塑料在提高人们生活水平和促进经济发展的同时, 也引起了严重的塑料污染问题.据美国佐治亚大学研究人员分析推测, 到2050年, 全球废旧塑料的总量将达120亿t[1].废弃塑料在物理、化学和生物作用下分解成尺寸 < 5 mm的微塑料[2], 并可能随环境变化进一步分解为纳米塑料[3].微塑料和纳米塑料统称为微纳塑料, 是当前世界上备受关注的新兴污染物.微纳塑料广泛存在于海洋、大气和土壤等环境中, 甚至在饮用水中也被检出, 对饮用水质造成了严重污染.饮用水摄入是人体接触微纳塑料的主要途径之一, 据统计, 每人每年摄入的塑料颗粒约为3.9~5.2万个[4], 因此, 微纳塑料对人体健康构成了潜在威胁.微纳塑料比表面积大、疏水性强, 有较强的迁移能力, 常作为载体吸附环境中的污染物, 并发生团聚.微纳塑料的这种环境行为被称为“胶体泵效应”[5].胶体泵效应的发生, 将导致微纳塑料吸附越来越多的污染物, 形成越来越大的团聚体, 从而影响污染物的富集, 可能对饮用水和人体健康造成更严重的污染和危害.
近年来, 微纳塑料的污染问题受到了国内外研究学者们越来越多的关注.截至目前, Web of Science中关于微纳塑料的综述共有248篇, 本文利用CiteSpace对其进行了关键词计量分析, 结果如表 1所示.从2016年开始, 关于微纳塑料的综述内容日益丰富, 直至目前, 微纳塑料依然是环境领域的研究热点.然而, 对微纳塑料的研究主要集中在海洋和淡水环境, 关于饮用水中的微纳塑料研究甚少.因此, 对饮用水中的微纳塑料进行综述很有必要.目前国际上关于微纳塑料的研究内容包括微纳塑料的污染和降解机制, 以及微纳塑料对海洋生物和人类的毒性作用等.而中国知网(CNKI)中关于饮用水中微纳塑料的综述仅有16篇.其中, 郑莹莹等[6, 7]和田妤等[8]分别研究了管网水和龙头水中微纳塑料的来源; 李红岩等[9]对微纳塑料的毒性进行了综述; 孙晓晨等[10]和王赛等[11]总结了微纳塑料的去除技术.此外, 微纳塑料的检测技术[12]也是CNKI中研究热度较高的方向.目前还没有关于微纳塑料胶体泵效应的全面系统综述.
![]() |
表 1 Web of Science中关于微纳塑料综述被引频次最高的8个关键词 Table 1 Eight most frequently cited keywords in the review of micro-and nanoplastics in Web of Science |
因此, 开展微纳塑料胶体泵效应的相关研究是十分必要的.本文首先按照饮用水从源头到龙头的流经顺序, 概述了微纳塑料的赋存现状; 其次, 重点对微纳塑料的胶体泵效应进行了综述, 并总结了微纳塑料的毒性作用; 最后, 分析了微纳塑料在常规及深度处理工艺下的去除效果和胶体泵效应对其去除的影响, 以期为未来微纳塑料的去除研究提供借鉴和思路, 并为保障饮用水质安全和人类健康提供参考.
1 饮用水中微纳塑料的赋存情况目前, 水源水、出厂水、管网水和龙头水等饮用水流经的各个环节均存在微纳塑料.为更好地了解饮用水中微纳塑料的赋存情况, 本文总结了近5年关于饮用水中微纳塑料赋存情况的相关文献, 分析结果如表 2所示.
![]() |
表 2 近5年饮用水中微纳塑料的赋存情况1) Table 2 Occurrence of micro-and nanoplastics in drinking water in the past five years |
由表 2可以看出, 目前对微纳塑料的赋存研究主要集中在饮用水源, 而对其他环节的研究相对较少.饮用水源中微纳塑料的平均丰度为2 200 n ·m-3, 粒径大多>50 μm, 丰度较高的种类为PP、PE、PS和PET, 纤维状是最常见的形状[28].出厂水和管网水中的丰度较源头水有所降低, 粒径大都 < 50 μm.然而, 在水厂和管网中出现了新的微纳塑料种类[21], 这说明饮用水在处理和输配过程中可能受到了二次污染.例如, Chu等[23]在供水管网的管垢中检出了丰度高达569.99~751.73 n ·kg-1的微纳塑料, 这可能是因为供水管网所用的塑料设施发生老化, 导致微纳塑料的释放.因此, 水厂和供水管网中微纳塑料的二次污染问题不容忽视.
从源头到龙头, 微纳塑料丰度依次降低, 粒径越来越小.龙头水中的微纳塑料是丰度最低和粒径最小的.目前我国龙头水中微纳塑料的丰度平均值为(440.00±275.00)n ·L-1, 粒径均 < 50 μm, 碎片状是最丰富的形状, 主要成分为PP、PE和PS[29].
2 饮用水中微纳塑料的胶体泵效应微纳塑料体积小, 比表面积大, 疏水性强, 是许多污染物的理想载体.因此, 微纳塑料除迁移行为外, 也可能发生胶体泵效应, 不断与周围环境中的污染物相互吸附, 形成更大的团聚体.饮用水不只局限于龙头水, 还包含水源水、出厂水和管网水等.饮用水中的典型污染物包括无机物、有机物和微生物[30], 因此饮用水中微纳塑料的胶体泵效应主要体现在其与上述3种典型污染物的吸附和团聚, 引起该效应的吸附机制可能有氢键、疏水作用和范德华力等, 具体如图 1所示.
![]() |
图 1 微纳塑料胶体泵效应作用机制 Fig. 1 Mechanisms of micro-and nanoplastic colloid pump effect |
微纳塑料广泛存在于江河、湖泊等饮用水源中, 因此其必然在水源沉积物(主要为土壤)中迁移, 可能引发胶体泵效应.Ye等[31]研究了多孔介质中高岭石、蒙脱石和伊利石与纳米PS的相互作用, 发现这3种黏土矿物均抑制了PS的迁移, 对PS在多孔介质中的富集产生积极影响.这是因为黏土矿物表面粗糙、比表面积大, 给PS提供了大量吸附位点.由于高岭土表面带有更多正电荷, 且边缘区域所占比例更大, 因此与PS的胶体泵效应最明显, 这也和Lu等[32]研究的结果一致.截至目前, 关于微纳塑料与黏土的胶体泵效应研究较少, 对无机物的研究主要集中在重金属.
重金属也是饮用水中普遍存在的一类无机污染物[33, 34].环境监测和众多实验都证实了微纳塑料对重金属具有胶体泵效应[35].例如, 李文华等[36]研究发现, 鄱阳湖口处的微纳塑料作为Cu、Pb和Zn等的载体会促进重金属的生物有效性, 且微纳塑料丰度与重金属含量呈显著正相关.常博焜等[37]研究PS和Pb在饱和石英砂中的共迁移行为, 发现Pb在PS表面的负载迁移是其穿透石英砂的重要方式.这说明PS对Pb的胶体泵效应会对其迁移产生重大影响.原始微纳塑料经过度风化和紫外线辐射等作用会转化为老化塑料, 其表面形成褶皱和裂纹, 使比表面积增大[38], 并产生吸附重金属的阴离子活性位点, 因此老化微纳塑料对重金属的胶体泵效应更明显[39].同样的结果也体现在Brennecke等[40]的研究中, 其通过PVC和PS吸附重金属Cu和Zn, 发现相较于原始PS, 老化的PVC会吸附更多的Cu.
实际饮用水环境是多种污染物共存的复杂体系, 微纳塑料的胶体泵效应将受到影响.Zhou等[41]研究了实验室级别的环丙沙星(ciprofloxacin, CIP)对Cu(Ⅱ)和Cr(Ⅵ)在老化微纳塑料上的吸附行为, 发现CIP的存在对老化微纳塑料吸附Cu(Ⅱ)有抑制作用, 而对Cr(Ⅵ)的吸附有促进作用.微纳塑料在真实环境中与复合污染物的相互作用由污染物之间的吸附机制决定.因此, 深入研究微纳塑料胶体泵效应的作用机制很有必要.
2.2 有机物质有研究表明, 许多有机污染物赋存于饮用水.例如, 全氟化合物[42]、多氯联苯和多环芳烃[43]都在我国长江三角洲等经济发达地区的水源水和出厂水中被检出, 抗生素更是广泛存在于我国各地区的饮用水中.如上文所述, 微纳塑料存在于饮用水流经的各个环节, 因此它们必然会相互作用, 从而可能引发胶体泵效应.
全氟化合物[44]和多氯联苯[45]与微纳塑料的相互作用是疏水作用、范德华力和吸附点位竞争等综合作用的结果.多环芳烃与微纳塑料的胶体泵效应显著, 纳米PE对多环芳烃9-NAnt的吸附量高达734 μg·g-1[46], 主要受疏水作用和范德华力的驱动.抗生素是近年来研究热度较高的新兴污染物, 其与微纳塑料的胶体泵效应受到了较多关注.有研究发现, 污染物种类和饮用水环境条件对胶体泵作用机制和强度产生影响.例如, Li等[47]研究发现PE、PS、PP、PA和PVC这5种微纳塑料中, PA对抗生素的吸附作用最强, 主要作用机制有疏水作用、范德华力和静电作用; Atugoda等[48]研究了不同离子强度和pH下PE对环丙沙星的相互作用影响, PE对环丙沙星的吸附能力随离子强度的增加而降低, 吸附量随pH的增加而增加, 在pH为6.5~7.5时达到最大, 然后下降.此外, 有机磷酸酯(organophosphate esters, OPEs)是一种用途广泛的阻燃剂和增塑剂, 与微纳塑料相同, 已存在于水源水[49]、出厂水[50]、管网水和龙头水[51]等环节中.有研究表明, 每人每天通过饮用水摄入的OPEs含量约为9.65 ng ·kg-1[52].OPEs在饮用水中的赋存可能对人体健康造成肝脏炎症损伤、胃肠道肿瘤和代谢紊乱[53]等潜在危害.然而, 目前关于OPEs与微纳塑料胶体泵效应的研究很少, 二者之间的作用机制以及其毒性危害程度尚不明晰, 有待进一步研究.
微纳塑料对有机物的胶体泵效应受多种因素综合影响, 例如, 污染物种类、吸附机制和水环境因素等.因此, 探明微纳塑料的胶体泵作用机制, 是有效控制微纳塑料对饮用水和人类健康造成的污染和危害的前提.
2.3 微生物微纳塑料对饮用水中细菌、病毒和藻类等微生物的胶体泵效应会对它们的迁移和富集产生影响.Zhang等[54]通过分子动力学研究了饮用水中微纳塑料与SARS-CoV-2病毒的相互作用, 发现它们在水中的亲和力比在空气中强至少10倍, 作用机制涉及静电和疏水作用.此外, Li等[55]观察到长江和嘉陵江饮用水源中的微纳塑料表面粘附了大量的细菌, 吸附的细菌数量随微纳塑料粒径的减小而增多, 随着时间的推移将改变微生物的群落结构.由于微纳塑料难降解, 持久存在于饮用水中, 因此也会延长附着在微纳塑料表面微生物的赋存时间, 从而对饮用水质造成复合污染.
微生物被微纳塑料吸附后, 将很快在其表面形成稳定的生物膜[56], 随着时间的推移, 生物膜厚度的增加将使微纳塑料的体积增大[57], 形成大团聚体, 附着生物膜的微纳塑料也将具有更强的胶体泵效应, 促进污染物的富集[58].重金属与生物膜之间的络合反应使重金属容易在生物膜上积累, 从而促进重金属的吸附.此外, 生物膜的形成将增加微纳塑料含氧官能团的数目并增强氢键和π-π键的能量, 这将提高微纳塑料积累有机污染物的能力.由于生物膜的存在, 微纳塑料能够吸附大量污染物, 导致其粒径和体积变大, 可能引起饮用水处理过程中滤料堵塞和膜堵塞等问题, 影响污染物的去除效率.
综上, 微生物是微纳塑料胶体泵效应的“催化剂”, 它促进了无机物、有机物在微纳塑料表面的富集, 造成饮用水质的复合污染, 也威胁着人体健康.
3 饮用水中微纳塑料的毒性作用饮用水摄入是微纳塑料进入人体的主要途径.摄入后, 微纳塑料穿透肠道屏障到达人体循环系统.循环中的微纳塑料首先在肝肾中累积, 当微纳塑料含量超过肝肾所能负担的最高阈值后, 将导致肝肾功能的明显损伤[59].继续转运的微纳塑料将引起全身免疫性疾病, 例如自身免疫性风湿病和系统性红斑狼疮, 这是由于微纳塑料暴露于自身抗原并产生自身抗体, 导致免疫系统的破坏[3, 60].微纳塑料暴露于人体后还可能发生氧化应激并激活大脑中的免疫细胞, 导致神经元损伤, 从而引起神经毒性[4].另外, Wu等[61]首次在血栓中发现了微纳塑料, 但其是否有助于血栓的形成、扩大和加速以及是否会提高心血管疾病的发病率还有待进一步研究, 这需要引起研究者们的重视.
微纳塑料的胶体泵效应促进污染物在饮用水中的富集, 加剧其在人体内的积累, 从而可能增加其毒性作用, 对人体健康构成严重的潜在威胁.为避免微纳塑料在人体内的累积, 从源头去除微纳塑料尤为重要.
4 饮用水中微纳塑料的胶体泵效应对其去除影响常规饮用水处理工艺有混凝沉淀、过滤和消毒, 深度处理有臭氧氧化-活性炭过滤、膜分离技术和高级氧化工艺等.不同工艺对微纳塑料的去除效果不同, 在去除过程中微纳塑料可能引发胶体泵效应, 从而影响污染物的迁移和富集, 也会对去除效果产生影响.本文分析了不同工艺对微纳塑料的去除效果和胶体泵效应对其去除的影响, 结果如表 3所示.
![]() |
表 3 饮用水处理工艺对微纳塑料的去除效果和胶体泵效应对其去除影响1) Table 3 Removal effect of drinking water treatment process on micro-and nanoplastics and the effect of colloid pump on its removal |
4.1 对混凝沉淀的影响
混凝是胶体泵效应的主要作用阶段, 絮凝体的形成是微纳塑料胶体泵效应的体现.微纳塑料的胶体泵效应越显著, 则可将越多的污染物絮凝成稳定团聚体, 最终在重力作用下沉降并得以去除.然而, 针对混凝沉淀去除微纳塑料的效率问题, 目前看法并不统一.有研究者认为混凝沉淀可有效去除微纳塑料.Wang等[62]研究发现, 混凝沉淀几乎可将纤维状微纳塑料完全去除.这是因为纤维状微纳塑料相较于球体和碎片状胶体泵作用效果更明显, 更容易凝聚成絮凝体.这也与许龙等[22]研究的结果一致.Arenas等[63]在中试规模饮用水厂中研究了PS(尺寸为85~162 nm)的去除效率, 结果表明, 在聚合氯化铝(polyaluminium chloride, PAC)混凝剂作用下, PS去除率高达99.4%. Zhou等[68]研究了PAC和FeCl3混凝剂对 < 5 mm微纳塑料的去除性能, 发现PAC的絮凝效果比FeCl3好, 且粒径越小, 优势越明显.由此推测, 相比铁基盐, 铝基盐混凝剂更易引发胶体泵效应, 去除效率更高.Ma等[69]和Prokopova等[70]研究的结果也证实了这一观点.然而, 也有研究表明混凝沉淀并不是去除微纳塑料的主要工艺.Zhang等[64]研究发现添加Al2(SO4)3混凝剂后, PS(尺寸为180 nm~125 μm)沉降率低于2.0%, 即使添加助凝剂, 其去除率也仅为13.6%.这说明投加混凝剂后并没有显著的胶体泵效应发生.Radityaningrum等[71]发现由于混凝阶段的水力混合, 许多大尺寸的微纳塑料被分解成众多小颗粒, 导致其不足以附着在絮凝体上, 胶体泵效应微弱, 增加了出水中微纳塑料的丰度.
目前, 混凝沉淀对微纳塑料的去除效果存在争议, 但“铝基盐混凝剂的絮凝效果普遍优于铁基盐”这一观点已达成共识.未来可研发铝基盐混凝剂, 使其在混凝沉淀阶段对微纳塑料有更高的去除率.此外, 在混凝剂作用下形成团聚体的微纳塑料可能发生了胶体泵效应, 更容易被去除; 而残留在水中的较小尺寸微纳塑料并未发生胶体泵效应或作用效果不明显.因此, 探究微纳塑料胶体泵效应的引发条件(如混凝剂种类、污染物粒径等)尤为关键.掌握胶体泵作用机制及其发挥作用的条件是提高微纳塑料去除率的前提, 也是目前亟待解决的问题.
4.2 对过滤的影响过滤工艺主要去除胶体态污染物, 但对微纳塑料的去除效果并不理想.在许龙等[22]的研究中, 砂滤使微纳塑料丰度降低32.4%, 其中对1~5 μm的去除率仅为14.8%. Wang等[62]研究发现砂滤的去除率为20.0% ~44.4%, 对纤维、球状和碎屑的去除率分别为40%、38%和22%.这说明微纳塑料不能在普通石英砂滤料中高效富集, 传统砂滤不是去除微纳塑料的有效工艺.然而, Zhang等[64]选取无烟煤为滤料去除180 nm~125 μm微纳塑料, 发现当塑料颗粒尺寸>10~20 μm时, 粒径越大, 滤料截留率越高; 反之, 粒径越小, 截留率越高.这是因为不同粒径颗粒的去除率呈抛物线变化, 10~20 μm就是过滤效率最低的临界粒径范围.当微纳塑料尺寸>10~20 μm时, 滤料孔隙比其粒径小, 因此能够被截留; 当微纳塑料尺寸 < 10~20 μm时, 可能引发胶体泵效应并附着在滤料表面.由此可见, 微纳塑料的胶体泵作用程度, 即微纳塑料团聚体的尺寸范围会对滤料的截留率产生影响.此外, 不同过滤介质对微纳塑料的去除效果存在差异, 推测滤料性质也可能影响微纳塑料的胶体泵效应, 从而影响过滤性能.He等[65]研究发现当石英砂表面包裹生物膜时, 可将200 nm PS的去除率提高67%. Tong等[72]和Hsieh等[73]发现在砂滤柱中加入生物炭作为滤前薄层, 可显著提高微纳塑料的滞留率.这是因为附着生物膜或生物炭的石英砂表面粗糙度更高, 吸附位点更多, 促进了胶体泵效应的发生, 使更多的微纳塑料富集, 提高其去除率.
传统砂滤虽不能高效去除微纳塑料, 但过滤作为传统的绿色饮用水处理工艺, 无需向水中投加额外药剂, 不会改变水的原本属性, 也不会对水质产生二次污染, 被认为是饮用水处理工艺的发展方向[74].未来可研发不同过滤介质或将滤料与微生物结合以提高微纳塑料的去除率.此外, 微纳塑料的胶体泵作用程度会对过滤性能产生影响, 若形成的团聚体粒径恰好在过滤效率最低的临界粒径范围内, 将大大降低微纳塑料的去除率.因此, 研究微纳塑料的胶体泵作用机制, 探明胶体泵作用程度对过滤性能的影响, 对提高过滤阶段的去除率有重要意义.
4.3 对消毒的影响消毒是常规处理工艺的最后一步, 作用是杀灭饮用水中的病原微生物.目前饮用水厂应用最广泛的是氯消毒, 其原理是氯通过降低细菌酶的活性而使细菌死亡.然而, 饮用水中微纳塑料的存在, 将影响消毒效果和消毒副产物的形成.微纳塑料作为病原微生物的“保护基质”, 与氯相互作用, 使消毒剂浓度降低, 阻碍了其对微生物的消毒作用[75].另一方面, 微纳塑料在氯化作用下发生氧化腐蚀, 使其表面产生纳米孔隙, 吸附点位增加, 从而促进其胶体泵效应, 导致更多的天然有机物被吸附和团聚, 从而抑制消毒副产物的形成[67].
4.4 对深度处理的影响目前应用最广泛、去除污染物效果最好的深度处理是臭氧氧化-活性炭过滤和膜分离技术, 因此本文对这两种工艺进行综述.有研究表明, 臭氧氧化-活性炭过滤是去除 <5 μm微纳塑料的有效工艺[62].这是因为经臭氧氧化的微纳塑料表面变得粗糙, 并随氧化时间的延长而分解为众多小颗粒.这些小颗粒表面加入了含氧官能团, 有利于进一步氧化降解, 生成甲酸和苯酚等物质[76].然而, 胶体泵效应对臭氧氧化造成了困难, 胶体泵作用下形成的团聚体越大, 所需臭氧氧化的能力就越强.膜分离技术可根据微纳塑料的粒径范围, 选择合适孔径的膜, 实现微纳塑料的高效去除.微纳塑料的胶体泵效应促进了其在膜表面的富集, 然而, 随着处理时间的推移, 将加速膜堵塞, 甚至形成饼层污染.为克服膜分离技术的局限性, 有研究提出利用负电荷膜分离同样带负电的微纳塑料[77], 二者之间的排斥力可避免微纳塑料在膜表面的堆积和堵塞.
深度处理虽然在一定程度上弥补了常规处理工艺的不足, 提高了 < 5 μm微纳塑料的去除效果, 但微纳塑料的胶体泵效应对其提出了挑战.因此, 必须提高臭氧氧化的能力, 探索降低膜污染的有效方法, 以应对微纳塑料胶体泵效应的发生.
5 结论(1) 微纳塑料被证实广泛存在于饮用水中, 已在水源水、出厂水、管网水和龙头水等各个环节被检出.不同地区检测出的微纳塑料丰度差别较大, 且计数单位不统一, 除各地区产生微纳塑料的环境条件及来源等因素不同外, 另一个重要原因是检测方法和标准限度不同.因此, 在国际上建立规范统一的检测方法和标准是必要的.此外, 小尺度纳米塑料目前还不能被精确检出, 未来需进一步提高微纳塑料, 尤其是纳米塑料的检测精度.
(2) 微纳塑料在饮用水中迁移的同时, 不断与重金属、有机物和微生物吸附、团聚, 引发胶体泵效应.在胶体泵效应下, 微纳塑料不断与典型污染物富集, 形成大团聚体, 对饮用水造成严重的复合污染, 加剧了其毒性作用.被人体摄入后, 将对人体肝肾功能和免疫系统等造成破坏.因此, 研究微纳塑料胶体泵效应的作用机制迫在眉睫.在未来的研究中, 应提高对胶体泵效应的关注, 探明微纳塑料胶体泵效应的作用机制, 探索出有效降低饮用水中微纳塑料污染的方法, 从源头降低微纳塑料对人类健康产生的毒性作用.
(3) 过滤作为绿色处理工艺, 不会对饮用水产生二次污染, 是目前最经济最高效的工艺, 也是未来饮用水处理的发展方向.然而, 传统砂滤对微纳塑料的去除效果有限.滤料是过滤工艺的核心, 未来可通过滤料改性的方式来提高微纳塑料的去除率, 例如, 将滤料和微生物或生物炭相结合等.
(4) 为进一步提高微纳塑料的去除效率, 必须考虑胶体泵效应对其去除的影响.大粒径微纳塑料在胶体泵作用下, 不断富集形成大团聚体, 很容易被去除; 而小粒径微纳塑料未发生胶体泵效应或胶体泵效应微弱, 被残留在饮用水中.在未来的研究中, 除研究胶体泵效应的作用机制外, 还应探明引发胶体泵效应的作用条件, 为提高微纳塑料的去除效率提供理论基础.此外, 在微纳塑料去除研究中, 应充分发挥微纳塑料的胶体泵作用, 使污染物充分富集, 形成稳定的大团聚体, 实现微纳塑料的高效去除, 以降低其对饮用水和人类健康造成的严重污染和危害.
[1] | Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7). DOI:10.1126/sciadv.1700782 |
[2] | Alimi O S, Farner Budarz J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. |
[3] | Shen M, Zhang Y, Zhu Y, et al. Recent advances in toxicological research of nanoplastics in the environment: a review[J]. Environmental Pollution, 2019, 252: 511-521. DOI:10.1016/j.envpol.2019.05.102 |
[4] | Prata J C, Da Costa J P, Lopes I, et al. Environmental exposure to microplastics: an overview on possible human health effects[J]. Science of the Total Environment, 2020, 702. DOI:10.1016/j.scitotenv.2019.134455 |
[5] | Honeyman B D, Santschi P H. Coupling adsorption and particle aggregation: laboratory studies of "colloidal pumping" using iron-59-labeled hematite[J]. Environmental Science & Technology, 1991, 25(10): 1739-1747. |
[6] |
郑莹莹, 张可佳, 岑程, 等. 供水管网中微/纳米塑料的赋存及污染特性[J]. 中国环境科学, 2022, 42(4): 1610-1617. Zheng Y Y, Zhang K J, Cen C, et al. The abundance and contamination characteristics of micro/nano-plastics in drinking water distribution systems[J]. China Environmental Science, 2022, 42(4): 1610-1617. DOI:10.3969/j.issn.1000-6923.2022.04.014 |
[7] |
郑莹莹, 张可佳, 岑程, 等. 供水管网中微/纳米塑料分布规律及污染特性的研究进展[J]. 中国环境科学, 2022. Zheng Y Y, Zhang K J, Cen C, et al. Research progress on the abundance and contamination characteristics of micro/nano-plastics in drinking water distribution systems[J]. China Environmental Science, 2022. DOI:10.19674/j.cnki.issn1000-6923.20220129.008 |
[8] |
田妤, 李悦, 李伟英. 饮用水中微塑料的检测、存在水平与来源[J]. 给水排水, 2020, 56(8): 152-158. Tian Y, Li Y, Li W Y. Detection, concentration and source of microplastics in drinking water[J]. Water & Wastewater Engineering, 2020, 56(8): 152-158. |
[9] |
李红岩, 张海峰, 李洁, 等. 饮用水中微塑料污染研究进展[J]. 净水技术, 2019, 38(7): 7-12. Li H Y, Zhang H F, Li J, et al. Review of microplastics pollution in drinking water[J]. Water Purification Technology, 2019, 38(7): 7-12. |
[10] |
孙晓晨, 易琳雅, 汪楠, 等. 微塑料在饮用水中的去除研究进展[J]. 环境科学与技术, 2021, 44(6): 211-218. Sun X C, Yi L Y, Wang N, et al. Research progress on the removal of microplastics in drinking water[J]. Environmental Science & Technology, 2021, 44(6): 211-218. DOI:10.19672/j.cnki.1003-6504.2021.06.026 |
[11] |
王赛, 张岚, 陈永艳, 等. 饮用水处理技术去除微塑料的效果及进展[J]. 净水技术, 2021, 40(10): 20-25, 61. Wang S, Zhang L, Chen Y Y, et al. Effect and progress of microplastics removal in drinking water treatment process[J]. Water Purification Technology, 2021, 40(10): 20-25, 61. DOI:10.15890/j.cnki.jsjs.2021.10.003 |
[12] |
蒙岱均, 王超鹏, 魏鑫馨, 等. 饮用水中微塑料的检测与去除技术研究进展[J]. 净水技术, 2022, 41(8): 8-15, 107. Meng D J, Wang C P, Wei X X, et al. Research progress of determination and removal technology of microplastics in drinking water[J]. Water Purification Technology, 2022, 41(8): 8-15, 107. |
[13] | Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627. DOI:10.1016/j.scitotenv.2017.10.150 |
[14] | Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. DOI:10.1016/j.scitotenv.2018.03.211 |
[15] | Fraser M A, Chen L, Ashar M, et al. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China[J]. Ecotoxicology and Environmental Safety, 2020, 196. DOI:10.1016/j.ecoenv.2020.110536 |
[16] | Mu H Y, Wang Y P, Zhang H N, et al. High abundance of microplastics in groundwater in Jiaodong Peninsula, China[J]. Science of the Total Environment, 2022, 839. DOI:10.1016/j.scitotenv.2022.156318 |
[17] | Wu B, Li L W, Zu Y X, et al. Microplastics contamination in groundwater of a drinking-water source area, northern China[J]. Environmental Research, 2022, 214. DOI:10.1016/j.envres.2022.114048 |
[18] | Jung J W, Kim S, Kim Y S, et al. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea[J]. Science of the Total Environment, 2022. DOI:10.1016/j.scitotenv.2022.154015 |
[19] | Oni B A, Sanni S E. Occurrence of microplastics in borehole drinking water and sediments in Lagos, Nigeria[J]. Environmental Toxicology and Chemistry, 2022, 41(7): 1721-1731. DOI:10.1002/etc.5350 |
[20] | Shen M C, Zeng Z T, Wen X F, et al. Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha, China[J]. Environmental Science and Pollution Research, 2021, 28(31): 42313-42324. DOI:10.1007/s11356-021-13769-x |
[21] | Wu J Y, Zhang Y, Tang Y. Fragmentation of microplastics in the drinking water treatment process-A case study in Yangtze River region, China[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150545 |
[22] |
许龙, 王志峰. 某水厂中微塑料的赋存及去除特性[J]. 净水技术, 2020, 39(7): 109-113, 120. Xu L, Wang Z F. Occurrence and removal of microplastics in a water treatment plant[J]. Water Purification Technology, 2020, 39(7): 109-113, 120. |
[23] | Chu X X, Zheng B, Li Z X, et al. Occurrence and distribution of microplastics in water supply systems: In water and pipe scales[J]. Science of the Total Environment, 2022, 803. DOI:10.1016/j.scitotenv.2021.150004 |
[24] | Dalmau-Soler J, Ballesteros-Cano R, Ferrer N, et al. Microplastics throughout a tap water supply network[J]. Water and Environment Journal, 2022, 36(2): 292-298. DOI:10.1111/wej.12766 |
[25] |
柴然, 张秀芹, 徐春生, 等. 青岛市生活饮用水中微塑料分布特征[J]. 山东大学学报(医学版), 2021, 59(12): 58-62. Chai R, Zhang X Q, Xu C S, et al. Distribution of microplastics in drinking water in Qingdao[J]. Journal of Shandong University (Health Sciences), 2021, 59(12): 58-62. |
[26] | Li Y, Wang Z Q, Guan B H. Separation and identification of nanoplastics in tap water[J]. Environmental Research, 2022, 204. DOI:10.1016/j.envres.2021.112134 |
[27] | Vega-Herrera A, Llorca M, Borrell-Diaz X, et al. Polymers of micro(nano) plastic in household tap water of the Barcelona Metropolitan Area[J]. Water Research, 2022, 220. DOI:10.1016/j.watres.2022.118645 |
[28] | Li Y, Li W Y, Jarvis P, et al. Occurrence, removal and potential threats associated with microplastics in drinking water sources[J]. Journal of Environmental Chemical Engineering, 2020, 8(6). DOI:10.1016/j.jece.2020.104527 |
[29] | Tong H Y, Jiang Q Y, Hu X S, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252. DOI:10.1016/j.chemosphere.2020.126493 |
[30] | Anderson J C, Park B J, Palace V P. Microplastics in aquatic environments: implications for Canadian ecosystems[J]. Environmental Pollution, 2016, 218: 269-280. |
[31] | Ye X Y, Cheng Z, Wu M, et al. Effects of clay minerals on the transport of polystyrene nanoplastic in groundwater[J]. Water Research, 2022, 223. DOI:10.1016/j.watres.2022.118978 |
[32] | Lu T T, Gilfedder B S, Peng H, et al. Effects of clay minerals on the transport of nanoplastics through water-saturated porous media[J]. Science of the Total Environment, 2021, 796. DOI:10.1016/j.scitotenv.2021.148982 |
[33] |
付蓉洁, 辛存林, 于奭, 等. 石期河西南子流域地下水重金属来源解析及健康风险评价[J]. 环境科学, 2023, 44(2): 796-806. Fu R J, Xin C L, Yu S, et al. Analysis of heavy metal sources in groundwater and assessment of health risks: An example from the southwest sub-basin of the Shiqi River[J]. Environmental Science, 2023, 44(2): 796-806. |
[34] |
秦宁, 阿依博塔·吐尔逊别克, 刘运炜, 等. 中国居民饮用水镉暴露非致癌风险的年龄分层权重[J]. 环境科学, 2022, 43(4): 1863-1872. Qin N, Ayibota Tuerxunbieke, Liu Y W, et al. Non-carcinogenic risk assessment of cadmium exposure through drinking water in Chinese residents based on age-stratification weight[J]. Environmental Science, 2022, 43(4): 1863-1872. |
[35] |
赵伟高, 田一梅, 赵鹏, 等. 淡水环境中微塑料与重金属的"木马效应"研究进展[J]. 环境科学, 2023, 44(3): 1244-1257. Zhao W G, Tian Y M, Zhao P, et al. Research progress on Trojan-horse effect of microplastics and heavy metals in freshwater environment[J]. Environmental Science, 2023, 44(3): 1244-1257. |
[36] |
李文华, 简敏菲, 刘淑丽, 等. 鄱阳湖湖口-长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(1): 242-252. Li W H, Jian M F, Liu S L, et al. Occurrence relationship between microplastics and heavy metals pollutants in the estuarine sediments of Poyang Lake and the Yangtze River[J]. Environmental Science, 2020, 41(1): 242-252. |
[37] |
常博焜, 陈怡汀, 曹钢, 等. 背景离子类型和浓度对聚苯乙烯微塑料/铅在饱和石英砂中共运移的影响[J]. 中国环境科学, 2022, 42(7): 3193-3203. Chang B K, Chen Y T, Cao G, et al. Effects of background ion types and concentrations on the co-transport of polystyrene microplastics/lead in saturated quartz sand[J]. China Environmental Science, 2022, 42(7): 3193-3203. |
[38] | Vedolin M C, Teophilo C Y S, Turra A, et al. Spatial variability in the concentrations of metals in beached microplastics[J]. Marine Pollution Bulletin, 2018, 129(2): 487-493. |
[39] |
王俊杰, 陈晓晨, 李权达, 等. 老化作用对微塑料吸附镉的影响及其机制[J]. 环境科学, 2022, 43(4): 2030-2038. Wang J J, Chen X C, Li Q D, et al. Effects of aging on the Cd adsorption by microplastics and the relevant mechanisms[J]. Environmental Science, 2022, 43(4): 2030-2038. |
[40] | Brennecke D, Duarte B, Paiva F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178: 189-195. |
[41] | Zhou Z Q, Sun Y R, Wang Y Y, et al. Adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) on aged microplastics in antibiotics-heavy metals coexisting system[J]. Chemosphere, 2022, 291. DOI:10.1016/j.chemosphere.2021.132794 |
[42] |
刘建超, 郑超亚, 任静华, 等. 平原河湖系统中典型全氟化合物的胶体吸附特征及生态风险评估[J]. 湖泊科学, 2021, 33(6): 1714-1726. Liu J C, Zheng C Y, Ren J H, et al. Adsorption characteristics of perfluorinated compounds from colloids in the river-lake system of the plain and their ecological risk[J]. Journal of Lake Sciences, 2021, 33(6): 1714-1726. |
[43] |
薛潘琪, 殷园园, 赵丹阳, 等. 南方某城市大型水厂出厂水有机污染物混合暴露的健康风险评估[J]. 环境与职业医学, 2021, 38(7): 687-693. Xue P Q, Yin Y Y, Zhao D Y, et al. Health risk assessment of exposure to mixtures of organic pollutants in finished water in a large drinking water treatment plant from a city in southern China[J]. Journal of Environmental and Occupational Medicine, 2021, 38(7): 687-693. |
[44] | Barhoumi B, Sander S G, Tolosa I. A review on per-and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials[J]. Environmental Research, 2022, 206. DOI:10.1016/j.envres.2021.112595 |
[45] | Zhang T, Jiang B, Xing Y, et al. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms[J]. Environmental Science and Pollution Research, 2022, 29(12): 16830-16859. |
[46] | Zhang J H, Chen H B, He H, et al. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions[J]. Chemosphere, 2020, 245. DOI:10.1016/j.chemosphere.2019.125628 |
[47] | Li J, Zhang K N, Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution, 2018, 237: 460-467. |
[48] | Atugoda T, Wijesekara H, Werellagama D R I B, et al. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water[J]. Environmental Technology & Innovation, 2020, 19. DOI:10.1016/j.eti.2020.100971 |
[49] | Wu D H, Zhou Y, Lu G H, et al. The occurrence and risks of selected emerging pollutants in drinking water source areas in Henan, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(21). DOI:10.3390/ijerph16214109 |
[50] |
杨露敏, 宋晓翠, 张颖, 等. 自来水给水系统中有机磷酸酯的污染特征及健康风险评价[J]. 环境科学学报, 2021, 41(8): 3268-3278. Yang L M, Song X C, Zhang Y, et al. Pollution profile and risk assessment of organophosphate esters in a drinking water supply system of Tianjin[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3268-3278. |
[51] | Li J F, He J H, Li Y N, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J]. Water Research, 2019, 154: 84-93. |
[52] | Kim U J, Kannan K. Occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap water, and rainwater: implications for human exposure[J]. Environmental Science & Technology, 2018, 52(10): 5625-5633. |
[53] | Elmassry M M, Zayed A, Farag M A. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(3): 738-763. |
[54] | Zhang F, Wang Z, Vijver M G, et al. Theoretical investigation on the interactions of microplastics with a SARS-CoV-2 RNA fragment and their potential impacts on viral transport and exposure[J]. Science of the Total Environment, 2022, 842. DOI:10.1016/j.scitotenv.2022.156812 |
[55] | Li Q, Hu Y P, Kou D H, et al. Factors impacting microplastic biofilm community and biological risks posed by microplastics in drinking water sources[J]. Water, Air, & Soil Pollution, 2022, 233(6). DOI:10.1007/s11270-022-05649-y |
[56] | Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris[J]. Marine Pollution Bulletin, 2011, 62(1): 197-200. |
[57] | Zettler E R, Mincer T J, Amaral-Zettler L A. Life in the "plastisphere": microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137-7146. |
[58] | He S Y, Jia M Y, Xiang Y P, et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications[J]. Journal of Hazardous Materials, 2022, 424. DOI:10.1016/j.jhazmat.2021.127286 |
[59] | Ali I, Cheng Q H, Ding T D, et al. Micro-and nanoplastics in the environment: occurrence, detection, characterization and toxicity-A critical review[J]. Journal of Cleaner Production, 2021, 313. DOI:10.1016/j.jclepro.2021.127863 |
[60] | Yuan Z H, Nag R, Cummins E. Human health concerns regarding microplastics in the aquatic environment-From marine to food systems[J]. Science of the Total Environment, 2022, 823. DOI:10.1016/j.scitotenv.2022.153730 |
[61] | Wu D, Feng Y D, Wang R, et al. Pigment microparticles and microplastics found in human thrombi based on raman spectral evidence[J]. Journal of Advanced Research, 2022, 15. DOI:10.1016/j.jare.2022.09.004 |
[62] | Wang Z F, Lin T, Chen W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700. DOI:10.1016/j.scitotenv.2019.134520 |
[63] | Arenas L R, Gentile S R, Zimmermann S, et al. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant[J]. Science of the Total Environment, 2022, 813. DOI:10.1016/j.scitotenv.2021.152623 |
[64] | Zhang Y L, Diehl A, Lewandowski A, et al. Removal efficiency of micro-and nanoplastics (180 nm-125 μm) during drinking water treatment[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137383 |
[65] | He L, Rong H F, Wu D, et al. Influence of biofilm on the transport and deposition behaviors of nano-and micro-plastic particles in quartz sand[J]. Water Research, 2020, 178. DOI:10.1016/j.watres.2020.115808 |
[66] | Ma B W, Xue W J, Ding Y Y, et al. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment[J]. Journal of Environmental Sciences, 2019, 78: 267-275. |
[67] | Lin T, Su J M. The fate of microplastics and organic matter leaching behavior during chlorination[J]. Chemosphere, 2022, 302. DOI:10.1016/j.chemosphere.2022.134892 |
[68] | Zhou G Y, Wang Q G, Li J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism[J]. Science of the Total Environment, 2021, 752. DOI:10.1016/j.scitotenv.2020.141837 |
[69] | Ma B W, Xue W J, Hu C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment[J]. Chemical Engineering Journal, 2019, 359: 159-167. |
[70] | Prokopova M, Novotna K, Pivokonska L, et al. Coagulation of polyvinyl chloride microplastics by ferric and aluminium sulphate: optimisation of reaction conditions and removal mechanisms[J]. Journal of Environmental Chemical Engineering, 2021, 9(6). DOI:10.1016/j.jece.2021.106465 |
[71] | Radityaningrum A D, Trihadiningrum Y, Mar'Atusholihah, et al. Microplastic contamination in water supply and the removal efficiencies of the treatment plants: a case of Surabaya city, Indonesia[J]. Journal of Water Process Engineering, 2021, 43. DOI:10.1016/j.jwpe.2021.102195 |
[72] | Tong M P, He L, Rong H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169. DOI:10.1016/j.watres.2019.115284 |
[73] | Hsieh L, He L, Zhang M Y, et al. Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water[J]. Water Research, 2022, 221. DOI:10.1016/j.watres.2022.118783 |
[74] |
李圭白, 梁恒, 白朗明, 等. 绿色工艺——第三代饮用水净化工艺的发展方向[J]. 给水排水, 2021, 57(9): 1-5. Li G B, Liang H, Bai L M, et al. Green process: development direction of the third generation drinking water purification process[J]. Water & Wastewater Engineering, 2021, 57(9): 1-5. |
[75] | Hao T W, Miao M H, Cheng X H, et al. The effects of polypropylene microplastics on the DBP formation under the chlorination and chloramination processes[J]. Chemosphere, 2022, 303. DOI:10.1016/j.chemosphere.2022.135102 |
[76] | Li Y, Li J, Ding J, et al. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes[J]. Chemical Engineering Journal, 2022, 427. DOI:10.1016/j.cej.2021.131690 |
[77] | Shen M C, Song B, Zhu Y, et al. Removal of microplastics via drinking water treatment: current knowledge and future directions[J]. Chemosphere, 2020, 251. DOI:10.1016/j.chemosphere.2020.126612 |