结论

(1)包装印刷行业有组织排放的VOCs以OVOC为主, 占比超过60.0%;工业涂装行业排放的VOCs以芳香烃和OVOC为主, 占比分别为42.4%和38.9%;制鞋、家具制造和造纸行业的VOCs排放特征相似, 以OVOC为主, 其次为芳香烃, 卤代烃的占比也高于10.0%;化工和制药行业排放的VOCs均以卤代烃为主, 占比分别为59.3%和46.6%;砖瓦制品行业排放的烷烃占比高达62.7%;热力行业排放的VOCs以OVOC为主, 其次为卤代烃;食品制造行业排放的VOCs以OVOC和烷烃为主.

(2)尽管各行业在生产工艺、原辅料和产品特性等方面的不同导致VOCs有组织排放特征存在差异, 但整体上, 丙酮、异丙醇、苯、甲苯、间/对-二甲苯、乙烷、乙醛和二氯甲烷是漯河市多数行业VOCs排放的特征物种.

(3)基于各行业排放VOCs对OFP和SOAP的贡献, 芳香烃和OVOC是漯河市工业源VOCs排放管控的关键物种. 基于各行业排放VOCs的SR(O3)和SR(SOA)值, 食品制造、工业涂装和家具制造是漯河市应当优先管控的行业, 而家具制造行业则是优控行业中的重中之重.

参考文献
[1] 吴也正, 张鑫, 顾钧, 等. 苏州市初夏臭氧污染成因及年际变化[J]. 环境科学, 2024, 45(3): 1392-1401.
Wu Y Z, Zhang X, Gu J, et al. Ozone pollution in Suzhou during the early summertime: formation mechanism and interannual variation[J]. Environmental Science, 2024, 45(3): 1392-1401.
[2] 郑新梅, 胡崑, 王鸣, 等. 南京市南部地区O3污染特征、生成敏感性及传输影响分析[J]. 环境科学, 2023, 44(8): 4231-4240.
Zheng X M, Hu K, Wang M, et al. Analysis of O3 pollution characteristics, formation sensitivity, and transport impact in southern Nanjing[J]. Environmental Science, 2023, 44(8): 4231-4240.
[3] Kumar V, Slowik J G, Baltensperger U, et al. Time-resolved molecular characterization of secondary organic aerosol formed from OH and NO3 radical initiated oxidation of a mixture of aromatic precursors[J]. Environmental Science & Technology, 2023, 57(31): 11572-11582.
[4] Zhang H, Yin S S, Xu Y F, et al. Multiple source apportionments, secondary transformation potential and human exposure of VOCs: a case study in a megacity of China[J]. Atmospheric Research, 2023, 291. DOI:10.1016/j.atmosres.2023.106823
[5] 关璐, 苏枞枞, 库盈盈, 等. 沈阳工业区夏季VOCs组成特征及其对二次污染形成的贡献[J]. 环境科学, 2023, 44(7): 3779-3787.
Guan L, Su C C, Ku Y Y, et al. Composition characteristics of volatile organic compounds and associated contributions to secondary pollution in Shenyang industrial area in summer[J]. Environmental Science, 2023, 44(7): 3779-3787.
[6] Li L, Zhang D, Hu W, et al. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory[J]. Science of the Total Environment, 2023, 865. DOI:10.1016/j.scitotenv.2022.161235
[7] Fang L, Hao R, Xie X Q, et al. Characteristics of VOCs emissions from circulating water of typical petrochemical enterprises and their impact on surroundings[J]. Atmosphere, 2022, 13(12). DOI:10.3390/atmos13121985
[8] Simon H, Beck L, Bhave P V, et al. The development and uses of EPA's SPECIATE database[J]. Atmospheric Pollution Research, 2010, 1(4): 196-206. DOI:10.5094/APR.2010.026
[9] Yuan B, Shao M, Lu S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China[J]. Atmospheric Environment, 2010, 44(15): 1919-1926. DOI:10.1016/j.atmosenv.2010.02.014
[10] 任何, 卢轩, 刘洋, 等. 基于排放清单和实地测试的工业VOCs排放特征: 以郑州市高新区为例[J]. 环境科学, 2021, 42(12): 5687-5697.
Ren H, Lu X, Liu Y, et al. Emission characteristics of industrial VOCs based on emission inventory and field test: A case Zhengzhou High-tech zone[J]. Environmental Science, 2021, 42(12): 5687-5697.
[11] 周子航, 邓也, 吴柯颖, 等. 成都市典型工艺过程源挥发性有机物源成分谱[J]. 环境科学, 2019, 40(9): 3949-3961.
Zhou Z H, Deng Y, Wu K Y, et al. Source profiles of VOCs associated with typical industrial processes in Chengdu[J]. Environmental Science, 2019, 40(9): 3949-3961.
[12] 黄鹤雯, 沙青娥, 朱曼妮, 等. 珠三角2010~2017年主要工业源VOCs排放结构与组分变化[J]. 中国环境科学, 2020, 40(11): 4641-4651.
Huang H W, Sha Q E, Zhu M N, et al. Evolution of emission characteristics and species of industrial VOCs emission in Pearl River Delta Region, 2010~2017[J]. China Environmental Science, 2020, 40(11): 4641-4651.
[13] 包亦姝, 王斌, 邓也, 等. 成都市典型有机溶剂使用行业VOCs组成成分谱及臭氧生成潜势研究[J]. 环境科学学报, 2020, 40(1): 76-82.
Bao Y S, Wang B, Deng Y, et al. Source profiles and ozone formation potential of VOCs emitted from typical industries using organic solvents in Chengdu[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 76-82.
[14] Mo Z W, Shao M, Lu S H. Compilation of a source profile database for hydrocarbon and OVOC emissions in China[J]. Atmospheric Environment, 2016, 143: 209-217. DOI:10.1016/j.atmosenv.2016.08.025
[15] Sha Q, Zhu M N, Huang H W, et al. A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China[J]. Science of the Total Environment, 2021, 793. DOI:10.1016/j.scitotenv.2021.148348
[16] Liang X M, Sun X B, Xu J T, et al. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China[J]. Science of the Total Environment, 2020, 745. DOI:10.1016/j.scitotenv.2020.140838
[17] 刘锐源, 钟美芳, 赵晓雅, 等. 2011~2019年中国工业源挥发性有机物排放特征[J]. 环境科学, 2021, 42(11): 5169-5179.
Liu R Y, Zhong M F, Zhao X Y, et al. Characteristics of industrial volatile organic compounds(VOCs) emission in China from 2011 to 2019[J]. Environmental Science, 2021, 42(11): 5169-5179.
[18] 王晓琦, 程水源, 王瑞鹏. 京津冀区域人为源VOCs排放特征及管控策略[J]. 环境科学研究, 2023, 36(3): 460-468.
Wang X Q, Cheng S Y, Wang R P. Emission characteristics and priority classification control of anthropogenic VOCs sources in Beijing-Tianjin-Hebei Region[J]. Research of Environmental Sciences, 2023, 36(3): 460-468.
[19] 马伯熙, 蒲灵, 田犀, 等. 四川省工业领域重点行业低挥发性有机物清洁原料替代诊断分析——以木质家具制造业为例[J]. 中国资源综合利用, 2023, 41(3): 128-131.
Ma B X, Pu L, Tian X, et al. Diagnosis analysis on substitution of clean raw materials containing low volatile organic compounds in key industries of industrial field in Sichuan province - taking the wooden furniture manufacturing industry as an example[J]. China Resources Comprehensive Utilization, 2023, 41(3): 128-131.
[20] Derwent R G, Jenkin M E, Utembe S R, et al. Secondary organic aerosol formation from a large number of reactive man-made organic compounds[J]. Science of the Total Environment, 2010, 408(16): 3374-3381. DOI:10.1016/j.scitotenv.2010.04.013
[21] HJ/T 397-2007, 固定源废气监测技术规范[S].
[22] HJ 732-2014, 固定污染源废气  挥发性有机物的采样  气袋法[S].
[23] 王慧杰. 基于GC-MS/FID的环境空气挥发性有机物连续监测系统的比对与应用研究[D]. 保定: 河北大学, 2021.
Wang H J. Comparison and application research on continuous monitoring system of volatile organic compounds in ambient air based on GC-MS/FID[D]. Baoding: Hebei University, 2021.
[24] HJ 1010-2018, 环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法[S].
[25] 张轶舜, 王佳, 韩士杰, 等. 郑州市碳素行业无组织VOCs排放特征分析及健康风险评价[J]. 环境科学, 2019, 40(11): 4847-4855.
Zhang Y S, Wang J, Han S J, et al. Emission characteristics analysis and health risk assessment of unorganized VOCs in the carbon industry, Zhengzhou[J]. Environmental Science, 2019, 40(11): 4847-4855.
[26] Carter W P L. Development of a condensed SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010, 44(40): 5336-5345. DOI:10.1016/j.atmosenv.2010.01.024
[27] Carter W P C. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[R]. California: California Environmental Protection Agency, 2010: Appendix A.
[28] Grosjean D, Seinfeld J H. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment (1967), 1989, 23(8): 1733-1747. DOI:10.1016/0004-6981(89)90058-9
[29] 杨杨, 杨静, 尹沙沙, 等. 珠江三角洲印刷行业VOCs组分排放清单及关键活性组分[J]. 环境科学研究, 2013, 26(3): 326-333.
Yang Y, Yang J, Yin S S, et al. Speciated VOCs emission inventory and key species from printing industry in the Pearl River Delta Region[J]. Research of Environmental Sciences, 2013, 26(3): 326-333.
[30] 齐一谨, 倪经纬, 赵东旭, 等. 郑州市典型工业企业VOCs排放特征及风险评估[J]. 环境科学, 2020, 41(7): 3056-3065.
Qi Y J, Ni J W, Zhao D X, et al. Emission characteristics and risk assessment of volatile organic compounds from typical factories in Zhengzhou[J]. Environmental Science, 2020, 41(7): 3056-3065.
[31] 李霞, 苏伟健, 黎碧霞, 等. 佛山市典型铝型材行业表面涂装VOCs排放组成[J]. 环境科学, 2018, 39(12): 5334-5343.
Li X, Su W J, Li B X, et al. Source profiles and chemical reactivity of volatile organic compounds from surface coating of aluminum products in Foshan, China[J]. Environmental Science, 2018, 39(12): 5334-5343.
[32] 李婷婷, 梁小明, 卢清, 等. 泡沫塑料鞋制造区VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2020, 40(8): 3260-3267.
Li T T, Liang X M, Lu Q, et al. Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre[J]. China Environmental Science, 2020, 40(8): 3260-3267.
[33] 梁悦, 施雨其, 麦麦提·斯马义, 等. 农药制造企业的挥发性有机物排放特征及控制研究[J]. 环境污染与防治, 2021, 43(10): 1238-1243, 1248.
Liang Y, Shi Y Q, Simayi M, et al. Study on emission characteristics and control of volatile organic compounds in a pesticide manufacturing enterprise[J]. Environmental Pollution & Control, 2021, 43(10): 1238-1243, 1248.
[34] 韩博, 吴建会, 王凤炜, 等. 天津滨海新区工业源VOCs及恶臭物质排放特征[J]. 中国环境科学, 2011, 31(11): 1776-1781.
Han B, Wu J H, Wang F W, et al. Characterization of VOCs and odorous compounds from industrial sources in Binhai New Area, Tianjin[J]. China Environmental Science, 2011, 31(11): 1776-1781.
[35] 余化龙. 燃煤过程中挥发性有机物排放特征研究[D]. 北京: 华北电力大学(北京), 2018.
Yu H L. Research on emissions characteristics of volatile organic compounds in coal combustion process[D]. Beijing: North China Electric Power University, 2018.
[36] 王学臣, 聂赛赛, 王帅, 等. 拉链排咪、塑料制品和印刷行业VOCs排放特征比对分析[J]. 环境监测管理与技术, 2020, 32(6): 65-67.
Wang X C, Nie S S, Wang S, et al. Comparison of VOCs emission characteristics in zipper, plastics and printing industry[J]. The Administration and Technique of Environmental Monitoring, 2020, 32(6): 65-67.
[37] 何万清, 于志强, 刘怡, 等. 餐饮源挥发性有机物的排放特征及影响因素[J]. 环境工程, 2022, 40(9): 135-142.
He W Q, Yu Z Q, Liu Y, et al. Characterization and influencing factors of volatile organic compounds emitted from cooking[J]. Environmental Engineering, 2022, 40(9): 135-142.
[38] 刘文文, 方莉, 郭秀锐, 等. 京津冀地区典型印刷企业VOCs排放特征及臭氧生成潜势分析[J]. 环境科学, 2019, 40(9): 3942-3948.
Liu W W, Fang L, Guo X R, et al. Emission characteristics and ozone formation potential of VOCs in printing enterprises in Beijing-Tianjin-Hebei[J]. Environmental Science, 2019, 40(9): 3942-3948.
[39] 黄俊霖, 邱向阳, 程义君, 等. 深圳市典型溶剂使用源VOCs排放特征、治理现状与减排对策[J]. 环境工程技术学报, 2022, 12(5): 1609-1617.
Huang J L, Qiu X Y, Cheng Y J, et al. Emission characteristics, treatment status and mitigation countermeasures of volatile organic compounds from typical solvent sources in Shenzhen City[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1609-1617.
[40] 徐晨曦, 陈军辉, 韩丽, 等. 四川省典型行业挥发性有机物源成分谱[J]. 环境科学, 2020, 41(7): 3031-3041.
Xu C X, Chen J H, Han L, et al. Source composition spectrum of volatile organic compounds in typical industries in Sichuan[J]. Environmental Science, 2020, 41(7): 3031-3041.
[41] 马召坤, 刘善军, 仇帅, 等. 山东省汽车喷涂行业VOCs排放特征研究[J]. 环境保护科学, 2016, 42(4): 133-138.
Ma Z K, Liu S J, Qiu S, et al. Characteristics of volatile organic compound emission from the automobile painting industry in Shandong province[J]. Environmental Protection Science, 2016, 42(4): 133-138.
[42] 谢建辉, 秦华, 耿晔, 等. 农药制剂加工企业VOCs排放特征及臭氧生成潜势[J]. 环境保护科学, 2023, 49(3): 67-73.
Xie J H, Qin H, Geng Y, et al. Emission characteristics and ozone formation potential of volatile organic compounds from pesticide formulations enterprise[J]. Environmental Protection Science, 2023, 49(3): 67-73.
[43] 郭焕祖. 医疗废物蒸汽灭菌装置尾气分析及光催化降解的研究[D]. 天津: 天津大学, 2010.
Guo H Z. Analysis on the exhaust from medical waste steam sterilization equipment and research on its photocatalytic degradation[D]. Tianjin: Tianjin University, 2010.
[44] 童欣, 张镇槟, 杨恒宇, 等. 制浆造纸工业空气污染问题与对策[J]. 中国造纸, 2014, 33(7): 49-55.
Tong X, Zhang Z B, Yang H Y, et al. Solutions to the problems of air pollution in paper industry[J]. China Pulp & Paper, 2014, 33(7): 49-55.
[45] 程婧晨, 崔彤, 何万清, 等. 北京市典型餐饮企业油烟中醛酮类化合物污染特征[J]. 环境科学, 2015, 36(8): 2743-2749.
Cheng J C, Cui T, He W Q, et al. Pollution characteristics of aldehydes and ketones compounds in the exhaust of Beijing typical restaurants[J]. Environmental Science, 2015, 36(8): 2743-2749.
[46] 崔彤, 程婧晨, 何万清, 等. 北京市典型餐饮企业VOCs排放特征研究[J]. 环境科学, 2015, 36(5): 1523-1529.
Cui T, Cheng J C, He W Q, et al. Emission characteristics of VOCs from typical restaurants in Beijing[J]. Environmental Science, 2015, 36(5): 1523-1529.
[47] 徐敏, 何万清, 聂磊, 等. 传统北京烤鸭烤制过程中大气污染物的排放特征[J]. 环境科学, 2017, 38(8): 3139-3145.
Xu M, He W Q, Nie L, et al. Atmospheric pollutant emission characteristics from the cooking process of traditional Beijing roast duck[J]. Environmental Science, 2017, 38(8): 3139-3145.
[48] 陈纯, 李鹏钊, 董瑞泽, 等. 河南省某典型垃圾焚烧发电厂的VOCs排放特征[J]. 环境科学研究, 2022, 35(5): 1193-1202.
Chen C, Li P Z, Dong R Z, et al. VOCs emission characteristics of a typical domestic waste incineration power plant in Henan province, China[J]. Research of Environmental Sciences, 2022, 35(5): 1193-1202.
[49] 苑雯雯, 王霞, 高素莲, 等. 山东地区三类典型制药企业的VOCs源成分谱及排放特征研究[J]. 南京信息工程大学学报(自然科学版), 2020, 12(6): 758-766.
Yuan W W, Wang X, Gao S L, et al. Source profiles of VOCs from three typical pharmaceutical enterprises in Shandong province[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2020, 12(6): 758-766.
[50] 吴文璐, 单春艳, 赵菁林, 等. 济南市典型行业VOCs排放特征及减排潜力分析[J]. 环境科学, 2023, 44(11): 5924-5932.
Wu W L, Shan C Y, Zhao J L, et al. Analysis of VOCs emission characteristics and emission reduction potential of typical industries in Ji'nan, China[J]. Environmental Science, 2023, 44(11): 5924-5932.
[51] Shen L J, Xiang P, Liang S W, et al. Sources profiles of volatile organic compounds (VOCs) measured in a typical industrial process in Wuhan, central China[J]. Atmosphere, 2018, 9(8). DOI:10.3390/atmos9080297
[52] Zhang Y S, Li C, Yan Q S, et al. Typical industrial sector-based volatile organic compounds source profiles and ozone formation potentials in Zhengzhou, China[J]. Atmospheric Pollution Research, 2020, 11(5): 841-850.
[53] 周子航, 邓也, 周小玲, 等. 成都市工业挥发性有机物排源成分谱[J]. 环境科学, 2020, 41(7): 3042-3055.
Zhou Z H, Deng Y, Zhou X L, et al. Source profiles of industrial emission-based VOCs in Chengdu[J]. Environmental Science, 2020, 41(7): 3042-3055.
[54] 方莉, 刘文文, 陈丹妮, 等. 北京市典型溶剂使用行业VOCs成分谱[J]. 环境科学, 2019, 40(10): 4395-4403.
Fang L, Liu W W, Chen D N, et al. Source profiles of volatile organic compounds (VOCs) from typical solvent-based industries in Beijing[J]. Environmental Science, 2019, 40(10): 4395-4403.
[55] Sun J, Wang J H, Shen Z X, et al. Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: Source-related profiles and risks[J]. Chemosphere, 2019, 221: 184-192.
[56] Shi J W, Deng H, Bai Z P, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515-516: 101-108.