环境科学  2023, Vol. 44 Issue (11): 6399-6411   PDF    
粪肥施用对抗生素在土壤上吸附的影响
罗珊1,2, 胡锦昇3, 唐翔宇2,3, 耿春女1, 程建华2     
1. 上海应用技术大学生态技术与工程学院, 上海 201418;
2. 浙江农林大学林业与生物技术学院, 杭州 311300;
3. 中国科学院、水利部成都山地灾害与环境研究所, 成都 610041
摘要: 磺胺类抗生素和氟苯尼考(FFC)是浙江省普遍使用的抗生素,在土壤上吸附弱而易于迁移,存在较高的环境风险.近年来,粪源抗生素对农田土壤潜在风险的研究多是在实验室条件下添加粪肥的方式进行,无法评估自然施肥状态下抗生素的污染风险.因此以浙江省长期施用不同肥料(鸡粪、猪粪和化肥)的5种旱地农田土壤[临安(LA)、嘉善(JS)、龙游(LY)、开化(KH)和金华(JH)]为对象,选用4种常用的抗生素[磺胺嘧啶(SD)、磺胺二甲基嘧啶(SMT)、磺胺甲基异噁唑(SMZ)和FFC],进行批量平衡实验,探究土壤不同类型和粪肥类型对抗生素在土壤中吸附的影响.结果表明,4种抗生素在实验土壤中的吸附都较弱,吸附次序为:SMT(1.44~13.23 mg1-(1/n·L1/n·kg-1)>SMZ(0.73~6.05 mg1-(1/n·L1/n·kg-1)>SD(0.16~5.57 mg1-(1/n·L1/n·kg-1)>FFC(0.27~3.81 mg1-(1/n·L1/n·kg-1).Freundlich模型对SD、SMT和FFC的等温吸附拟合效果优于线性模型,其中SD和FFC属于"S "型吸附,SMT属于" L"型吸附;SMZ的线性模型的拟合效果优于Freundlich模型.总有机碳(TOC)和溶解性有机碳(DOC)含量能较好地预测4种抗生素的吸附容量(r为0.548~0.808),阳离子交换量(CEC)和电导率(EC)能较好地预测SMT和FFC的吸附容量(r为0.758~0.841).与施用化肥相比,粪肥施用会提高酸性和中性土壤的TOC、DOC、CEC和EC的值而有利于抗生素在土壤上的吸附,但同时会增加土壤pH而不利于抗生素在土壤上的吸附;粪肥施用会降低碱性土壤TOC、DOC、CEC、EC和pH的值,pH降低有利于抗生素在土壤上的吸附,但TOC、DOC、CEC和EC值的降低则不利于抗生素在土壤上的吸附.对于肥力低的酸性土壤,施用粪肥后因增加了土壤肥力从而增加了抗生素在土壤上的吸附,如LA点施用鸡粪的土壤、LY(1)点施用猪粪的土壤和JH点施用鸡粪和猪粪的土壤;但是对于肥力高的酸性和中性土壤,施用粪肥因增加了土壤pH而显著降低了抗生素在土壤上的吸附,如JS点分别施用鸡粪和猪粪的土壤和LY(2)点施用鸡粪的土壤.对于肥力和pH均高的石灰土(如KH土壤),施用粪肥后4种抗生素在土壤上吸附变化呈现多样性:施用鸡粪和猪粪后显著增加了SD的吸附容量,而显著降低了SMT和SMZ的吸附容量,施用鸡粪后显著降低了FFC的吸附容量.因此,根据土壤的肥力状况和pH进行粪肥施用,能有效地控制粪源抗生素的环境风险.
关键词: 磺胺类抗生素      氟苯尼考(FFC)      批量平衡实验      吸附容量      鸡粪      猪粪     
Effect of Manure Application on the Adsorption of Antibiotics to Soil
LUO Shan1,2 , HU Jin-sheng3 , TANG Xiang-yu2,3 , GENG Chun-nü1 , CHENG Jian-hua2     
1. School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
2. College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
Abstract: Sulfonamide antibiotics and florfenicol(FFC) are commonly used antibiotics in Zhejiang Province. They have weak adsorption on soil and are easy to migrate, with high environmental risks. In recent years, most of the studies on the potential risk of fecal-derived antibiotics to farmland soil were conducted by adding manure under laboratory conditions; therefore, it is impossible to assess the risk of antibiotic pollution under natural fertilization. Therefore, batch balance experiments were conducted to explore the effects of different soil types and manure types on the adsorption of antibiotics in the soil, in which five types of dryland farmland soils[Lin'an(LA), Jiashan(JS), Longyou(LY), Kaihua(KH), and Jinhua(JH)]in Zhejiang Province that have been used with different fertilizers(chicken manure, pig manure, and chemical fertilizer) for a long time were chosen, and four types of commonly used antibiotics[sulfadiazine(SD), sulfamethazine(SMT), sulfamethoxazole(SMZ), and FFC]were selected. The results showed that the adsorption of the four antibiotics in the experimental soil was weak, and the adsorption capacity decreased in the order of: SMT(1.44-13.23 mg1-(1/n)·L1/n·kg-1)>SMZ(0.73-6.05 mg1-(1/n)·L1/n·kg-1)>SD(0.16-5.57 mg1-(1/n)·L1/n·kg-1)>FFC(0.27-3.81 mg1-(1/n)·L1/n·kg-1). The Freundlich model was superior to the linear model in fitting the isotherm adsorption of SD, SMT, and FFC, in which SD and FFC belonged to "S" type adsorption, and SMT belonged to "L" type adsorption. For SMZ, the fitting effect of the linear model was better than that of the Freundlich model. The contents of total organic carbon(TOC) and dissolved organic carbon(DOC) could better predict the adsorption capacity of the four antibiotics(r=0.548-0.808), and the values of cation exchange capacity(CEC) and electrical conductivity(EC) could better predict the adsorption capacity of SMT and FFC(r=0.758-0.841). Compared with the application of chemical fertilizer, manure application increased the values of TOC, DOC, CEC, and EC in acidic and neutral soils, which was conducive to the adsorption of antibiotics on the soil. Meanwhile, manure application also increased pH in acidic and neutral soils, which was not conducive to the adsorption of antibiotics on the soil. In addition, manure application reduced the values of TOC, DOC, CEC, EC, and pH in alkaline soils. The lower pH was conducive to antibiotic adsorption on the soil, whereas the lower content of the other four was not conducive to antibiotic adsorption on the soil. For the acidic soil with low fertility, the application of manure increased soil fertility and thus increased the adsorption of antibiotics on the soil, such as the LA soil with chicken manure, the LY(1) soil with pig manure, and the JH soil with chicken manure and pig manure. However, for the acidic and neutral soils with high fertility, the application of manure had significantly increased soil pH and thus reduced the adsorption of antibiotics on the soil, such as the JS soil with chicken manure and pig manure and the LY(2) soil with chicken manure. For calcareous soil with high fertility and pH(such as KH soil), the adsorption profiles of the four types of antibiotics on the soil showed diversity after the application of manure: the adsorption capacity of SD increased significantly after the application of chicken manure and pig manure, whereas the adsorption capacity of SMT and SMZ decreased significantly, and the adsorption capacity of FFC declined significantly after the application of chicken manure. Therefore, manure application according to soil fertility could effectively control the environmental risk of fecal antibiotics.
Key words: sulfonamide antibiotics      florfenicol(FFC)      batch balance experiments      adsorption capacity      chicken manure      pig manure     

抗生素因在治疗疾病、保护动物健康等方面具有良好的效果而被广泛使用[1, 2].据估计, 中国2013年抗生素的使用量为16.2×104 t, 其中兽用抗生素占52%, 猪和鸡是中国使用抗生素最多的两类动物[3].动物肠道对抗生素的吸收能力弱, 摄入的抗生素大部分会随着畜禽粪便排出体外[4].在我国, 畜禽粪便常经堆肥处理后作为肥料施入农田[5], 故畜禽粪便已被认为是各种环境介质中抗生素污染的主要来源[6, 7].在长江三角洲等地养殖场中的畜禽粪便和养殖场附近土壤中检测出四环素类、喹诺酮类和磺胺类等抗生素[8, 9]; 在山东和宁夏多个粪肥施用的农田土壤和蔬菜中普遍检测到四环素类、喹诺酮类、氟苯尼考(florfenicol, FFC)和磺胺类抗生素残留[10, 11]; 我国多地地表水和地下水中检测到较高浓度的FFC和磺胺类抗生素[12, 13].

抗生素在土壤中的吸附与土壤性质密切相关.磺胺类抗生素在农田土壤中的吸附能力与土壤pH、总有机碳(total organic carbon, TOC)和黏土组分密切相关, 在较高的有机碳、较高的黏粒含量、较低的pH值和离子强度中等时, 吸附能力较强[14].磺胺二甲基嘧啶(sulfamethazine, SMT)和磺胺氯哒嗪在加利西亚土壤中的吸附与土壤有机质含量、黏粒含量和阳离子交换量(cation exchange capacity, CEC)呈显著正相关[15].强力霉素的吸附主要取决于土壤有机质含量、CEC和黏粒含量[16].氟喹诺酮类抗生素在土壤中的吸附主要由有机质含量和CEC决定[17].

浙江省畜禽养殖业发达, 2019年畜禽粪便排放总量达1 438.5×104 t[18], 其中以杭州、嘉兴和衢州三地最高[19].磺胺类、四环素类、氟喹诺酮和氯霉素类抗生素是浙江省畜禽养殖中普遍使用的抗生素, 在畜禽粪便中均有检出[20, 21].FFC因具有良好的抗菌活性和较少的不良反应[22], 是一种广泛使用的兽药抗生素.吸附和解吸实验表明, 磺胺类药物和FFC在土壤中吸附较弱, 易于通过地表径流和地下水迁移而从土壤中流失[23~25].尽管四环素类抗生素在粪肥施用农田中检出率较高, 但在土壤中吸附能力较强而迁移能力较弱, 在深层土壤中检出率较低[26, 27].近年来国内外在施用粪肥农田土壤中抗生素的污染方面研究取得了较大进展, 有研究表明粪肥可通过影响土壤性质[28, 29], 进而影响抗生素的吸附和降解; Kim等[30]研究表明含有磺胺类抗生素残留的粪肥施用到土壤一段时间后, 在表层土壤中未检出磺胺类抗生素.然而, 以上研究中粪肥多是在实验室条件下添加, 人为添加的粪肥与土壤之间作用时间短, 粪肥的分解和腐殖化过程对抗生素吸附的影响难以观察到, 因此获得的实验数据往往与田间实际施肥情景差异很大, 无法评估自然施肥状态下抗生素的污染风险.因此本研究以自然条件下浙江省长期施肥的5种旱地农田土壤(土壤类型有2种红壤, 黄壤、石灰土和潮土各1种, 每种土壤分化肥、鸡粪和猪粪3种施肥类型)为对象, 选用4种常用且吸附性较弱的抗生素[SD(磺胺嘧啶, sulfadiazine)、SMT、SMZ(磺胺甲基异唑, sulfamethoxazole)和FFC], 进行批量平衡实验, 探究土壤性质和粪肥施用对土壤中抗生素吸附的影响, 以期为粪肥施用农田土壤中抗生素污染治理提供参考.

1 材料与方法 1.1 材料与仪器标准品

磺胺嘧啶(SD, 纯度≥98%)、磺胺二甲基嘧啶(SMT, 纯度≥99%)、磺胺甲基异唑(SMZ, 纯度≥98%)和氟苯尼考(FFC, 纯度≥98%)购自浙江卡尔生物技术公司(基本性质见表 1).甲醇和乙腈均为色谱纯; CaCl2和NaN3均为分析纯, 实验用水为超纯水.

高效液相色谱仪配紫外检测器(Agilent 1260, 美国Agilent公司); Poroshell 120 EC-C18色谱柱(2.7 μm, 3.0×150 mm); 总有机碳氮分析仪(Analytikjena, 德国, MULTIN/C2100).

1.2 供试土壤

供试土壤取自浙江省的5个城市, 分别为临安(LA)、嘉善(JS)、龙游(LY)、开化(KH)和金华(JH); 每个地点分别选择3种施肥类型的土壤, 即化肥(chemical fertilizer, CF)、鸡粪(chicken manure, CM)和猪粪(pig manure, PM), 因嘉善取样地未取到猪粪旱地土, 故采集施用羊粪土替代施用猪粪土; 龙游在同一取样地未能同时采集到3种施肥类型的土壤, 因此在两个地点分别采集施用猪粪土、施用化肥土(1)和施用鸡粪土、施用化肥土(2).每个地点采集0~20 cm耕作层土壤, 供试土壤合计16个, 风干过2 mm筛.16个供试土壤均未检测出表 1中的4种目标抗生素, 土壤的基本理化性质见表 2.

表 1 抗生素的基本理化性质 Table 1 Basic physicochemical properties of antibiotics

表 2 土壤的基本理化性质1) Table 2 Basic physical and chemical properties of soil

1.3 批量平衡吸附实验

准确称取1.0 g供试土样于离心管中, 分别加入10.0 mL初始浓度为1.0、5.0、10.0、15.0、20.0和50.0 mg·L-1的抗生素溶液(同时含10 mmol·L-1 CaCl2、0.1 g·L-1 NaN3; 每个浓度设3个平行), 于25℃、250 r·min-1恒温振荡24 h, 随后在4 000 r·min-1转速下离心10 min, 取上清液经0.22 μm PTFE滤膜过滤并测定抗生素浓度.

1.4 检测方法

土壤pH和EC采用水土比5:1, 180 r·min-1振荡30 min, 随后静置30 min, 将pH计和电导率仪放入上清液测定.土壤TOC采用高温外热重铬酸钾氧化-亚铁滴定法测定.CEC采用三氯化六氨合钴浸提-分光光度法进行测定(中华人民共和国国家环境保护标准HJ 889-2017).溶解性有机碳(dissolved organic carbon, DOC)测定方法:称取1.0 g土壤样品, 加入10 mL含10 mmol·L-1CaCl2、0.1 g·L-1 NaN3的溶液, 于25℃、180 r·min-1条件下振荡16 h后, 超声30 min, 4 000 r·min-1离心10 min, 取上清液过0.45 μm PTFE滤膜后采用总有机碳氮分析仪测定DOC浓度[31].

4种抗生素采用高效液相色谱同时检测, 流动相:乙腈/水(22/78, 体积比), 流速0.3 mL·min-1; 色谱柱:柱温30℃, 磺胺类抗生素检测波长270 nm; FFC检测波长224 nm; 甲醇清洗针后进样20 μL.保留时间:SD、SMT、SMZ和FFC分别为3.7、5.4、9.1和10.1 min, 4种抗生素检测限均为0.05 mg·L-1, 标准曲线的线性范围为0.5~50 mg·L-1(R2≥0.999).

1.5 数据处理

本文采用Freundlich与线性模型描述抗生素在土壤中吸附量(Qe, mg·kg-1)与溶液中平衡浓度(ce, mg·L-1)之间的关系.

1.5.1 Freundlich模型
(1)

式中, Kf为吸附容量常数(mg1-(1/n)·L1/n·kg-1); 1/n为吸附强度. Freundlich模型常用来描述非线性、非均质吸附行为, 假设吸附发生在异质性表面且呈多层吸附.

1.5.2 线性模型
(2)

式中, Kd为两相分配系数(L·kg-1).线性模型认为吸附质的吸附是简单的两相分配, 与吸附剂的浓度无关, 其吸附能力的大小与有机质的含量呈正相关.

采用ChemDraw20.0绘制4种抗生素的分子结构图; 利用Canoco5进行4种抗生素吸附容量(Kf值)和土壤性质的冗余分析(redundancy analysis, RDA); 在Pearson相关分析的基础上, 选择土壤性质与抗生素吸附容量最相关的组合, 利用Origin2021绘制拟合图(95%预测区间)和不同pH下4种抗生素的离子形态分布图; 用SPSS V22.0进行土壤类型和施肥类型对抗生素吸附容量的双因素方差分析.

2 结果与讨论 2.1 土壤类型和施肥类型对土壤性质的影响

本研究选取了5个地点, 每个地点分别选取3种施肥类型的土壤, 共采集16个土壤样品.施肥类型会影响土壤的化学性质, 如pH、EC和CEC、TOC、DOC的含量.由表 2可见, 除了KH点的石灰土, 其他4个采样点的土壤, 长期施用化肥后, 土壤的pH均小于7; 粪肥(鸡粪、猪粪和羊粪)的施用增加了这4个地点的土壤pH, 但是降低了KH点土壤的pH, 这说明粪肥是有效的土壤pH调节剂.LY(1)、LY(2)和JH点土壤为红壤, 施用化肥的土壤pH偏酸性, 施用粪肥后土壤pH增加, 但仍为酸性; LA点土壤为黄壤, 施用化肥的土壤pH偏酸性, 施用粪肥后土壤pH增加, 为碱性; JS点土壤为潮土, 施用化肥的土壤pH为中性, 施用粪肥后土壤pH增加较明显, 为碱性; KH点土壤为石灰土, 施用化肥的土壤pH为碱性, 施用粪肥后土壤pH降低, 为酸性.

此外, 与土壤pH一样, 长期施用粪肥(鸡粪、猪粪和羊粪)提高了其他4个采样点土壤的TOC、DOC、CEC和EC的值(表 2), 但是反而降低KH点的石灰土壤的TOC、DOC、CEC和EC的值.对16个土壤样品的理化性质进行相关性分析, 结果显示(图 1):土壤pH与EC相关关系不显著, 但是受到DOC、TOC和CEC的强烈影响, 与DOC含量呈显著正相关(r为0.444), 与TOC和CEC呈极显著正相关(r为0.455和0.701); TOC、DOC、CEC和EC, 两两之间呈极显著正相关(图 1, r为0.670~0.893).

*表示显著水平(P < 0.05), **表示极显著水平(P < 0.01) 图 1 土壤理化性质的相关性分析热图 Fig. 1 Correlation analysis heat map of soil physical and chemical properties

2.2 抗生素的等温吸附特征

4种抗生素的吸附等温线如图 2所示. Freundlich模型和线性模型对4种抗生素的吸附均有较好的拟合结果(表 3), 相关系数R2分别在0.962~1.000和0.872~1.00之间, 均达到极显著水平(P < 0.01). SD和FFC的拟合指数1/n在0.8~1.91和0.87~1.47之间, 均以1/n>1为主, 属于“S”型吸附, 吸附趋势随抗生素浓度的升高而增加, 在低浓度下, 溶质更容易被吸附, 表明吸附剂表面的吸附质分子可以促进吸附[32]; SMT的1/n在0.69~1.15之间, 以1/n < 1为主, 属于“L”型吸附, 吸附趋势随着抗生素浓度的增加而降低, 随着吸附剂中吸附位点被覆盖, 吸附质分子与表面吸附位点的碰撞变得更加困难[33]; SMZ的1/n在0.87~1.41之间, 以1/n≈1为主, 吸附趋势随着抗生素浓度的增加而不变, 可以从线性模型的拟合效果优于Freundlich模型得到证实. 4种抗生素的KfKd值均较低, 分别介于0.16~13.23 mg1-(1/n)·L1/n·kg-1和0.98~7.36 L·mg-1之间, 表明4种抗生素在土壤中的吸附能力较弱, 在土壤中具有很高的迁移性倾向.任美等[34, 35]研究也显示磺胺类抗生素和FFC在土壤上的吸附系数较低.

图 2 4种抗生素在5个取样点的吸附等温线 Fig. 2 Adsorption isotherms of four antibiotics in five sampling sites

表 3 4种抗生素的等温吸附模型拟合参数1) Table 3 Isothermal adsorption model fitting parameters of four antibiotics

表 3中显示了4种抗生素在试验土壤间的吸附差异.SMT的吸附容量Kf(1.44~13.23 mg1-(1/n)·L1/n·kg-1)值较高, 吸附较强; 其次是SMZ(0.73~6.05 mg1-(1/n)·L1/n·kg-1), 然后是SD(0.16~5.57 mg1-(1/n)·L1/n·kg-1), 最低为FFC(0.27~3.81 mg1-(1/n)·L1/n·kg-1).抗生素间吸附存在差异与抗生素自身理化性质有关, 主要受抗生素分子结构的影响.Zhao等[36]研究表明磺胺类抗生素的吸附差异受不同取代基的疏水性影响.根据lgKow, 本研究中4种抗生素的疏水性大小次序为:SMZ>SD>SMT>FFC, 除了SMT外, 其余3种抗生素的吸附容量Kf与疏水性次序一致, SMT的吸附可能还受其他因素的影响.伊丽丽等[37]研究也表明, 抗生素自身性质的不同是影响四环素类、氟喹诺酮类和磺胺类抗生素在剖面土壤中吸附差异的关键因素.

2.3 土壤性质和抗生素吸附容量

施肥类型会影响土壤的理化性质(图 1), 从而影响抗生素在土壤上的吸附.对4种抗生素吸附容量(Kf值)和土壤性质进行冗余分析(redundancy analysis, RDA, 图 3), 双轴的解释度为78.03%~79.27%.影响抗生素在土壤上的吸附主要有3个因素:土壤pH、土壤有机质的含量和背景离子浓度.

图 3 4种目标抗生素吸附容量与土壤性质的冗余分析 Fig. 3 Redundancy analysis between adsorption capacity of the four target antibiotics and soil properties

首先, 土壤pH的影响. pH对抗生素吸附的影响, 因抗生素种类而异, 与SMZ的吸附无关, 与SD、SMT和FFC弱相关(图 3).磺胺类抗生素是两性化合物, 具有两个相关的可电离基团[38].在不同的pH条件下, 磺胺类抗生素存在不同的形态, 当pH < pKa1时, 主要以阳离子形态存在(图 4); 当pKa1 < pH < pKa2时, 主要以中性分子形态存在; 当pH>pKa2时, 主要以阴离子形态存在[39].磺胺类不同形态在土壤上的吸附次序为:阳离子>中性分子>阴离子.阳离子与土壤的阳离子发生交换作用而吸附在土壤上[40, 41], 中性分子与土壤有机质发生疏水性分配作用而吸附在土壤有机质上[30, 42], 阴离子因与土壤表面负电荷发生静电相斥作用而不易吸附在土壤表面[23].在供试土壤pH值(4.58~8.08)范围内, 3种磺胺类(SD、SMT和SMZ)主要以中性分子和阴离子形态(两者加起来超过99%)存在, 阳离子含量 < 1%(图 4).FFC是一种弱酸(pKa=9.0), 在pH < 9时, 以中性分子存在; 在pH>9时, 以阴离子形态存在[33].在供试土壤pH值(4.58~8.08)范围内, FFC主要以中性分子存在, 而阴离子含量低于11%.FFC含有C=O和—OH基团, 可通过C=O的O原子和土壤上—OH基团的H原子之间形成分子间氢键而吸附在土壤上[43].

+表示阳离子, 0表示中性分子, -表示阴离子 图 4 不同pH下4种抗生素的离子形态分布 Fig. 4 Ion morphology distribution of four antibiotics under different pH conditions

其次, 是土壤有机质的含量.利用抗生素的吸附容量(表 3)和土壤性质(表 2)进行RDA和Pearson相关分析, RDA显示4种抗生素的吸附与土壤TOC和DOC的含量成正相关(图 3).TOC和DOC含量, 能较好地预测4种抗生素的吸附容量(图 5), 其中TOC比DOC能更好地预测SD[Kf(SD)=0.307+0.077×TOC, R2=0.274; Kf(SD)=0.515+2.811×DOC, R2=0.265]和SMT[Kf(SMT)=-0.872+0.242×TOC, R2=0.653; Kf(SMT)=0.058+8.310×DOC, R2=0.560]的吸附容量; DOC比TOC能更好地预测SMZ[Kf(SMZ)=1.732+2.967×DOC, R2=0.301; Kf(SMZ)=1.726+0.072×TOC, R2=0.241]和FFC[Kf(FFC)=-0.061+2.426×DOC, R2=0.579; Kf(FFC)=-0.176+0.064×TOC, R2=0.546]的吸附容量.当抗生素以中性分子形态存在时, 与有机物的疏水分配作用占主导地位[44], 这与前人研究的结果相同.Lin等[45]研究表明与有机物的疏水分配作用是SD中性分子吸附的主要机制.当SMZ以中性分子存在时, 优先与土壤有机质相互作用[25].有研究表明土壤TOC含量与抗生素的吸附密切相关[46, 47], TOC含量增加可增强磺胺类抗生素在土壤上的吸附[48].Hu等[14]研究表明TOC含量较高的土壤对SD和SMZ的吸附更强.郭欣妍等[42]研究表明土壤有机质含量增加时, SMT和磺胺氯哒嗪吸附增强.本研究中, TOC比DOC能更好地预测SD和SMT, 这是因为与SMZ相比, 在同样的土壤pH下, SD和SMT的阳离子和中性离子的含量更高, 它们分别通过阳离子交换和疏水性分配作用而吸附在土壤上, 可能更多地与土壤颗粒上的有机质而不是土壤溶液中的有机质发生作用.

图 5 土壤性质与抗生素吸附容量拟合 Fig. 5 Fitted plots of soil properties and antibiotic adsorption capacity

第三, SMT和FFC的吸附还与土壤CEC和EC值正相关(图 3).CEC比EC能更好地预测SMT吸附容量[Kf(SMT)=0.701+0.272×CEC, R2=0.707; Kf(SMT)=2.394+0.014×EC, R2=0.574; 图 5]; EC比CEC能更好地预测FFC吸附容量[Kf(FFC)=0.589+0.004×EC, R2=0.656; Kf(FFC)=0.237+0.072×CEC, R2=0.593; 图 5].当背景离子增加时, Ca2+等阳离子可取代H+离子与磺胺类抗生素阴离子形成带有一个正电荷的配合物, 对土壤表面的负电荷具有较强的静电亲和力[49, 50].Tang等[51]研究表明SMZ的吸附能力与土壤CEC和EC呈正相关, 土壤CEC值较高时对磺胺类抗生素吸附亦较高[52].毛真等[53]研究也表明, 土壤中加入Zn2+和Ca2+可使SMZ吸附增大, 这可能是受到阳离子交换或阳离子桥效应的影响.

2.4 土壤类型和施肥类型对抗生素吸附容量的影响

双因素方差分析显示, 土壤类型、施肥类型和土壤类型与施肥类型的交互作用显著影响4种抗生素在土壤上的吸附容量(表 4).在施用化肥的处理中, 6种土壤对SD的吸附次序为:JS>LY(2)=JH>LA>LY(1)>KH, 对SMT的吸附次序为:JS>LY(2)=KH>LA=LY(1)=JH, 对SMZ的吸附次序为:LA=KH>JS=LY(2)>LY(1)>JH, 对FFC的吸附次序为:JS=LY(2)=KH=LA=LY(1)>JH.4种抗生素在6个土壤上的吸附呈现多样性, 这与6个土壤不同的土壤类型、pH、有机质的含量和背景离子浓度差异较大有关.3种抗生素(SD、SMT和FFC)在JS土壤上的吸附比其他5种土壤高, 这是因为该土壤的DOC、TOC、CEC和EC均较高, pH为中性, 有利于抗生素在土壤上吸附.3种抗生素(SMT、SMZ和FFC)在JH土壤上的吸附比其他5种土壤低, 这是因为该土壤的DOC、TOC、CEC和EC均较低, 不利于抗生素在土壤上吸附.

表 4 土壤类型和施肥类型对吸附容量的双因素方差分析 Table 4 Two-way ANOVA of soil type and fertilization type on adsorption capacity

施用粪肥对抗生素吸附的影响, 因土壤类型和粪肥类型而异(图 6).LA点施用鸡粪的土壤、LY(1)点施用猪粪的土壤、JH点施用鸡粪和猪粪的土壤, 对4种抗生素的吸附均显著高于施用化肥的土壤.LA、LY(1)和JH点土壤, 属于黄壤和红壤, 本身比较贫瘠, 施用化肥后土壤肥力改善不明显, TOC、DOC、CEC和EC值并不高, 施用粪肥后土壤中的TOC、DOC、CEC和EC明显高于施用化肥的土壤(表 2), 而高的TOC、DOC、CEC和EC有利于抗生素在土壤上的吸附.DOC是溶解性有机质(dissolved organic matter, DOM)的主要组成成分, 常用来表征土壤DOM的含量[54].有研究表明粪肥DOM可影响抗生素在土壤中的吸附[55, 56].粪源DOM可通过络合作用与抗生素结合形成复合物, 一起吸附到土壤上.与土壤DOM相比, 粪肥DOM除了含有腐殖酸外, 还主要含有类蛋白物质[31, 57].鸡粪DOM的类蛋白物质主要是类色氨酸, 色氨酸是鸡粪DOM中影响抗生素吸附的主要成分[56].猪粪DOM的类蛋白物质主要是酪氨酸和色氨酸, 其中酪氨酸是与抗生素发生相互作用并促进其吸附的主要成分[31].腐殖酸含有的羧基、酚羟基、酮基和醛基等含氧官能团对抗生素具有化学性吸附能力[58].色氨酸和酪氨酸是具有强疏水侧链的疏水氨基酸, 可为抗生素提供疏水吸附位点[59].与腐殖酸相比, 色氨酸和酪氨酸具有更多的吸附位点和更高的结合强度[60], 通过C=C、C=O基团和—OH与抗生素结合[61], 对抗生素的吸附强于腐殖酸[62].这说明对于肥力低的土壤, 施用粪肥后, 增加了抗生素在土壤上的吸附, 降低了土壤溶液中抗生素的浓度, 从而降低了抗生素的环境风险.

不同小写字母表示相同施肥类型不同地点间吸附容量的比较(P < 0.05); 不同大写字母表示相同地点不同施肥类型间吸附容量的比较(P < 0.05) 图 6 4种目标抗生素的吸附容量比较 Fig. 6 Comparison of adsorption capacity of four target antibiotics

然而, 部分地点的土壤施用粪肥后, 反而降低了抗生素在土壤上的吸附.JS点和LY(2)点施用鸡粪的土壤, 对4种抗生素的吸附均显著低于施用化肥的土壤; JS点施用猪粪的土壤, 对3种抗生素(SD、SMT和SMZ)的吸附均显著低于施用化肥的土壤(图 6).JS(潮土)和LY(2)点(红壤)施用化肥的土壤, 本身DOC、TOC、CEC和EC值较高, 对3种抗生素(SD、SMT和FFC)的吸附显著高于其他几种土壤[LA、LY(1)、JH和KH], 对SMZ的吸附显著高于LY(1)和JH土壤.施用粪肥后, 虽然一定程度上增加了DOC、TOC、CEC和EC的值, 有利于抗生素在土壤上的吸附; 然而粪肥施用后同时增加了pH, 从而导致土壤溶液中抗生素的阴离子比例大幅增加, 并不利于抗生素的吸附, 如JS点施用猪粪后, SD的中性分子从29%降到2%, 而阴离子从71%增加到98%, SMT的中性分子从86%降到27%, 而阴离子从14%增加到73%.Boxall等[63]研究表明土壤中添加粪肥后pH值增加, 导致磺胺氯哒嗪在粪肥改良土壤中的吸附减少.在施用猪粪土壤中, SMZ的吸附随着pH的增加逐渐下降[49].Kahle等[64]研究也表明磺胺噻唑在粪肥中的吸附随着pH值的增加而降低.这说明对于肥力高的土壤, 施用粪肥后, 反而降低了抗生素在土壤上的吸附, 增加了土壤溶液中抗生素的浓度, 从而增加了抗生素的环境风险.因此, 对于肥力高的土壤, 需控制粪肥的施用量, 才能有效控制粪源抗生素的环境风险.

此外, KH土壤属于石灰土, 施用化肥的处理土壤本身DOC、TOC、CEC和EC的值比较高而利于抗生素吸附在土壤上, 但土壤pH偏高(7.96), 抗生素主要以阴离子形态存在于土壤溶液中, 而不利于抗生素吸附在土壤上.4种抗生素在KH土壤上的吸附次序为:SMT=SMZ>FFC>SD(表 3), 该土壤的pH下, SMT的中性分子和阴离子分别为33%和67%, SD的中性分子和阴离子分别为3%和97%(图 4), 由于中性分子比阴离子更容易吸附在土壤上, 因此对SMT的吸附高于SD.虽然SMZ的中性分子和阴离子分别为1%和99%(图 4), 阴离子含量最高, 不利于SMZ吸附在该土壤上, 但是本研究的4种目标抗生素中, SMZ的lgKow最大, 而KH土壤的TOC和DOC均较高, 有利于SMZ通过有机物的疏水分配作用而吸附在土壤上.因此, 与施用化肥相比, 施用粪肥后4种抗生素在该土壤上吸附变化呈现多样性.施用化肥的处理中, KH土壤对SD的吸附容量在6种土壤中最低; 因此施用鸡粪和猪粪后, KH土壤对SD的吸附容量显著增加.施用化肥的处理中, KH土壤对SMT、SMZ和FFC的吸附容量在6种土壤中排前2位, 施用鸡粪和猪粪后KH土壤对SMT和SMZ的吸附容量显著降低, 施用鸡粪后KH土壤对FFC的吸附容量显著降低.对于高肥力的石灰土, 施用粪肥对抗生素的吸附变化因抗生素种类而异, 因此施用前, 建议对粪肥中的抗生素种类进行检测.

3 结论

(1) 粪肥施用会影响土壤性质, 如pH、TOC、DOC、CEC和EC的值.粪肥是有效的土壤pH调节剂, 粪肥的施用会增加酸性土壤的pH(如红壤、黄壤和潮土), 降低碱性土壤的pH(如石灰土).土壤性质相互影响, 土壤pH与EC值无关, 与DOC含量呈显著正相关(r为0.444), 与TOC和CEC值呈极显著正相关(r为0.455~0.701); TOC、DOC、CEC和EC的值, 两两之间呈极显著正相关(r为0.670~0.893).

(2) 4种抗生素在试验土壤中的吸附都较弱, 吸附次序为:SMT(1.44~13.23 mg1-(1/n)·L1/n·kg-1)>SMZ(0.73~6.05 mg1-(1/n)·L1/n·kg-1)>SD(0.16~5.57 mg1-(1/n)·L1/n·kg-1)>FFC(0.27~3.81 mg1-(1/n)·L1/n·kg-1), 在土壤中具有很高的迁移性倾向.Freundlich模型对SD、SMT和FFC的等温吸附拟合效果优于线性模型, 其中SD和FFC属于“S”型吸附, SMT属于“L”型吸附.SMZ的线性模型的拟合效果优于Freundlich模型.

(3) 影响抗生素在土壤上的吸附主要有3个因素:土壤pH、土壤有机质的含量和背景离子浓度.其中, TOC和DOC含量能较好地预测4种抗生素的吸附容量(r为0.548~0.808), CEC和EC能较好地预测SMT和FFC的吸附容量(r为0.758~0.841).

(4) 施用粪肥对抗生素在土壤上吸附的影响, 因取样点土壤的肥力和pH而异.对于肥力低的酸性土壤, 施用粪肥显著提高了土壤中TOC、DOC、CEC和EC的值, 从而提高了这些土壤对抗生素的吸附, 如LA点施用鸡粪的土壤、LY(1)点施用猪粪的土壤、JH点施用鸡粪和猪粪的土壤.而对于肥力本来就高的酸性和中性土壤, 粪肥施用因增加了土壤pH而导致抗生素在土壤上的吸附反而降低, 如JS点施用鸡粪和猪粪的土壤、LY(2)点施用鸡粪的土壤.对于肥力和pH均高的石灰土(如KH土壤), 施用粪肥后4种抗生素在土壤上吸附变化呈现多样性:施用鸡粪和猪粪后显著增加了SD的吸附容量, 而显著降低了SMT和SMZ的吸附容量, 施用鸡粪后显著降低了FFC的吸附容量.

参考文献
[1] Shi H, Yang Y, Liu M, et al. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze estuary and nearby coastal areas[J]. Marine Pollution Bulletin, 2014, 83(1): 317-323. DOI:10.1016/j.marpolbul.2014.04.034
[2] Li S, Shi W Z, Li H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, South China[J]. Science of the Total Environment, 2018, 636: 1009-1019. DOI:10.1016/j.scitotenv.2018.04.358
[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[4] Gaballah M S, Guo J B, Sun H, et al. A review targeting veterinary antibiotics removal from livestock manure management systems and future outlook[J]. Bioresource Technology, 2021, 333. DOI:10.1016/j.biortech.2021.125069
[5] Quaik S, Embrandiri A, Ravindran B, et al. Veterinary antibiotics in animal manure and manure laden soil: scenario and challenges in Asian countries[J]. Journal of King Saud University - Science, 2020, 32(2): 1300-1305. DOI:10.1016/j.jksus.2019.11.015
[6] Zhu Y E, Miao J R, Wen H X, et al. The occurrence and spatial distribution of typical antibiotics in soils along the Fenhe River in Shanxi Province[J]. Journal of Soils and Sediments, 2020, 20(2): 889-899. DOI:10.1007/s11368-019-02402-7
[7] Lyu J, Yang L S, Zhang L, et al. Antibiotics in soil and water in China-a systematic review and source analysis[J]. Environmental Pollution, 2020, 266. DOI:10.1016/j.envpol.2020.115147
[8] Sun J T, Zeng Q T, Tsang D C W, et al. Antibiotics in the agricultural soils from the Yangtze River delta, China[J]. Chemosphere, 2017, 189: 301-308. DOI:10.1016/j.chemosphere.2017.09.040
[9] 沈聪, 张俊华, 刘吉利, 等. 宁夏养鸡场粪污和周边土壤中抗生素及抗生素抗性基因分布特征[J]. 环境科学, 2022, 43(8): 4166-4178.
Shen C, Zhang J H, Liu J L, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in manure and surrounding soil of poultry farm in Ningxia[J]. Environmental Science, 2022, 43(8): 4166-4178.
[10] Hanna N, Sun P, Sun Q, et al. Presence of antibiotic residues in various environmental compartments of Shandong Province in Eastern China: its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131-142. DOI:10.1016/j.envint.2018.02.003
[11] 张俊华, 陈睿华, 刘吉利, 等. 宁夏养牛场粪污和周边土壤中抗生素及抗生素抗性基因分布特征[J]. 环境科学, 2021, 42(6): 2981-2991.
Zhang J H, Chen R H, Liu J L, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in manure and surrounding soil of cattle farms in Ningxia[J]. Environmental Science, 2021, 42(6): 2981-2991.
[12] 李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073.
Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8): 4064-4073.
[13] Du J, Zhao H X, Liu S S, et al. Antibiotics in the coastal water of the south Yellow Sea in China: occurrence, distribution and ecological risks[J]. Science of the Total Environment, 2017, 595: 521-527. DOI:10.1016/j.scitotenv.2017.03.281
[14] Hu S Q, Zhang Y, Shen G X, et al. Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems[J]. Soil and Tillage Research, 2019, 186: 233-241. DOI:10.1016/j.still.2018.10.026
[15] Conde-Cid M, Nóvoa-Muñoz J C, Núñez-Delgado A, et al. Experimental data and modeling for sulfachloropyridazine and sulfamethazine adsorption/desorption on agricultural acid soils[J]. Microporous and Mesoporous Materials, 2019, 288. DOI:10.1016/j.micromeso.2019.109601
[16] Xu X Y, Ma W J, An B Y, et al. Adsorption/desorption and degradation of doxycycline in three agricultural soils[J]. Ecotoxicology and Environmental Safety, 2021, 224. DOI:10.1016/j.ecoenv.2021.112675
[17] Yang L, Wu L H, Liu W X, et al. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids[J]. Environmental Science and Pollution Research, 2018, 25(1): 104-114. DOI:10.1007/s11356-016-8062-6
[18] 应多, 陈晓龙, 吕桂华. 浙江省畜禽粪便产生量估算及替代化肥潜力[J]. 浙江农业科学, 2021, 62(12): 2506-2508.
Ying D, Chen X L, Lyu G H. Output estimation of animal manure production and its potential to replace chemical fertilizers in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(12): 2506-2508.
[19] 陈国和, 赵章金, 顿雯静, 等. 浙江省2000年—2016年畜禽养殖业时空分布特征及对环境的影响[J]. 绍兴文理学院学报, 2019, 39(7): 64-73.
Chen G H, Zhao Z J, Dun W J, et al. Spatial and temporal distribution characteristics of livestock and poultry breeding industry and its impact on environment in Zhejiang Province from 2000 to 2016[J]. Journal of Shaoxing University, 2019, 39(3): 64-73.
[20] Wang H, Chu Y X, Fang C R. Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(4): 472-477. DOI:10.1007/s00128-017-2052-3
[21] Qian M R, Wu H Z, Wang J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174-181. DOI:10.1016/j.scitotenv.2016.03.123
[22] Wei R C, Ge F, Chen M, et al. Occurrence of ciprofloxacin, enrofloxacin, and florfenicol in animal wastewater and water resources[J]. Journal of Environmental Quality, 2012, 41(5): 1481-1486. DOI:10.2134/jeq2012.0014
[23] Conde-Cid M, Nóvoa-Muñoz J C, Fernández-Sanjurjo M J, et al. Pedotransfer functions to estimate the adsorption and desorption of sulfadiazine in agricultural soils[J]. Science of the Total Environment, 2019, 691: 933-942. DOI:10.1016/j.scitotenv.2019.07.166
[24] 李嘉慧, 欧阳峰, 郑世界, 等. 生物炭对紫色土中氟苯尼考吸附与迁移的影响[J]. 环境科学研究, 2022, 35(6): 1467-1474.
Li J H, Ouyang F, Zheng S J, et al. Effects of biochar on sorption and transport of florfenicol in purple soil[J]. Research of Environmental Sciences, 2022, 35(6): 1467-1474.
[25] Franklin A M, Williams C, Andrews D M, et al. Sorption and desorption behavior of four antibiotics at concentrations simulating wastewater reuse in agricultural and forested soils[J]. Chemosphere, 2022, 289. DOI:10.1016/j.chemosphere.2021.133038
[26] Cela-Dablanca R, Barreiro-Buján A, Ferreira-Coelho G, et al. Competitive adsorption and desorption of tetracycline and sulfadiazine in crop soils[J]. Environmental Research, 2022, 214. DOI:10.1016/j.envres.2022.113726
[27] Spielmeyer A, Petri M S, Höper H, et al. Long-term monitoring of sulfonamides and tetracyclines in manure amended soils and leachate samples - a follow-up study[J]. Heliyon, 2020, 6(8). DOI:10.1016/j.heliyon.2020.e04656
[28] 李斌绪, 朱昌雄, 宋婷婷, 等. 施用不同来源粪肥对土壤中抗生素淋溶的影响[J]. 环境科学, 2021, 42(10): 4942-4950.
Li B X, Zhu C X, Song T T, et al. Effect of manure from different sources on the leaching of antibiotics in soil[J]. Environmental Science, 2021, 42(10): 4942-4950. DOI:10.3969/j.issn.1000-6923.2021.10.053
[29] Xie X N, Li Y T, Wang J, et al. Occurrence of veterinary antibiotics in arable soil with different fertilisation modes: a field study[J]. Soil Research, 2022. DOI:10.1071/SR22073
[30] Kim J W, Hong Y K, Yang J E, et al. Bioaccumulation and mass balance analysis of veterinary antibiotics in an agricultural environment[J]. Toxics, 2022, 10(5). DOI:10.3390/toxics10050213
[31] 罗芳林, 刘琛, 唐翔宇, 等. 猪粪溶解性有机物对紫色土中抗生素迁移的影响[J]. 中国环境科学, 2020, 40(9): 3952-3961.
Luo F L, Liu C, Tang X Y, et al. Effects of pig manure-derived dissolved organic matter on the transport of antibiotics in purple soils[J]. China Environmental Science, 2020, 40(9): 3952-3961. DOI:10.3969/j.issn.1000-6923.2020.09.028
[32] Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344-1350. DOI:10.1016/j.chemosphere.2008.06.066
[33] Ma W J, Xu X Y, An B Y, et al. Single and ternary competitive adsorption-desorption and degradation of amphenicol antibiotics in three agricultural soils[J]. Journal of Environmental Management, 2021, 297. DOI:10.1016/j.jenvman.2021.113366
[34] 任美, 程建华, 唐翔宇, 等. 生物质炭施用及老化对石灰性紫色土中磺胺类抗生素迁移特征的影响[J]. 土壤, 2021, 53(3): 563-570.
Ren M, Cheng J H, Tang X Y, et al. Effects of biochar application and ageing on the transport of sulfonamides in calcareous purple soil[J]. Soils, 2021, 53(3): 563-570.
[35] 任美, 唐翔宇, 耿春女, 等. 生物质炭对坡耕地紫色土中抗生素吸附-解吸及迁移的影响[J]. 土壤, 2020, 52(5): 978-986.
Ren M, Tang X Y, Geng C N, et al. Effects of biochar on adsorption-desorption and migration of antibiotics in slope farmland of purple soil[J]. Soils, 2020, 52(5): 978-986.
[36] Zhao H, Liu X, Cao Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes[J]. Journal of Hazardous Materials, 2016, 310: 235-245. DOI:10.1016/j.jhazmat.2016.02.045
[37] 伊丽丽, 焦文涛, 陈卫平. 不同抗生素在剖面土壤中的吸附特征[J]. 环境化学, 2013, 32(12): 2357-2363.
Yi L L, Jiao W T, Chen W P. Adsorption characteristics of three types of antibiotics in the soil profiles[J]. Environmental Chemistry, 2013, 32(12): 2357-2363. DOI:10.7524/j.issn.0254-6108.2013.12.020
[38] Ikehata K, Naghashkar N J, El-Din M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review[J]. Ozone: Science and Engineering, 2006, 28(6): 353-414. DOI:10.1080/01919510600985937
[39] 张步迪, 林青, 曹东平, 等. 磺胺嘧啶在土壤及土壤组分中的吸附/解吸动力学[J]. 土壤, 2018, 50(5): 949-957.
Zhang B D, Lin Q, Cao D P, et al. Sorption and desorption of sulfadiazine by soil and its components[J]. Soils, 2018, 50(5): 949-957.
[40] 孔晶晶, 裴志国, 温蓓, 等. 磺胺嘧啶和磺胺噻唑在土壤中的吸附行为[J]. 环境化学, 2008, 27(6): 736-741.
Kong J J, Pei Z G, Wen B, et al. Adsorption of sulfadiazine and sulfathiazole by soils[J]. Environmental Chemistry, 2008, 27(6): 736-741. DOI:10.3321/j.issn:0254-6108.2008.06.007
[41] Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals[J]. Environmental Science & Technology, 2005, 39(24): 9509-9516.
[42] 郭欣妍, 王娜, 许静, 等. 5种磺胺类抗生素在土壤中的吸附和淋溶特性[J]. 环境科学学报, 2013, 33(11): 3083-3091.
Guo X Y, Wang N, Xu J, et al. Adsorption and leaching behavior of sulfonamides in soils[J]. Acta Scientiae Circumstantiae, 2013, 33(11): 3083-3091.
[43] Jiang C L, Cai H, Chen L L, et al. Effect of forestry-waste biochars on adsorption of Pb(Ⅱ) and antibiotic florfenicol in red soil[J]. Environmental Science and Pollution Research, 2017, 24(4): 3861-3871. DOI:10.1007/s11356-016-8060-8
[44] Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4): 558-564. DOI:10.1016/j.chemosphere.2009.02.066
[45] Lin Q, Li B L, Liu X W, et al. Insights into sorption and leaching behavior of sulfadiazine in soil as affected by humic acid[J]. Journal of Soils and Sediments, 2022, 22(3): 809-817. DOI:10.1007/s11368-021-03110-x
[46] Pan M, Chu L M. Adsorption and degradation of five selected antibiotics in agricultural soil[J]. Science of the Total Environment, 2016, 545-546: 48-56. DOI:10.1016/j.scitotenv.2015.12.040
[47] Zhi D, Yang D X, Zheng Y X, et al. Current progress in the adsorption, transport and biodegradation of antibiotics in soil[J]. Journal of Environmental Management, 2019, 251. DOI:10.1016/j.jenvman.2019.109598
[48] Conde-Cid M, Núñez-Delgado A, Fernández-Sanjurjo M J, et al. Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks[J]. Processes, 2020, 8(11). DOI:10.3390/pr8111479
[49] Chen K L, Liu L C, Chen W R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils[J]. Environmental Pollution, 2017, 231: 1163-1171. DOI:10.1016/j.envpol.2017.08.011
[50] Srinivasan P, Sarmah A K, Manley-Harris M. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils[J]. Environmental Pollution, 2013, 180: 165-172. DOI:10.1016/j.envpol.2013.05.022
[51] Tang S Q, Liang J, Gong J L, et al. The effects of biochar/compost for adsorption behaviors of sulfamethoxazole in amended wetland soil[J]. Environmental Science and Pollution Research, 2021, 28(35): 49289-49301. DOI:10.1007/s11356-021-13959-7
[52] Li S, Huang Z, Wang Y, et al. Migration of two antibiotics during resuspension under simulated wind-wave disturbances in a water-sediment system[J]. Chemosphere, 2018, 192: 234-243. DOI:10.1016/j.chemosphere.2017.10.131
[53] 毛真, 吴敏, 张迪, 等. 磺胺甲恶唑在土壤上的吸附及其与Ca2+、Mg2+、Zn2+的共吸附[J]. 环境化学, 2013, 32(4): 640-645.
Mao Z, Wu M, Zhang D, et al. Adsorption behavior of sulfamethoxazole on 11 soils and its co-adsorption with Ca2+, Mg2+or Zn2+[J]. Environmental Chemistry, 2013, 32(4): 640-645.
[54] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277-304. DOI:10.1097/00010694-200004000-00001
[55] Zhou D, Thiele-Bruhn S, Arenz-Leufen M G, et al. Impact of manure-related DOM on sulfonamide transport in arable soils[J]. Journal of Contaminant Hydrology, 2016, 192: 118-128. DOI:10.1016/j.jconhyd.2016.07.005
[56] 李舒涵, 刘琛, 唐翔宇, 等. 果园生态养鸡鸡粪DOM的淋溶特征及其对抗生素迁移的影响[J]. 农业工程学报, 2020, 36(14): 37-46.
Li S H, Liu C, Tang X Y, et al. Leaching characteristics of dissolved organic matter in chicken manure and its effect on antibiotic migration in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 37-46. DOI:10.11975/j.issn.1002-6819.2020.14.005
[57] Wang Z Z, Jiang Q L, Wang R Z, et al. Effects of dissolved organic matter on sorption of oxytetracycline to sediments[J]. Geofluids, 2018. DOI:10.1155/2018/1254529
[58] 薛向东, 杨宸豪, 于荐麟, 等. 圩区河道底泥腐殖酸对重金属和抗生素的共吸附[J]. 环境科学, 2021, 42(6): 2856-2867.
Xue X D, Yang C H, Yu J L, et al. Coadsorption of heavy metal and antibiotic onto humic acid from polder river sediment[J]. Environmental Science, 2021, 42(6): 2856-2867.
[59] Pi S S, Li A, Cui D, et al. Biosorption behavior and mechanism of sulfonamide antibiotics in aqueous solution on extracellular polymeric substances extracted from Klebsiella sp. J1[J]. Bioresource Technology, 2019, 272: 346-350.
[60] Bai L L, Cao C C, Wang C L, et al. Roles of phytoplankton- and macrophyte-derived dissolved organic matter in sulfamethazine adsorption on goethite[J]. Environmental Pollution, 2017, 230: 87-95.
[61] Zhao Q, Guo W Q, Luo H C, et al. Insights into removal of sulfonamides in anaerobic activated sludge system: mechanisms, degradation pathways and stress responses[J]. Journal of Hazardous Materials, 2022, 423. DOI:10.1016/j.jhazmat.2021.127248
[62] Cheng X X, Hou H B, Li R S, et al. Adsorption behavior of tetracycline on the soil and molecular insight into the effect of dissolved organic matter on the adsorption[J]. Journal of Soils and Sediments, 2020, 20(4): 1846-1857.
[63] Boxall A B A, Blackwell P, Cavallo R, et al. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2): 19-28.
[64] Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin[J]. Environmental Science & Technology, 2007, 41(1): 132-138.