水资源短缺、水环境污染问题严重制约着我国社会和经济的可持续发展.而对污水进行资源化再利用则是解决上述问题的有效手段, 污水再利用已是我国发展建设的必然要求[1].近年来, 城市生活污水排放量逐年上升, 2015年生活污水排放量达535.2亿t, 占全国废水总排放量的72.8%, 由于生活污水水量水质较为稳定、易收集, 处理率高(自2014年后处理率达90%以上)是制备再生水的重要来源[2], 如图 1所示.
![]() |
百分数表示生活污水占废水排放总量的占比 图 1 2006~2015年全国废水排放量和2010~2019年城市生活污水处理率 Fig. 1 National wastewater discharge amount from 2006 to 2015 and urban domestic sewage treatment rate from 2010 to 2019 |
消毒作为一种杀灭水中致病菌、防止各种介水疾病传播的有效手段, 已成为污水再生处理、保障再生水水质安全的必要步骤.城市生活污水经处理后成分仍然复杂, 不仅含有天然有机物(natural organic matter, NOM), 还含有如溶解性微生物产物(soluble microbial products, SMPs)、人类活动引入的有机物如药物及个人护理品(pharmaceuticals and personal care products, PPCPs)和内分泌干扰物(endocrine disrupting chemicals, EDCs)等物质;消毒剂在杀灭病菌的同时会不可避免地与水中成分发生反应, 生成消毒副产物(disinfection byproducts, DBPs)[3~5].大部分已识别的DBPs在毒理学上具有细胞毒性和遗传毒性, 且流行病学表明DBPs可能是膀胱癌和孕妇早期流产的诱因之一[6~8].DBPs的形成会威胁到生态系统安全和人类健康, 对再生水的安全利用产生负面影响.
目前针对再生水中DBPs的研究主要集中在以下4个方面:①开发高效DBPs检测识别新方法, 对污水再生消毒中产生的DBPs进行识别;②考察再生水中DBPs的生成情况, 及与水质参数之间的相关性;③通过多种毒性评价方法, 探究DBPs对水体毒性的影响;④结合实际探究DBPs有效控制手段.本文对近20年来(2000~2022年)再生水DBPs的国内外相关文献进行了汇总, 主要关注于DBPs的检测识别、生成条件及控制方法, 并展望了再生水DBPs未来可能的研究方向.
1 再生水中DBPs的检测方法及分类从1976年至今, 已识别到了约700种DBPs[9].依据DBPs挥发性、极性和相对分子质量的不同, 采用不同的检测方法来测定.挥发性/半挥发性、相对分子质量低的DBPs的检测主要依托于气相色谱;热不稳定、极性及相对分子质量高的DBPs主要通过液相色谱检测[10].通过在色谱后接不同的检测器能实现对DBPs的鉴定和定量.电子捕获检测器(GC-ECD)和质谱(GC-MS)是气相色谱分析的主要检测器, 广泛用于已知DBPs[如三卤甲烷(trihalomethanes, THMs)、卤乙酸(haloacetic acids, HAAs)和卤代硝基甲烷(halogenated nitromethanes, HNMs)等]的定量分析, 是DBPs靶向分析的简便有效手段[11, 12].液相色谱与质谱串联(LC-MS, LC-MS/MS)则主要可对亚硝胺(nitrosamines, NAs)和极性溴代、碘代DBPs进行检测分析[13, 14].此外, LC-MS/MS能额外提供分子信息, 有效检测和鉴定未知的DBPs, 是进行DBPs非靶向筛查的有效策略.各学者已经通过超高效液相色谱-电喷雾电离三重四级杆质谱(UPLC/ESI-tqMS)并结合前体离子扫描技术(precursor ion scan, PIS)在氯消毒后的废水中鉴定出了数十种新型芳香族DBPs(如卤代苯酚、卤代硝基苯酚等)[15~17].高分辨质谱由于其更高的分辨率(更为准确的质量数)能加强对未知物的结构解析, 有助于进一步识别未知DBPs.Liu等[18]利用GC-QTOF-MS初步鉴定了双酚A在氯胺消毒后形成的两种可能导致遗传毒性的新含氮DBPs(nitrogenous DBPs, N-DBPs).Wawryk等[19]利用HPLC-QTOF-MS对阿斯巴甜氯消毒后的副产物进行了检测, 初步检测到了8种氯代副产物, 并进一步确定了2,6-二氯-1,4-苯醌的形成途径.近年来, 超高分辨质谱的应用使得在复杂基质下未知DBPs的探索得以实现.通过轨道阱质谱仪(orbitrap MS)和傅里叶变换离子回旋共振质谱仪(FT-ICR MS)已经在氯消毒和臭氧消毒后的水中检测到上千种氯代、溴代和碘代DBPs, 并拟定了可能的结构式[20~22].此外, 复杂基质的样品还能通过全二维气相色谱(即通过使用具有不同性质的两根独立色谱柱对样品进行正交分离)进行提取并鉴定.如Zhang等[23]通过全二维气相色谱-单四极杆质谱(GC×GC-qMS)在臭氧化苯丙氨酸溶液中检测到超过1 300种DBPs, 进一步采用质荷比差值提取法分析数据, 最终确认出8种新型Br-DBPs.除了有机DBPs外, 无机DBPs的检测则通常依赖于离子色谱.此外, 离子色谱还能通过与质谱串联以检测HAAs, 这样能避免复杂的样品预处理过程, 减轻样品的损失和干扰[24].值得注意的是, 样品的前处理手段也能显著影响DBPs的检测.液液萃取法是从水中提取DBPs最常用的方法, 为检测极性DBPs, 需在萃取前先将水样pH调节至≤0.5, 而Tang等[9]的研究发现, 将水样pH调节至≤0.5会导致一些两性DBPs的缺失, 并通过优化萃取pH鉴定出了一组新的DBPs(卤代吡啶醇).
目前在再生水中已检测到的DBPs大致可分为13大类, 对其中的111种汇总如表 1所示.基于再生水水源的复杂性, 及相应处理工艺的差异性, 各再生水中DBPs的种类和含量具有水特异性.其中, THMs和HAAs的生成量在μg·L-1水平, 高可达数百μg·L-1, 占DBPs总量的70%~90%, 是再生水中检出最频繁, 含量最高的DBPs[11, 25, 26].其次, 卤乙腈(halogenated acetonitriles, HANs)、卤乙酰胺(haloacetamides, HAcAms)、HNMs和NAs等N-DBPs, 它们的生成量在ng·L-1至μg·L-1之间, 其中二氯乙腈(dichloroacetonitrile, DCAN)、三氯乙腈(trichloroacetonitrile, TCAN)、三氯硝基甲烷(trichloronitromethane, TCNM)和二甲基亚硝胺(N-nitrosodimethylamine, NDMA)是关注度高、检出较为频繁的N-DBPs[27, 28].芳香族DBPs(ng·L-1)是近年来新鉴定的DBPs, 最近的毒理学研究已表明, 新型芳香族DBPs具有比传统脂肪族DBPs更高的毒性, 如2,4,6-三碘苯酚对海洋多毛类动物(Platynereis dumerilii)和海藻(Tetraselmis marina)胚胎的毒性分别是碘乙酸的180倍和76倍;四溴吡咯对海洋多毛类动物胚胎的毒性甚至比三溴甲烷和溴乙酸高460倍和8805倍(各DBPs的毒性数据值如表 2所示), 是未来DBPs检测和控制的重点[16, 29].无机DBPs则主要包括氯酸盐、亚氯酸盐和溴酸盐, 通常在二氧化氯消毒、臭氧消毒后的水中被检出, 依据消毒剂用量及水中溴离子含量, 无机DBPs的生成量甚至可高达mg·L-1水平[12].此外, 对再生水氯消毒下典型DBPs浓度进行了统计, 结果如图 2所示.
![]() |
表 1 再生水中已报道DBPs Table 1 Reported DBPs in reclaimed water |
![]() |
表 2 26种DBPs的藻、海洋多毛动物及斑马鱼胚胎的比较毒性[16, 29, 39, 69] Table 2 Comparative toxicity of 26 DBPs to Tetraselmis marina, Platynereis dumerilii, and zebrafish embryos |
![]() |
图中数据引自文献[11, 12, 25, 26, 28, 30, 31, 70~76] 图 2 再生水氯消毒中DBPs浓度 Fig. 2 Concentration of DBPs found in reclaimed water during chlorination |
可靠的DBPs生成及组成数据对于再生水DBPs控制策略的制定至关重要.未来, 应建全适应于复杂再生水基质的前处理及检测方法, 分析明确不同条件下再生水DBPs的生成状况.
2 DBPs生成机制研究 2.1 DBPs的前体物再生水水源水中未能完全去除的有机物和无机物(表 1)是DBPs的主要前体物.通过表征水中溶解性有机物(dissolved organic matters, DOM)的特性, 对DBPs前体物进行溯源, 分析其与DBPs的关系, 是明确DBPs重要前体物的主要手段和控制DBPs的基础.DOM的表征手段大致可分为物化表征和光化表征.
在DOM的物化特性上, 常采用XAD树脂和高效体积排阻色谱(HPSEC)来进行亲疏水性和相对分子质量分布的表征.通过XAD树脂可以将DOM分为亲水性和疏水性组分, 其中亲水部分主要由脂肪碳和含氮化合物组成, 如羧酸、碳水化合物和蛋白质等;疏水部分则主要由富含芳香碳、酚类结构和共轭双键的腐殖质构成[77].疏水性的腐殖质类物质已被证明是含碳DBPs(carbonous DBPs, C-DBPs)的主要前体物, 如THMs和HAAs等[45~47].而亲水组分中的氨基酸则主要是N-DBPs的典型前体物, 且氨基酸上不同的R基结构能显著影响消毒副产物的生成潜能(disinfection byproducts formation potential, DBPsFP), R基上带有—CH2—基团的氨基酸, 如天冬氨酸、色氨酸和酪氨酸等的HAAsFP较高[49~51, 78].HPSEC能将DOM分成不同相对分子质量大小的组分, 进而表征不同组分对DBPs生成的贡献[77].如Farré等[48]的研究发现, 1×103 ~ 10×103相对分子质量范围内的芳香腐殖酸物质具有最大的DBPsFP;而相对分子质量低(< 1×103)的组分更易形成Br-DBPs.Kristiana等[79]的研究发现相对分子质量低的组分中含有丰富的NAs前体物质, 如在氯胺化过程中, 相对分子质量 < 2.5×103的组分生成的NDMA和总NAs浓度较高.但值得注意的是, 由于DOM的复杂性, DBPs的前体分布可能并不依赖于相对分子质量[80~84].
有机物含量与DBPs生成也密切相关.一般来说, DOM的含量越高, DBPs的生成量越高.废水在经过生物处理(如活性污泥法)后, 水中微生物会代谢产生大量SMP类物质.SMP富含腐殖酸、蛋白质、多糖和DNA等物质, 故生物处理后, DBPs的生成增加[53~55].此外, 有研究报道SMP的N-DBPsFP比NOM高出29倍, SMP的生成还能导致水中DON/DOC的比例增大, 使N-DBPs的生成也相应增加[56].
有机物不同的结构和官能团显著影响DBPs的生成.如主要含腐殖质类物质的大分子结构BAP经氯胺消毒后DBPs生成量明显高于UAP;而主要含含氮物质的小分子结构UAP经氯胺消毒后会生成更多的NDMA[57].富含胺基或酰胺基的物质是亚硝胺类DBPs的主要前体物[63~65].含有羰基或醇羟基的有机物, 易于形成卤代醛/酮类的DBPs[85].总体而言, 相比于脂肪C和O=C—OH, 芳香C、C—O及C=O更易与消毒剂发生氧化、加成和取代等反应从而促进C-DBPs的形成, 芳香N、酰胺/多肽N和伯胺N等则有利于N-DBPs的形成[86, 87].官能团的数量和位置也显著影响DBPs的生成.如具有较多供电子基团(如羟基和氨基)的化合物更易与氯反应, 具有较多吸电子基团(羧基)的化合物则不利于DBPs的形成[88].郭改梅等[89]的研究发现间位取代的苯酚易形成THMs, 而邻对位取代的苯酚则更易形成HAAs.
基于紫外吸收光谱和三维荧光光谱可以从光化学角度表征DOM的组分与来源.通过特定的UV吸收波长可以识别DOM中相应的发色团, 如220 nm处的吸光度对应于羧基和芳香族发色团, 254 nm处的吸收通常指示具有不同活化度的芳香族基团, 因此UV254也常被视为DOM芳香性的替代检测指标[90].比紫外吸光度(SUVA)定义为254 nm处的紫外吸收率与DOC的比值.SUVA < 3表示水样主要由亲水性DOM组成, 而SUVA > 4则表示水样主要有疏水性DOM组成[90].此外, SUVA还可以作为DBPs形成潜力的良好指标[91].三维荧光光谱可以结合多种数据分析方法对DOM的组分特征进行表征.如可以进行荧光峰的直接识别, 将DOM划分为不同的组分;进行荧光指数的分析, 计算DOM的腐殖化指数, 探究DOM的来源等[92].还可以利用主成分分析、荧光区域积分和平行因子分析法等, 整合和分离荧光区域重叠的荧光组分, 以全面探究DOM的组成和变化, 进而分析其与DBPs的相关性[93, 94].如Jutaporn等[71]利用平行因子分析法, 表明THMs的形成与类腐殖质组分有强相关性, 而HANs的形成与类蛋白质组分有强相关性.
将多种表征手段进行串联, 可以尽可能全面地同时得到DOM的特征信息, 如Cai等[95]使用具备多级检测器的体积排阻色谱(SEC-DAD-FLD-OND/OCD)同时对城市污水处理厂的二级出水中的DOC及DON含量、相对分子质量分布和组成特征进行了表征.但多级串联检测器表征的信息仍尚处于宏观层面.近年来, 超高分辨质谱的发展和应用帮助学者们从分子水平上对DOM的结构信息进行破译, 进而促进了对DBPs前体物在分子水平上的认知[96].如冯嘉靖[97]利用傅立叶变换离子回旋共振质谱分析发现, DOM中含有木质素或富羧酸酯脂环分子的物质及低C/O的物质是Cl-DBPs的主要前体物.
亲疏水性、相对分子质量、含量及光谱信息虽能给予宏观上的DOM结构特征信息, 但较为粗糙, 无法对DOM进行更进一步的解析, 在面对不同水质DOM的分析上可能会出现两两相悖的结果.官能团分析及超高分辨质谱的分析结果能定性表征DOM的结构特征, 更为直接地表明前体物性质, 但受限于仪器成本, 实际较难广泛应用.利用多重表征手段, 多角度, 宏观及微观信息相结合全面地对复杂再生水有机质进行解析, 分析其在处理过程中的迁移转化规律, 明晰其与DBPs生成间的关系, 进而对DBPs的前体物进行更深入的识别和溯源, 是今后一个重要的发展方向.
2.2 DBPs的生成条件 2.2.1 消毒工艺对DBPs生成的影响氯是最常用的消毒剂, 然而氯消毒后会形成较多的如THMs和HAAs等受管控的DBPs和如HANs和HNMs等新兴DBPs.为减轻氯消毒所带来的DBPs风险, 许多消毒方式如氯胺、二氧化氯、臭氧或者组合消毒(如UV/氯、UV/氯胺)被用于替代氯消毒.然而, 以上替代消毒方式仍会不可避免地导致一些特定DBPs的形成.氯胺反应活性低于氯, 其消毒后的C-DBPs生成量会显著低于氯消毒, 但氯胺会引入额外的氮源, 诸如NDMA等的N-DBPs的生成量反而会增加[45, 72, 98, 99].此外, 在水厂实际应用中, 氯胺消毒可分为预制备氯胺消毒和原位氯胺消毒.预制备的氯胺消毒生成的DBPs较原位氯胺消毒少[98~100], 但需注意的是, 预制备的二氯胺生成的NDMA多于一氯胺, 二氯胺的存在还可能促进HAAs、HALs、HANs和HAcAms的形成[11, 43].二氧化氯和臭氧均是一种强氧化剂, 几乎不生成有机卤代消毒副产物, 但能氧化有机物形成醛类、酮类和长链羧酸类等有机副产物[31], 此外, 二氧化氯还能通过自身衰减形成亚氯酸盐和氯酸盐[101], 注意当水中存在Br-时, 臭氧氧化还会导致致癌物溴酸盐的形成, 增加出水的风险[59].紫外消毒通常不形成DBPs, 仅在高紫外剂量(200 mJ·cm-2)下才可能形成醛类DBPs[102].当紫外与氯/氯胺消毒结合时, 虽能通过UV光解减少一些NAs的形成, 但UV会导致水中亚/硝酸盐的光解, 产生如NO2·等的活性基团, 从而促进HNMs的生成[67].
除消毒剂种类外, 消毒条件如消毒剂投加量和投加时间也会影响DBPs的生成.由于污水中存在较高浓度、结构复杂的DOM, 活性较高的前体物会优先和消毒剂反应.随着消毒剂量的增加, 活性相对较低的前体物也逐渐与消毒剂发生反应, 从而导致随着消毒剂投加量的增加, DBPs生成量也增加.如Liang等[103]的研究表明, 低O/C比的化合物具有比高O/C的化合物更高的氯反应活性, 更易形成DBPs.此外, 消毒剂的投加量还会影响其与前体物的反应类型.如在低氯投加量下, 主要发生取代反应形成较多的总有机卤素(total organic halogen, TOX);而高氯投加量下, 还可发生脱羧、氧化等反应, 一些芳香酸可在高氯剂量下经历脱羧反应形成氯代酚[104].消毒剂投加量的改变, 还会影响DBPs的形成和组成.如有研究发现, 随着氯投加量增加, Cl2/N升高, NAs的生成量也相应增加[45, 72, 100].Liang等[103]表示氯剂量的增加, 导致了后续形成的Cl-DBPs中的含有一个氯原子的多环芳香族Cl-DBPs和含有两个氯原子的高度氧化不饱和脂肪族Cl-DBPs的占比增加.消毒时间对DBPs的影响依据DBPs的种类不同而不同.如存在多个限速步骤的HAAs在形成过程中, 若反应时间不够, 大多数中间产物来不及向最终产物转化, 从而HAAs的生成量较少.而诸如, 2,4,6-三溴苯酚等的环状DBPs, 对氯具有很强的反应性, 随着消毒时间的延长, 会逐渐转化为HAAs和THMs[105].
综上所述, DBPs的形成受到消毒工艺的显著影响, 然而目前研究仍主要关注于氯消毒, 针对其他消毒剂在不同消毒条件下DBPs的形成情况尚不清楚.有时消毒工艺间的对比不具有同等水平下的可比性, 可以在相同灭菌效果下(或消毒效率下)进行消毒工艺的对比[通过改变投加量和接触时间(即Ct值)的自身的比较以及不同工艺间的比较], 再研究DBPs的形成情况.此外, 针对消毒剂与前体物的反应性研究较少, 明确各消毒剂与不同前体物的反应性有助于消毒剂的选择和后续DBPs的控制.
2.2.2 水质条件对DBPs生成的影响一般来说, 随着温度的增加, 反应动力学加快, DBPs的生成越易.在临界温度前, 水温的升高能促进DBPs的形成, 包括THMs、HAAs、HANs、CH和HKs, 特别是Br-THMs、DCP和TCP;此外, 也存在温度的增加导致一些DBPs降解的情况, 但DBPs的降解并不意味着风险的降低, 因为以上DBPs能在达到最大浓度后迅速分解为氯仿和其他有机卤素[106~108].此外, 消毒时pH对DBPs的形成也有显著影响.一方面, pH能影响消毒剂的存在形态进而影响DBPs的生成.如氯消毒中当pH > 7.5时, 反应活性强的HOCl逐渐被反应性较低的OCl-取代, DBPs的形成较少[109].氯胺消毒中, pH值较高时, 氯胺主要以一氯胺的形态存在, DBPs生成量较少;pH较低时, 则主要以二氯胺和三氯胺的形态存在, 从而促进NDMA的生成[98, 110].其次, pH能影响水中有机物的氧化还原电位, 随着pH的升高, 氧化还原电位降低, 进而降低前体物与消毒剂的反应活性, 减少DBPs的生成.另一方面, pH还能影响DBPs的稳定性.如有研究发现, 在碱性条件下, 能通过碱催化反应促进THMs生成的增加;碱性条件还有利于HAcAms的水解[111, 112].HANs在碱性条件下会水解为HAAs, 而在酸性条件下水解为相应的HAcAms[113].
水中存在的有机物(详见2.1节)和无机物会显著影响DBPs的生成.无机物中的氨氮是影响DBPs生成的一个重要因素.大部分研究表明, 在氯消毒时, 氨氮的存在可以显著降低THMs和HAAs等的生成.这是由于水中的氨氮能和加入的自由氯反应形成氯胺, 从而降低C-DBPs的生成风险, 但仍会带来N-DBPs的生成风险.当消毒剂为臭氧时, 氨氮的存在可通过与水中的次溴酸(HOBr)/次溴酸盐(BrO-)反应形成一溴胺(NH2Br)并进一步转化为二溴胺(NHBr2), 从而抑制溴酸盐的形成[114, 115], 但无机溴胺的存在可能会导致N-DBPs形成的增加[21, 116].水中存在的诸如Br-和I-等无机离子也会导致DBPs生成的改变.氯消毒时, 当水中存在Br-和I-时, 由于Cl-、Br-和I-的标准氧化还原电位的差距, HOCl会氧化Br-和I-形成HOBr和HOI, 从而使消毒副产物形态朝着溴化和碘化程度更高的物种转化[87].I-的影响在氯胺消毒时更为显著, 因为一氯胺能快速氧化I-为HOI, 而一氯胺却很难继续将HOI氧化为亚碘酸和碘酸, 从而导致HOI的累积, 进而促进碘代消毒副产物的形成[117].另外, Br-的存在还会增加特定DBPs的生成.如Le Roux等[118]报道, 水中存在Br-时, 可以导致仲胺和叔胺的胺基产率增加, 从而提高氯胺消毒过程中NDMA的产量.当用臭氧处理时, Br-会导致较高浓度的溴酸盐和Br-DBPs的形成[44].还需注意的是, 当水中存在亚硝酸盐时, 氯可以通过和亚硝酸反应生成N2O4, 促进NDMA的生成[43].亚硝酸盐的存在还能促进氯胺消毒中HNMs的生成[66].亚硝酸盐还能在紫外光的光解下掺杂入DOM中形成N-DBPs[67, 68].
在研究水质条件对于DBPs生成的影响时, 常在实验室规模下进行, 在此后的研究中应拓展到实际水体中, 分析实际情况下的DBPs生成和转化情况, 以明晰不同水质条件下的各关键转折点.
DBPs的生成机制总结如图 3所示.
![]() |
图 3 再生水DBPs生成机制 Fig. 3 Generation mechanism of DBPs in reclaimed water |
目前再生水消毒副产物的控制方法主要可分为3个:①源头控制:通过削减DBPs的前体物(水体中有机物含量)进而削减DBPs的生成量;②过程调控:通过调整消毒方式和优化消毒工艺参数条件来削减DBPs的生成量;③末端控制:对已生成的DBPs进行削减.
3.1 源头控制在消毒前降低前体物的浓度是控制DBPs生成的强有效手段.有研究发现, 污水中的有机物主要在生物处理过程中被去除, DOM在不同生物处理工艺(活性污泥、生物曝气滤池、悬浮载体活性污泥及AAO)中的去除率均超过55%[119].生物处理过程中的不同操作条件能显著影响DOM的去除效果.如通过延长水力停留时间和污泥滞留时间可以增强特定微污染物的去除[120].污水在不完全硝化条件下, 有利于THMs的削减, 并促进NDMA的生成;反之, 在完全硝化的污水中, THMs的生成会增加, HNMs和NAs的生成则受到抑制[72].此外, 生物处理过程操作条件的改变还会导致DOM的组成和结构特性的改变(如DON/DOC和SMP的生成量等), 进而影响后续DBPs的形成[121].尽管针对不同生物过程中DOM的去除情况已得到普遍研究, 但不同操作条件下DOM特性的改变及后续DBPs的生成还有待研究.
生物处理过程中未能完全去除以及新产生的有机物, 则可以通过后续的深度处理进行加强去除.常用的深度处理法包括混凝沉淀、膜滤、吸附与离子交换及高级氧化等.混凝能够去除水中大分子有机物(如腐殖酸), 从而降低DBPs的生成量.并能通过如调节pH值、投加助凝剂等手段来强化混凝, 从而更好地实现有机物的去除及DBPs的控制[122, 123].如Liu等[124]通过调节pH强化硫酸铝对城市污水二级出水的混凝处理, 结果表明在pH为6时, 可达到最大程度的HAAs生成削减.此外, 由于混凝沉淀对前体物去除的单一性, 将其与其他工艺联用是实现对多种DBPs进行控制的有效手段.如通过臭氧预氧化可使得水中有机物性质发生改变, 如导致DOM的含氧官能团增加, 降低DOM的相对分子质量, 从而使得DOM能更好地与混凝剂结合而被去除[125].
具有不同孔径和溶质过膜推动力的膜可分为微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO).膜工艺能依据吸附、静电排斥和空间位阻等多种机制去除水中有机物产生高质量出水.然而, 膜工艺的去除效果取决于膜特性(平均分子截留量、孔隙率、膜形态、电荷)和溶质性质(相对分子质量、电荷和疏水性)及背景水化学性质(离子强度、pH和硬度)[126].如具有较大膜孔径的MF和UF, 对水中小分子DOM的去除效果较差;而具有较低膜孔径的NF和RO, 则能实现对水中大量小分子DOM的有效去除[127].Ersan等[73]的研究发现, NF对NDMA的去除效率随NF的平均分子截留量和表面负电值的增加而降低.单一的膜工艺对具有异质性的污水DOM的去除具有挑战性, 集成膜工艺可实现对前体物和DBPs的良好控制.如Mitch团队通过MF/RO有效降低了HAAs、TCNM、HKs和HALs的浓度, 且发现MF/RO是控制NMOR前体的有效手段[33, 128].然而, 膜工艺带来的膜结垢及高成本问题不可忽视.
活性炭吸附主要通过非特异性分散作用(如范德华力和共价键)对有机物进行去除, 是控制DBPs前体物的有效手段.如Liu等[129]的研究发现, 颗粒活性炭(GAC)可去除水中60%以上的SMP, 并使DBPFP降低70%以上.与膜工艺类似, 活性炭吸附的效率也主要取决于吸附剂性质如比表面积、孔隙度、表面极性和官能团等, 吸附物质的特性如分子结构和亲疏水性等, 及背景水特质等[130].为提高前体物的去除率, 对活性炭进行表面改性是常用的方法.Belhamdi等[131]通过KOH和ZnCl活化法, 制备了具有良好吸附N-DBPs的前体物(氨基酸)能力的活性炭.Erdem等[132]通过预氯化处理, 使得GAC表面氧化成酸性, 从而对卤代DBPs的前体吸附造成了不利影响, 这也从反面证明了, 具有碱性表面的GAC可能是卤代DBPs的良好吸附剂.水中大部分有机物均以带负电形式存在, 阴离子交换树脂(anion exchange resin, AER)能通过离子交换和物理吸附较好地对其去除.如Jutaporn等[71]表明磁性阴离子交换树脂MIEX®能分别降低11%~21%、17%~23%、39%~64%和23%~38%的THMsFP、HANsFP、TCNMFP和HKsFP.同样, AER对有机物的去除效果也取决于树脂特性(酸碱性、骨架结构、基团和孔径等), 有机物特性和背景水特性[133].有研究发现, 具有较大孔径的强碱性AER具有较强的DOM去除性能, 而凝胶型树脂则更有利于去除芳香性DOM[71].但值得注意的是, AER能向水中释放NAs前体物而导致NAs的生成增加[134].
高级氧化法(advanced oxidation process, AOP)主要利用在光、电或催化剂等条件下生成的具有强氧化性的自由基团(如羟基、氯和硫酸根自由基等)对水中有机物进行降解[135].AOP对污染物的去除效果也受到水质和操作条件的影响, 如Ike等[136]的研究发现, 若污水中DOM的氯反应活性较高, 则经AOP处理后DBPs的生成较少;反之, 若DOM的氯反应活性较低, 经AOP处理后DBPs的生成反而会增加.然而AOP也会导致一些如溴酸盐、醛等的氧化副产物的形成, 还能增加溴离子的掺杂率, 形成毒性更高的Br-DBPs[137, 138].其次, AOP带来的高能耗和引入催化剂造成的二次污染是不可忽视的问题.
3.2 过程调控针对消毒过程的DBPs削减策略主要包括改变消毒方式、优化消毒条件和调整消毒剂投加方式等.在2.2节详细讨论过不同的消毒方式及消毒条件对DBPs生成的影响.各种消毒方式均能造成特定的DBPs生成, 在不同水质和操作条件下, DBPs的生成情况也各异.应针对实际情况, 选择适应的消毒方式, 适时调整消毒投加量以确保DBPs的削减.如在低氨氮废水中, 可选择氯胺作为消毒剂;在高溴碘离子废水中可选择二氧化氯作为消毒剂.合理组合消毒工艺也能减少DBPs的生成, 如Huang等[50]报道, 按照氯、紫外的顺序消毒法能减少除TCP和CHD外所有DBPs的生成, Br-DBPs的去除率高于Cl-DBPs.但需注意的是, 优化消毒条件不应只用DBPs的削减作为评判指标, 应在确保微生物灭活的前提下, 尽量低地投加消毒剂, 灵活调整消毒接触时间.调整消毒投加方式则能同时有效保障致病菌的灭活并削减DBPs的生成.如研究表明相对一步加氯法(氯一次性投加), 两步加氯法(氯按5∶1的比例间隔19 s投加)和三步加氯法(氯分为三等份间隔5 min投加), 在相同的氯投加量下, 能更有效地灭活大肠杆菌(消毒效率从0.81-log提高到1.02-log), 减少DBPs和TOX(约23.4%)的生成[139, 140].Furst等[11]报道称顺序氯消毒(即先向水体中投加一定浓度的氯, 反应一段时间后投加氨, 与余氯生成氯胺继续消毒), 能在保证微生物灭活效果的同时尽量降低DBPs的生成, 达到一个可接受的平衡.
3.3 末端控制污水经过再生处理后, 可用于农、林、牧和渔业;城市杂用(城市绿化、道路清扫、建筑施工和消防等);工业回用(冷却用水、锅炉用水和产品用水等);环境用水(景观环境用水和湿地环境用水)和补充水源水(补充地表水和补充地下水)[141], 一般不考虑在污水厂内的去除.在后续储存运输中, 有学者研究发现湿地对DBPs有一定控制作用:如Yang等[142]通过中试试验发现, 人工湿地对THMs和HAAs有25%左右的去除率.Chen等[143]的研究表明, 湿地是一个良好的可持续性去除DBPs的生态系统, 通过湿地中的植物的根系吸收作用和微生物降解作用来共同去除DBPs.然而, 当再生水作为城市杂用水时, 如绿化灌溉、冲厕用水和洗车, 有可能通过吸入、皮肤吸收和摄入等途径将人类暴露于再生水DBPs的危害中, 此时则需要对再生水DBPs进行末端控制.UV法作为一种消毒方法, 亦可作为DBPs的末端控制手段, 主要通过直接光解作用来降解DBPs.卤代DBPs在紫外光下的降解速率随卤素取代基数量的增加而增加, 且降解速率也受到卤素取代基种类的影响, 按照氯代、溴代和碘代DBPs顺序增加[144].吴乾元团队研究发现, 再生水排入受纳水体后, 经过阳光辐照(主要是紫外作用)能去除水中有机物的芳香性组分, 从而有效降低DBPsFP, 并通过脱卤使TOX生成量降低, 同时显著降低水体的细胞毒性[145~147].值得注意的是, 当水中存在余氯时, 紫外光会和氯反应形成联合作用, 一方面有研究表明紫外氯联用对污染物的降解具有协同效应, 另也有研究表明紫外氯联用会导致DBPs的形成增强.在排放前通过投加具有还原性的化学药剂如亚硫酸钠、亚硫酸氢钠、硫代硫酸钠和抗坏血酸等, 可对水中余氯进行脱除(即“脱氯”过程), 还能通过还原反应削减部分已生成的DBPs来进行末端控制.如Kristiana等[113]的研究发现, 亚硫酸钠能促进HANs、HKs、HALs和TCNM的水解.
再生水水质较为复杂, 从根源上对水中前体物进行去除是控制DBPs形成的最佳手段, 而水中有机物主要在生物处理过程中被去除, 因此未来应针对生物处理过程, 特别是不同生物处理条件(如水力停留时间、反硝化碳源和碳氮比等)进行DBPs生成情况及控制的研究;深度处理工艺能进一步去除水中残留前体物, 然而各工艺均存在各自的弊端(如前体物去除效果差、引入新污染和高能耗等问题);在进行消毒过程的调控时应注意同时保障病原微生物的灭活效率;特定场景下应加强DBPs的末端控制, 其控制效果及该过程中DBPs的转化机制需进一步研究.
4 展望为有效减轻再生水中DBPs所带来的风险, 在此对再生水DBPs的控制未来研究方向提出以下展望:①针对复杂的再生水水质, 结合新技术, 多角度多手段地检测分析其有机物的组成特性, 对DBPs前体物溯源并解构, 为控制DBPs生成打下基础.②明晰前体物、消毒剂及DBPs三者间的关系, 分析DBPs的生成机制, 以实现对再生水DBPs的有效控制.③优化消毒工艺应在保障再生水生物安全性(致病微生物灭活率)的基础上, 结合实际水况, 适当调整消毒条件, 尽量减轻消毒所带来的负面影响.④在控制DBPs生成的同时, 存在无水质指标约束, 及相关能耗大的问题, 应建立适应于再生水的DBPs监管指标, 及新型绿色和节能环保的高效DBPs控制新方法.
5 结论污水再生利用是缓解水资源问题的重要战略手段, 消毒是保障再生水生物安全性的必要手段, 然而在消毒过程中生成的具有潜在健康风险的DBPs会危害到再生水的安全利用.自20世纪90年代开始至今, 再生水中已识别到浓度水平为ng·L-1~μg·L-1的数百种有机DBPs, 和mg·L-1的无机DBPs, 并开发了多种适应于不同种类DBPs的检测鉴定方法.再生水中DBPs的前体物组成复杂, 对前体物进行解构表明腐殖质类物质是C-DBPs的主要前体物, 而蛋白质类物质是N-DBPs的主要前体物, 但前体物的组成及结构特征仍需采用多种检测器多角度细致分析.基于不同的水质和消毒条件, 再生水DBPs生成特性及转化机制各异.为保障再生水的安全, 可通过源头控制, 过程调控和末端控制对DBPs进行去除.然而各控制手段均存在一些弊端, 如源头控制难以完全去除前体物, 过程调控中消毒工艺的选择及优化仍不可避免地会导致特定DBPs的形成, 末端控制的控制效果需进一步研究.
[1] | 陈婉. 十部门印发《关于推进污水资源化利用的指导意见》污水资源化利用步伐有望加快[J]. 环境经济, 2021(10): 16-19. |
[2] |
王洪臣. 污水资源化是突破经济社会发展水资源瓶颈的根本途径[J]. 给水排水, 2021, 47(4): 1-5, 52. Wang H C. Wastewater recycling is the fundamental way to break through bottleneck of water resources in economic and social development[J]. Water & Wastewater Engineering, 2021, 47(4): 1-5, 52. |
[3] | Du Y, Wang W L, He T, et al. Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species[J]. Science of the Total Environment, 2020, 701. DOI:10.1016/j.scitotenv.2019.134881 |
[4] | Hu H Y, Du Y, Wu Q Y, et al. Differences in dissolved organic matter between reclaimed water source and drinking water source[J]. Science of the Total Environment, 2016, 551-552: 133-142. DOI:10.1016/j.scitotenv.2015.12.111 |
[5] |
徐倩, 徐斌, 覃操, 等. 水中典型含氮有机物氯化生成消毒副产物的潜能研究[J]. 环境科学, 2011, 32(7): 1967-1973. Xu Q, Xu B, Qin C, et al. Chlorination byproducts formation potentials of typical nitrogenous organic compounds in water[J]. Environmental Science, 2011, 32(7): 1967-1973. |
[6] | Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review[J]. Water Research, 2019, 162: 492-504. DOI:10.1016/j.watres.2019.07.014 |
[7] | Zhang Z X, Zhu Q Y, Huang C, et al. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs: Binding interactions between aromatic DBPs and catalase play an important role[J]. Water Research, 2020, 170. DOI:10.1016/j.watres.2019.115283 |
[8] | Komaki Y, Mariñas B J, Plewa M J. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles[J]. Environmental Science & Technology, 2014, 48(19): 11662-11669. |
[9] | Tang H Y, Zhong H L, Pan Y, et al. A new group of heterocyclic nitrogenous disinfection byproducts(DBPs)in drinking water: role of extraction pH in unknown DBP exploration[J]. Environmental Science & Technology, 2021, 55(10): 6764-6772. |
[10] | Yang M T, Liberatore H K, Zhang X R. Current methods for analyzing drinking water disinfection byproducts[J]. Current Opinion in Environmental Science & Health, 2019, 7: 98-107. |
[11] | Furst K E, Pecson B M, Webber B D, et al. Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse[J]. Water Research, 2018, 143: 579-588. DOI:10.1016/j.watres.2018.05.050 |
[12] | Zhong Y, Gan W H, Du Y, et al. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2[J]. Water Research, 2019, 162: 471-481. DOI:10.1016/j.watres.2019.07.012 |
[13] | Chu W H, Gao N Y, Yin D Q, et al. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization[J]. Journal of Chromatography A, 2012, 1235: 178-181. DOI:10.1016/j.chroma.2012.02.074 |
[14] | Bourgin M, Beck B, Boehler M, et al. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products[J]. Water Research, 2018, 129: 486-498. DOI:10.1016/j.watres.2017.10.036 |
[15] | Zhang X R, Talley J W, Boggess B, et al. Fast selective detection of polar brominated disinfection byproducts in drinking water using precursor ion scans[J]. Environmental Science & Technology, 2008, 42(17): 6598-6603. |
[16] | Yang M T, Zhang X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii[J]. Environmental Science & Technology, 2013, 47(19): 10868-10876. |
[17] | Gong T T, Zhang X R. Detection, identification and formation of new iodinated disinfection byproducts in chlorinated saline wastewater effluents[J]. Water Research, 2015, 68: 77-86. DOI:10.1016/j.watres.2014.09.041 |
[18] | Liu X, Park M, Beitel S C, et al. Exploring the genotoxicity triggers in the MP UV/H2O2-chloramination treatment of bisphenol A through bioassay coupled with non-targeted analysis[J]. Science of the Total Environment, 2021, 769. DOI:10.1016/j.scitotenv.2021.145218 |
[19] | Wawryk N J P, Huang G, Craven C, et al. Aspartame-sweetened tap water: transformation products and 2,6-dichloro-1,4-benzoquinone formation[J]. Environmental Science & Technology, 2023, 57(3): 1332-1341. |
[20] | Lu Y, Song Z M, Wang C, et al. Combination of high resolution mass spectrometry and a halogen extraction code to identify chlorinated disinfection byproducts formed from aromatic amino acids[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116710 |
[21] | Lu Y, Wang C, Zhang X Y, et al. Tracing nitrogenous byproducts during ozonation in the presence of bromide and ammonia using stable isotope labeling and high resolution mass spectrometry[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123612 |
[22] | Wang X, Wang J, Zhang Y H, et al. Characterization of unknown iodinated disinfection byproducts during chlorination/chloramination using ultrahigh resolution mass spectrometry[J]. Science of the Total Environment, 2016, 554-555: 83-88. DOI:10.1016/j.scitotenv.2016.02.157 |
[23] | Zhang X Y, Lu Y, Du Y, et al. Comprehensive GC×GC-qMS with a mass-to-charge ratio difference extraction method to identify new brominated byproducts during ozonation and their toxicity assessment[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.124103 |
[24] | Cheng S, Wu Y P, Young T R, et al. Rapid determination of trace haloacetic acids in water and wastewater using non-suppressed ion chromatography with electrospray ionization-tandem mass spectrometry[J]. Science of the Total Environment, 2021, 754. DOI:10.1016/j.scitotenv.2020.142297 |
[25] | Li Z G, Song G F, Bi Y H, et al. Occurrence and distribution of disinfection byproducts in domestic wastewater effluent, tap water, and surface water during the SARS-CoV-2 pandemic in China[J]. Environmental Science & Technology, 2021, 55(7): 4103-4114. |
[26] | Li Z G, Liu X Y, Huang Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China[J]. Water Research, 2019, 157: 247-257. DOI:10.1016/j.watres.2019.03.072 |
[27] | Vatankhah H, Szczuka A, Mitch W A, et al. Evaluation of enhanced ozone-biologically active filtration treatment for the removal of 1,4-dioxane and disinfection byproduct precursors from wastewater effluent[J]. Environmental Science & Technology, 2019, 53(5): 2720-2730. |
[28] | Yang X, Guo W H, Zhang X, et al. Formation of disinfection byproducts after pre-oxidation with chlorine dioxide or ferrate[J]. Water Research, 2013, 47(15): 5856-5864. DOI:10.1016/j.watres.2013.07.010 |
[29] | Liu J Q, Zhang X R. Comparative toxicity of new halophenolic DBPs in chlorinated saline wastewater effluents against a marine alga: halophenolic DBPs are generally more toxic than haloaliphatic ones[J]. Water Research, 2014, 65: 64-72. DOI:10.1016/j.watres.2014.07.024 |
[30] | Watson K, Shaw G, Leusch F D L, et al. Chlorine disinfection byproducts in wastewater effluent: Bioassay-based assessment of toxicological impact[J]. Water Research, 2012, 46(18): 6069-6083. DOI:10.1016/j.watres.2012.08.026 |
[31] | Park K Y, Choi S Y, Lee S H, et al. Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna[J]. Environmental Pollution, 2016, 215: 314-321. DOI:10.1016/j.envpol.2016.04.001 |
[32] | Qi W X, Zhang H, Hu C Z, et al. Effect of ozonation on the characteristics of effluent organic matter fractions and subsequent associations with disinfection by-products formation[J]. Science of the Total Environment, 2018, 610-611: 1057-1064. DOI:10.1016/j.scitotenv.2017.08.194 |
[33] | Chuang Y H, Szczuka A, Shabani F, et al. Pilot-scale comparison of microfiltration/reverse osmosis and ozone/biological activated carbon with UV/hydrogen peroxide or UV/free chlorine AOP treatment for controlling disinfection byproducts during wastewater reuse[J]. Water Research, 2019, 152: 215-225. DOI:10.1016/j.watres.2018.12.062 |
[34] | Chuang Y H, Mitch W A. Effect of ozonation and biological activated carbon treatment of wastewater effluents on formation of N-nitrosamines and halogenated disinfection byproducts[J]. Environmental Science & Technology, 2017, 51(4): 2329-2338. |
[35] | Meng Y J, Wang M M, Guo B, et al. Characterization and C-, Ndisinfection byproduct formation of dissolved organic matter in MBR and anaerobic-anoxic-oxic(AAO)processes[J]. Chemical Engineering Journal, 2017, 315: 243-250. DOI:10.1016/j.cej.2017.01.009 |
[36] | Wu M H, Qian Y C, Boyd J M, et al. Identification of tobaccospecific nitrosamines as disinfection byproducts in chloraminated water[J]. Environmental Science & Technology, 2014, 48(3): 1828-1834. |
[37] | Huang Y, Zhang Y Y, Zhou Q, et al. Detection, identification and control of polar iodinated disinfection byproducts in chlor(am) inated secondary wastewater effluents[J]. Environmental Science: Water Research & Technology, 2019, 5(2): 397-405. |
[38] | Ding G Y, Zhang X R, Yang M T, et al. Formation of new brominated disinfection byproducts during chlorination of saline sewage effluents[J]. Water Research, 2013, 47(8): 2710-2718. DOI:10.1016/j.watres.2013.02.036 |
[39] | Yang M T, Zhang X R. Halopyrroles: a new group of highly toxic disinfection byproducts formed in chlorinated saline wastewater[J]. Environmental Science & Technology, 2014, 48(20): 11846-11852. |
[40] | Wu Q Y, Tang X, Huang H, et al. Antiestrogenic activity and related disinfection by-product formation induced by bromide during chlorine disinfection of sewage secondary effluent[J]. Journal of Hazardous Materials, 2014, 273: 280-286. DOI:10.1016/j.jhazmat.2014.03.028 |
[41] | Zahn D, Frömel T, Knepper T P. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle[J]. Water Research, 2016, 101: 292-299. DOI:10.1016/j.watres.2016.05.082 |
[42] | Fang C, Krasner S W, Chu W H, et al. Formation and speciation of chlorinated, brominated, and iodinated haloacetamides in chloraminated iodide-containing waters[J]. Water Research, 2018, 145: 103-112. DOI:10.1016/j.watres.2018.07.074 |
[43] | Shah A D, Krasner S W, Lee C F T, et al. Trade-offs in disinfection byproduct formation associated with precursor preoxidation for control of N-nitrosodimethylamine formation[J]. Environmental Science & Technology, 2012, 46(9): 4809-4818. |
[44] | Wu Q Y, Zhou Y T, Li W X, et al. Underestimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase[J]. Water Research, 2019, 162: 43-52. DOI:10.1016/j.watres.2019.06.054 |
[45] | Zhang H, Liu H J, Zhao X, et al. Formation of disinfection byproducts in the chlorination of ammonia-containing effluents: significance of Cl2/N ratios and the DOM fractions[J]. Journal of Hazardous Materials, 2011, 190(1-3): 645-651. DOI:10.1016/j.jhazmat.2011.03.098 |
[46] |
孙迎雪, 吴乾元, 田杰, 等. 污水中溶解性有机物组分特性及其氯消毒副产物生成潜能[J]. 环境科学, 2009, 30(8): 2282-2287. Sun Y X, Wu Q Y, Tian J, et al. Characteristics and chlorinated disinfection by-products formation potential of dissolved organic matter fractions in treated wastewater[J]. Environmental Science, 2009, 30(8): 2282-2287. |
[47] |
韩芸, 周学瑾, 彭党聪, 等. 污水厂出水DOM各组分的荧光特性及其THMFP[J]. 中国给水排水, 2011, 27(21): 19-22. Han Y, Zhou X J, Peng D C, et al. Fluorescence characteristic and THMFP of DOM fractions in secondary effluent[J]. China Water & Wastewater, 2011, 27(21): 19-22. |
[48] | Farré M J, Day S, Neale P A, et al. Bioanalytical and chemical assessment of the disinfection by-product formation potential: Role of organic matter[J]. Water Research, 2013, 47(14): 5409-5421. DOI:10.1016/j.watres.2013.06.017 |
[49] | Li A, Chen Z L, Shen J M, et al. THMs and HAAs fotmation by tryptophan during chlorination disinfection[A]. In: 2009 International Conference on Energy and Environment Technology[C]. Guilin: IEEE, 2009.888-891. |
[50] | Huang W C, Du Y, Liu M, et al. Influence of UV irradiation on the toxicity of chlorinated water to mammalian cells: Toxicity drivers, toxicity changes and toxicity surrogates[J]. Water Research, 2019, 165. DOI:10.1016/j.watres.2019.115024 |
[51] | Wu Q Y, Yan Y J, Lu Y, et al. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Frontiers of Environmental Science & Engineering, 2020, 14(2). DOI:10.1007/s11783-019-1204-6 |
[52] | Wang L S, Hu H Y, Wang C. Effect of ammonia nitrogen and dissolved organic matter fractions on the genotoxicity of wastewater effluent during chlorine disinfection[J]. Environmental Science & Technology, 2007, 41(1): 160-165. |
[53] |
韩慧慧, 缪恒锋, 张雅晶, 等. 污水再生过程中消毒副产物前体物转化规律[J]. 环境科学, 2017, 38(7): 2883-2892. Han H H, Miao H F, Zhang Y J, et al. Transformation of disinfection byproduct precursors during the wastewater regeneration processes[J]. Environmental Science, 2017, 38(7): 2883-2892. |
[54] | Liu J L, Li X Y, Xie Y F, et al. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply[J]. Science of the Total Environment, 2014, 472: 818-824. DOI:10.1016/j.scitotenv.2013.11.139 |
[55] | Xie W M, Ni B J, Sheng G P, et al. Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants[J]. Water Research, 2016, 88: 703-710. DOI:10.1016/j.watres.2015.10.065 |
[56] | Wu J, Ye J, Peng H L, et al. Solar photolysis of soluble microbial products as precursors of disinfection by-products in surface water[J]. Chemosphere, 2018, 201: 66-76. DOI:10.1016/j.chemosphere.2018.02.185 |
[57] | Ma D F, Meng Y J, Xia C F, et al. Fractionation, characterization and C-, N-disinfection byproduct formation of soluble microbial products in MBR processes[J]. Bioresource Technology, 2015, 198: 380-387. DOI:10.1016/j.biortech.2015.09.043 |
[58] | Wang J J, Liu X, Ng T W, et al. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms[J]. Water Research, 2013, 47(8): 2701-2709. DOI:10.1016/j.watres.2013.02.038 |
[59] | Huang H, Wu Q Y, Tang X, et al. Formation of haloacetonitriles and haloacetamides during chlorination of pure culture bacteria[J]. Chemosphere, 2013, 92(4): 375-381. DOI:10.1016/j.chemosphere.2013.01.031 |
[60] | Quintana J B, Rodil R, López-Mahía P, et al. Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology[J]. Water Research, 2010, 44(1): 243-255. DOI:10.1016/j.watres.2009.09.018 |
[61] | Pereira R O, Postigo C, De Alda M L, et al. Removal of estrogens through water disinfection processes and formation of by-products[J]. Chemosphere, 2011, 82(6): 789-799. DOI:10.1016/j.chemosphere.2010.10.082 |
[62] | Krkošek W H, Koziar S A, White R L, et al. Identification of reaction products from reactions of free chlorine with the lipidregulator gemfibrozil[J]. Water Research, 2011, 45(3): 1414-1422. DOI:10.1016/j.watres.2010.10.031 |
[63] |
安东, 顾斌, 张涵, 等. 饮用水处理中聚丙烯酰胺对氯胺消毒生成NDMA的贡献[J]. 给水排水, 2017, 43(12): 41-44. An D, Gu B, Zhang H, et al. Contribution of polyacrylamide to formation of NDMA during chloramination in drinking water treatment[J]. Water & Wastewater Engineering, 2017, 43(12): 41-44. |
[64] | Tan S Y, Jiang S J, Lai Y Z, et al. Formation potential of nine nitrosamines from polyacrylamide during chloramination[J]. Science of the Total Environment, 2019, 670: 1103-1110. DOI:10.1016/j.scitotenv.2019.03.281 |
[65] | Ding S K, Chu W H, Bond T, et al. Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products[J]. Chemical Engineering Journal, 2018, 350: 356-363. DOI:10.1016/j.cej.2018.06.002 |
[66] | Hong H C, Xiong Y J, Ruan M Y, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine[J]. Science of the Total Environment, 2013, 444: 196-204. DOI:10.1016/j.scitotenv.2012.11.086 |
[67] | Shah A D, Dotson A D, Linden K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water[J]. Environmental Science & Technology, 2011, 45(8): 3657-3664. |
[68] | Liu X, Park M, Beitel S C, et al. Formation of nitrogenous disinfection byproducts in MP UV-based water treatments of natural organic matters: The role of nitrate[J]. Water Research, 2021, 204. DOI:10.1016/j.watres.2021.117583 |
[69] | Wu Y, Wei W Z, Luo J Y, et al. Comparative toxicity analyses from different endpoints: Are new cyclic disinfection byproducts (DBPs) more toxic than common aliphatic DBPs?[J]. Environmental Science & Technology, 2022, 56(1): 194-207. |
[70] | Krasner S W, Westerhoff P, Chen B Y, et al. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter[J]. Environmental Science & Technology, 2009, 43(8): 2911-2918. |
[71] | Jutaporn P, Armstrong M D, Coronell O. Assessment of C-DBP and N-DBP formation potential and its reduction by MIEX® DOC and MIEX® GOLD resins using fluorescence spectroscopy and parallel factor analysis[J]. Water Research, 2020, 172. DOI:10.1016/j.watres.2019.115460 |
[72] | Krasner S W, Westerhoff P, Chen BY, et al. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents[J]. Environmental Science & Technology, 2009, 43(21): 8320-8325. |
[73] | Ersan M S, Ladner D A, Karanfil T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration[J]. Water Research, 2016, 105: 274-281. DOI:10.1016/j.watres.2016.08.065 |
[74] | Chen B Y, Westerhoff P. Predicting disinfection by-product formation potential in water[J]. Water Research, 2010, 44(13): 3755-3762. DOI:10.1016/j.watres.2010.04.009 |
[75] | Albolafio S, Marín A, Allende A, et al. Strategies for mitigating chlorinated disinfection byproducts in wastewater treatment plants[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132583 |
[76] | Wang Z, Liao Y F, Li X W, et al. Effect of ammonia on acute toxicity and disinfection byproducts formation during chlorination of secondary wastewater effluents[J]. Science of the Total Environment, 2022, 826. DOI:10.1016/j.scitotenv.2022.153916 |
[77] | Sillanpää M, Matilainen A, Lahtinen T. Chapter 2-Characterization of NOM[A]. In: Sillanpää M (Ed.). Natural Organic Matter in Water: Characterization and Treatment Methods[M]. New York: Butterworth-Heinemann, 2015.17-53. |
[78] |
王超, 胡洪营, 王丽莎, 等. 典型含氮有机物的氯消毒副产物生成潜能研究[J]. 中国给水排水, 2006, 22(15): 9-12. Wang C, Hu H Y, Wang L S, et al. Chlorination byproducts formation potentials of typical nitrogenous organic compounds[J]. China Water & Wastewater, 2006, 22(15): 9-12. |
[79] | Kristiana I, Tan J, Joll C A, et al. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter[J]. Water Research, 2013, 47(2): 535-546. DOI:10.1016/j.watres.2012.10.014 |
[80] | Zhang X X, Shen J M, Huo X Y, et al. Variations of disinfection byproduct precursors through conventional drinking water treatment processes and a real-time monitoring method[J]. Chemosphere, 2021, 272. DOI:10.1016/j.chemosphere.2021.129930 |
[81] | Ying Z, Ning Z, Peng Z, et al. Characteristics of molecular weight distribution of dissolved organic matter in bromide-containing water and disinfection by-product formation properties during treatment processes[J]. Journal of Environmental Sciences, 2018, 65: 179-189. DOI:10.1016/j.jes.2017.03.013 |
[82] | Zhao Z Y, Gu J D, Fan X J, et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments[J]. Journal of Hazardous Materials, 2006, 134(1-3): 60-66. DOI:10.1016/j.jhazmat.2005.10.032 |
[83] | Hu Y, Qian Y K, Chen Y N, et al. Characteristics of trihalomethane and haloacetic acid precursors in filter backwash and sedimentation sludge waters during drinking water treatment[J]. Science of the Total Environment, 2021, 775. DOI:10.1016/j.scitotenv.2021.145952 |
[84] | Zhang Y, Lu Z L, Zhang Z Y, et al. Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH[J]. Separation and Purification Technology, 2021, 260. DOI:10.1016/j.seppur.2020.118234 |
[85] |
余晓敏, 赵少远, 袁守军, 等. 卤代醛/酮消毒副产物的生成潜能及其前驱物的结构特征[J]. 环境化学, 2020, 39(1): 28-38. Yu X M, Zhao S Y, Yuan S J, et al. Formation potential of halogenated aldehydes and ketones disinfection by-products and structural characteristics of their precursors[J]. Environmental Chemistry, 2020, 39(1): 28-38. |
[86] | Shah A D, Mitch W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1): 119-131. |
[87] | Deborde M, Von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review[J]. Water Research, 2008, 42(1-2): 13-51. DOI:10.1016/j.watres.2007.07.025 |
[88] | Westerhoff P, Chao P, Mash H. Reactivity of natural organic matter with aqueous chlorine and bromine[J]. Water Research, 2004, 38(6): 1502-1513. DOI:10.1016/j.watres.2003.12.014 |
[89] |
郭改梅, 林逢凯. 芳香类有机物在氯化反应过程中的特性研究[J]. 净水技术, 2009, 28(3): 27-31. Guo G M, Lin F K. Study on the characteristics in the chlorination reaction process of aromatic organic compounds[J]. Water Purification Technology, 2009, 28(3): 27-31. |
[90] | Pan Y, Li H, Zhang X R, et al. Characterization of natural organic matter in drinking water: Sample preparation and analytical approaches[J]. Trends in Environmental Analytical Chemistry, 2016, 12: 23-30. DOI:10.1016/j.teac.2016.11.002 |
[91] | Hua G H, Reckhow D A, Abusallout I. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources[J]. Chemosphere, 2015, 130: 82-89. DOI:10.1016/j.chemosphere.2015.03.039 |
[92] | Zhang X X, Kang J, Chu W, et al. Spectral and mass spectrometric characteristics of different molecular weight fractions of dissolved organic matter[J]. Separation and Purification Technology, 2020, 253. DOI:10.1016/j.seppur.2020.117390 |
[93] | Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
[94] | Johnstone D W, Sanchez N P, Miller C M. Parallel factor analysis of excitation-emission matrices to assess drinking water disinfection byproduct formation during a peak formation period[J]. Environmental Engineering Science, 2009, 26(10): 1551-1559. DOI:10.1089/ees.2009.0139 |
[95] | Cai M H, Wu Y P, Ji W X, et al. Characterizing property and treatability of dissolved effluent organic matter using size exclusion chromatography with an array of absorbance, fluorescence, organic nitrogen and organic carbon detectors[J]. Chemosphere, 2020, 243. DOI:10.1016/j.chemosphere.2019.125321 |
[96] | Milstead R P, Remucal C K. Molecular-level insights into the formation of traditional and novel halogenated disinfection byproducts[J]. ACS ES&T Water, 2021, 1(8): 1966-1974. |
[97] |
冯嘉靖. FT-ICR MS解析水中DOM化学多样性及分子转化特性[J]. 实验技术与管理, 2023, 40(3): 21-25, 36. Feng J J. Chemical diversity and molecular transformation characteristics of DOM in water by FT-ICR MS[J]. Experimental Technology and Management, 2023, 40(3): 21-25, 36. |
[98] | Doederer K, Gernjak W, Weinberg H S, et al. Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water[J]. Water Research, 2014, 48: 218-228. DOI:10.1016/j.watres.2013.09.034 |
[99] | Huang H, Chen B Y, Zhu Z R. Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination[J]. Chemosphere, 2017, 166: 126-134. DOI:10.1016/j.chemosphere.2016.09.047 |
[100] | Hayes-Larson E L, Mitch W A. Influence of the method of reagent addition on dichloroacetonitrile formation during chloramination[J]. Environmental Science & Technology, 2010, 44(2): 700-706. |
[101] | Padhi R K, Subramanian S, Satpathy K K. Formation, distribution, and speciation of DBPs(THMs, HAAs, ClO3-, and ClO3-)during treatment of different source water with chlorine and chlorine dioxide[J]. Chemosphere, 2019, 218: 540-550. DOI:10.1016/j.chemosphere.2018.11.100 |
[102] | 胡洪营, 吴乾元, 黄晶晶, 等. 再生水水质安全评价与保障原理[M]. 北京: 科学出版社, 2011. |
[103] | Liang J K, Lu Y, Song Z M, et al. Effects of chlorine dose on the composition and characteristics of chlorinated disinfection byproducts in reclaimed water[J]. Science of the Total Environment, 2022, 824. DOI:10.1016/j.scitotenv.2022.153739 |
[104] | Boyce S D, Hornig J F. Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid[J]. Environmental Science & Technology, 1983, 17(4): 202-211. |
[105] | Zhai H Y, Zhang X R. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination[J]. Environmental Science & Technology, 2011, 45(6): 2194-2201. |
[106] | Li R A, Mcdonald J A, Sathasivan A, et al. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: A systematic review[J]. Water Research, 2019, 153: 335-348. DOI:10.1016/j.watres.2019.01.020 |
[107] | Postigo C, Emiliano P, Barceló D, et al. Chemical characterization and relative toxicity assessment of disinfection byproduct mixtures in a large drinking water supply network[J]. Journal of Hazardous Materials, 2018, 359: 166-173. DOI:10.1016/j.jhazmat.2018.07.022 |
[108] |
张小璐, 杨宏伟, 王小璐, 等. 消毒副产物生成的温度影响和动力学模型[J]. 环境科学, 2012, 33(11): 4046-4051. Zhang X L, Yang H W, Wang X M, et al. Formation of disinfection by-products: Temperature effect and kinetic modeling[J]. Environmental Science, 2012, 33(11): 4046-4051. |
[109] | Bayo J, Angosto J M, Gómez-López M D. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination-dechlorination process[J]. Journal of Hazardous Materials, 2009, 172(1): 166-171. DOI:10.1016/j.jhazmat.2009.06.157 |
[110] | Huang H, Wu Q Y, Tang X, et al. Formation of haloacetonitriles and haloacetamides and their precursors during chlorination of secondary effluents[J]. Chemosphere, 2016, 144: 297-303. DOI:10.1016/j.chemosphere.2015.08.082 |
[111] | Reckhow D A, Singer P C, Malcolm R L. Chlorination of humic materials: byproduct formation and chemical interpretations[J]. Environmental Science & Technology, 1990, 24(11): 1655-1664. |
[112] | Ding S K, Chu W H, Krasner S W, et al. The stability of chlorinated, brominated, and iodinated haloacetamides in drinking water[J]. Water Research, 2018, 142: 490-500. DOI:10.1016/j.watres.2018.06.024 |
[113] | Kristiana I, Lethorn A, Joll C, et al. To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples[J]. Water Research, 2014, 59: 90-98. DOI:10.1016/j.watres.2014.04.006 |
[114] | Berne F, Chasson G, Legube B. Effect of addition of ammonia on thebromate formation during ozonation[J]. Ozone: Science & Engineering, 2004, 26(3): 267-276. |
[115] | Pinkernell U, Von Gunten U. Bromate minimization during ozonation: mechanistic considerations[J]. Environmental Science & Technology, 2001, 35(12): 2525-2531. |
[116] | Heeb M B, Kristiana I, Trogolo D, et al. Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment[J]. Water Research, 2017, 110: 91-101. DOI:10.1016/j.watres.2016.11.065 |
[117] | Cemeli E, Wagner E D, Anderson D, et al. Modulation of the cytotoxicity and genotoxicity of the drinking water disinfection byproduct iodoacetic acid by suppressors of oxidative stress[J]. Environmental Science & Technology, 2006, 40(6): 1878-1883. |
[118] | Le Roux J, Gallard H, Croué J P. Formation of NDMA and halogenated DBPs by chloramination of tertiary amines: the influence of bromide ion[J]. Environmental Science & Technology, 2012, 46(3): 1581-1589. |
[119] | Xue S, Jin W, Zhang Z H, et al. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter[J]. Chemosphere, 2017, 179: 395-404. DOI:10.1016/j.chemosphere.2017.02.106 |
[120] | Luo Y L, Guo W S, Ngo H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473-474: 619-641. DOI:10.1016/j.scitotenv.2013.12.065 |
[121] | Peng J D, Huang H, Zhong Y, et al. Transformation of dissolved organic matter during biological wastewater treatment and relationships with the formation of nitrogenous disinfection byproducts[J]. Water Research, 2022, 222. DOI:10.1016/j.watres.2022.118870 |
[122] | Han Q, Yan H, Zhang F, et al. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for biotreated municipal wastewater: Molecular weight, hydrophobicity/hydrophily and fluorescence[J]. Journal of Hazardous Materials, 2015, 297: 119-126. DOI:10.1016/j.jhazmat.2015.04.070 |
[123] | Xue S, Zhao Q L, Wei L L, et al. Reduction of dissolved organic matter in secondary municipal effluents by enhanced coagulation[J]. Environmental Progress & Sustainable Energy, 2015, 34(3): 751-760. |
[124] | Liu Y C, Duan J M, Li W, et al. Effects of organic matter removal from a wastewater secondary effluent by aluminum sulfate coagulation on haloacetic acids formation[J]. Environmental Engineering Science, 2016, 33(7): 484-493. DOI:10.1089/ees.2015.0446 |
[125] | Luo Y Y, Liu C, Li C C, et al. Transformation mechanism and fate of dissolved organic nitrogen(DON)in a full-scale drinking water treatment[J]. Journal of Environmental Sciences, 2022, 121: 122-135. DOI:10.1016/j.jes.2021.09.007 |
[126] | Bellona C, Drewes J E, Xu P, et al. Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review[J]. Water Research, 2004, 38(12): 2795-2809. DOI:10.1016/j.watres.2004.03.034 |
[127] |
高玉婷, 陈文兵, 温明铎, 等. 纳滤/反渗透技术去除水中含氮消毒副产物的研究进展[J]. 工业用水与废水, 2021, 52(2): 6-10. Gao Y T, Chen W B, Wen M D, et al. Research progress of nanofiltration-reverse osmosis technology removing nitrogenous disinfection by-products in water[J]. Industrial Water & Wastewater, 2021, 52(2): 6-10. |
[128] | Zeng T, Plewa M J, Mitch W A. N-nitrosamines and halogenated disinfection byproducts in U.S.full advanced treatment trains for potable reuse[J]. Water Research, 2016, 101: 176-186. DOI:10.1016/j.watres.2016.03.062 |
[129] | Liu J L, Li X Y. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies[J]. Environmental Technology, 2015, 36(6): 722-731. DOI:10.1080/09593330.2014.960473 |
[130] |
刘冰, 郑煜铭, 古励, 等. 强化混凝和改性活性炭对二级出水DON的作用机制[J]. 中国环境科学, 2018, 38(1): 136-149. Liu B, Zheng Y M, Gu L, et al. Mechanism of enhanced coagulation and modified activated carbon on DON in the secondary effluent[J]. China Environmental Science, 2018, 38(1): 136-149. |
[131] | Belhamdi B, Merzougui Z, Laksaci H, et al. Removal of dissolved organic nitrogen amino acid from aqueous solutions using activated carbon based on date pits[J]. Water Practice and Technology, 2020, 15(4): 1158-1173. DOI:10.2166/wpt.2020.089 |
[132] | Erdem C U, Ateia M, Liu C, et al. Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116146 |
[133] | Humbert H, Gallard H, Suty H, et al. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon(PAC)[J]. Water Research, 2008, 42(6-7): 1635-1643. DOI:10.1016/j.watres.2007.10.012 |
[134] | Sgroi M, Vagliasindi F G A, Snyder S A, et al. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal[J]. Chemosphere, 2018, 191: 685-703. DOI:10.1016/j.chemosphere.2017.10.089 |
[135] | Michael-Kordatou I, Michael C, Duan X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications[J]. Water Research, 2015, 77: 213-248. DOI:10.1016/j.watres.2015.03.011 |
[136] | Ike I A, Lee Y, Hur J. Impacts of advanced oxidation processes on disinfection byproducts from dissolved organic matter upon postchlor(am)ination: A critical review[J]. Chemical Engineering Journal, 2019, 375. DOI:10.1016/j.cej.2019.121929 |
[137] | Miklos D B, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment-A critical review[J]. Water Research, 2018, 139: 118-131. DOI:10.1016/j.watres.2018.03.042 |
[138] | Xie P C, Ma J, Fang J Y, et al. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation[J]. Environmental Science & Technology, 2013, 47(24): 14051-14061. |
[139] | Li Y, Zhang X R, Yang M T, et al. Three-step effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity[J]. Chemosphere, 2017, 168: 1302-1308. DOI:10.1016/j.chemosphere.2016.11.137 |
[140] | Li Y, Yang M T, Zhang X R, et al. Two-step chlorination: A new approach to disinfection of a primary sewage effluent[J]. Water Research, 2017, 108: 339-347. DOI:10.1016/j.watres.2016.11.019 |
[141] | GB 18919-2002, 城市污水再生利用分类[S]. |
[142] | Yang Y L, Lu J L, Yu H K, et al. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands[J]. Ecological Engineering, 2016, 93: 262-268. DOI:10.1016/j.ecoleng.2016.05.022 |
[143] | Chen Y, Wen Y, Zhou J W, et al. Transformation of chloroform in model treatment wetlands: from mass balance to microbial analysis[J]. Environmental Science & Technology, 2015, 49(10): 6198-6205. |
[144] | Zhang Y Q, Xiao Y J, Zhang Y C, et al. UV direct photolysis of halogenated disinfection byproducts: Experimental study and QSAR modeling[J]. Chemosphere, 2019, 235: 719-725. DOI:10.1016/j.chemosphere.2019.06.167 |
[145] | Lv X T, Zhang X, Du Y, et al. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water[J]. Water Research, 2017, 125: 162-169. DOI:10.1016/j.watres.2017.08.043 |
[146] | Wu Q Y, Li C, Du Y, et al. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation[J]. Water Research, 2016, 95: 260-267. DOI:10.1016/j.watres.2016.02.023 |
[147] | Du Y, Zhang X, Li C, et al. Transformation of DON in reclaimed water under solar light irradiation leads to decreased haloacetamide formation potential during chloramination[J]. Journal of Hazardous Materials, 2017, 340: 319-325. DOI:10.1016/j.jhazmat.2017.07.017 |