2. 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 北京 100012;
3. 苏州科技大学环境科学与工程学院, 苏州 215009
2. State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
3. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
药品与个人护理品(pharmaceuticals and personal care products, PPCPs)作为一类典型的新型污染物在世界范围内广泛使用, 主要由抗生素类药物、非抗生素类药物和个人护理品这3部分组成, 其中抗生素类药物主要包括磺胺类、四环素类、喹诺酮类和大环内酯类等; 非抗生素类药物主要包括非甾体抗炎药、血脂调节剂、内分泌药物、β-受体阻滞药和精神刺激药物等; 个人护理品主要包括杀菌剂、驱虫剂、人造麝香、杀虫剂和防晒剂等[1].PPCPs在提高人类生活质量, 促进养殖业发展等方面有很好的应用, 但是由于人类的广泛使用和持续排放, 导致PPCPs在水环境中呈现假持久性现象, 随着食物链和食物网的传递, 对生态系统和人体健康均会造成潜在危害[2].近年来, 我国水环境中PPCPs污染的相关报道日渐增多, 众多研究者在松花江[3]、白洋淀[4]、汾河[5]、骆马湖[6]、太湖[7]、洞庭湖[8]、三亚市[9]、九龙江[10]、钦州湾[11]和宁夏第三排水沟[12]等天然水体和饮用水源地中的多种环境介质中检测出不同浓度水平的PPCPs, 因此PPCPs对水环境的影响亟待关注.
洪泽湖与高邮湖位于淮河下游地区, 是我国南水北调东线工程重要的枢纽湖泊[13].这两座湖泊分别是我国第四和第六大淡水湖泊, 均属于大型过水性湖泊[14].淮河主干来水汇入洪泽湖后, 又经淮河入江水道进入高邮湖, 最终排入长江入海[15].两座湖泊作为淮河流域经济带重要的农业、渔业和生活用水来源, 对区域内经济社会的可持续发展和南水北调东线的供水水质安全发挥着重要作用[16].当前对两座湖泊的污染报道多集中在氮磷和重金属等常规污染物方面, 有关PPCPs这一类新型污染物的研究较少[17, 18].因此, 本研究在系统分析洪泽湖、高邮湖表层水和沉积物中PPCPs浓度特征的基础上, 探讨了典型PPCPs在水/沉积物系统的分布及分配特征, 并进行了生态风险评价, 以期为淮河流域湖泊中新型污染物的赋存现状与污染防控提供数据支撑和科学依据.
1 材料与方法 1.1 仪器与试剂仪器设备:超高效液相色谱-串联三重四级杆质谱仪(Agilent LC 1260-MS 6470, 美国)、Oasis HLB固相萃取小柱(Waters, 美国)、12位固相萃取装置(Supelco Visiprep, 美国)、氮吹仪(N-EVAP-111, 南京)、涡旋混合器(QL-901, 海门)和纯水机(EPED-20TF, 南京).
标准样品:磺胺甲
主要试剂:甲醇、甲酸和乙腈购自美国Fisher公司.
1.2 样品采集与前处理于2021年11月在洪泽湖和高邮湖进行表层水样品和沉积物样品采集, 具体采样点见图 1.采样点位包括洪泽湖与高邮湖出入湖河口、中心湖区及湖湾等区域, 总计点位23个, 其中H1~H14号位于洪泽湖, G1~G9号位于高邮湖.
![]() |
图 1 洪泽湖和高邮湖采样点分布示意 Fig. 1 Sampling sites distribution in Hongze Lake and Gaoyou Lake |
野外采样前, 用甲醇和去离子水润洗采样相关设备.表层水样由有机玻璃采水器采集(水面以下0.5 m), 密闭保存于1 L的棕色玻璃瓶中, 在0~4℃冷藏保存; 沉积物样品由彼得逊采泥器采集(表面0~5 cm), 混合均匀后用锡纸包裹放入塑封袋中, 冷藏条件下运往实验室.
水样前处理:将1 L水样过滤, 加入25 ng提取内标液、500 mg Na2EDTA和25 mg抗坏血酸, 混合均匀并老化30 min.活化和平衡HLB固相萃取柱, 水样过柱.高纯水淋洗小柱, 抽真空下干燥0.5 h, 甲醇洗脱萃取柱.在水浴中以高纯氮气吹干.最后用含0.025%甲酸的甲醇水定容, 加入25 ng进样内标液, 涡旋混合.过膜移入自动进样样品瓶中, 4℃下冷藏待分析.
沉积物前处理:将沉积物样品进行冷冻干燥, 研磨过100目筛.取1 g样品放入离心管中, 加提取内标并老化30 min.加入15 mL磷酸盐缓冲液, 涡旋混合, 加入20 mL乙腈, 涡旋超声.离心并转移上层清液至锥形瓶中, 重复提取3次(第3次不加缓冲液), 旋蒸至20~30 mL.加入超纯水稀释, 加入500 mg Na2EDTA、抗坏血酸, 混匀后抽滤.后面处理步骤与水样一致.
1.3 样品测定条件采用UPLC-MS/MS系统测定PPCPs浓度, 色谱柱为Agilent eclipse plus-C18液相色谱柱(3.5 μm×150×2.1 mm).流动相A为含0.05%甲酸的高纯水, 流动相B为甲醇.进行梯度洗脱, 洗脱程序为:0~15 min, 5%B线性增加至95%B, 保留4 min, 然后瞬间降至5%B, 平衡11 min.流速为0.4mL·min-1, 柱温为20℃, 进样体积为5 μL.采用喷雾电离源(ESI), 多反应监测(MRM)模式检测, 鞘气温度为350℃, 鞘气温度为7 L·min-1, 干燥气温度为300℃, 干燥气流量为7 L·min-1, 高纯氮气压力位0.15~0.20 MPa.
1.4 质量保证与控制采用内标法对样品进行定量分析, 10个样品为一批, 每批样品中设置空白和空白加标样, 所有样品均加入内标物以控制前处理过程中的损失.各目标PPCPs的线性相关系数均大于0.99.内标回收率为72.13%~125.16%, 水和沉积物中61种PPCPs的加标回收率范围为82.75%~115.52%和72.52%~135.21%.检出限与定量限分别为3倍信噪比和10倍信噪比, 水和沉积物样品中61种PPCPs的检出限范围为0.03~0.56ng·L-1和0.02~0.45ng·g-1, 定量限范围为0.05~1.86 ng·L-1和0.09~1.68 ng·g-1, 相对偏差均小于10%, 空白样品中未检出这61种PPCPs符合质量控制要求.
1.5 生态风险评价方法采用风险商(RQ)对水体中PPCPs的生态风险进行评价[19], 分为4级:RQ<0.01为无风险, 0.01≤RQ<0.1为低风险, 0.1≤RQ<1为中风险, RQ≥1为高风险, 具体计算公式为:
![]() |
式中, MEC为环境实测浓度, ng·L-1; PNEC为预测无效应浓度, ng·L-1.
将沉积物PPCPs含量转换为间隙水中PPCPs的浓度, 然后通过水生生物毒性效应数据对沉积物进行生态风险评价[20], 其计算公式为:
![]() |
式中, MEC为环境实测含量, ng·g-1; PNECwater为水体中预测无效应浓度, ng·L-1; Koc为有机碳化合物含量, L·kg-1; Foc为有机碳在沉积物中的含量(经实验测定, 取值为0.01 g·g-1).
采用联合风险商(RQsum)来表征PPCPs对水生生态系统的生态风险[21], 计算公式为:
![]() |
洪泽湖和高邮湖表层水PPCPs检出结果如图 2所示.其中洪泽湖表层水61种PPCPs共检出21种, 高邮湖检出19种.从浓度水平来看, 洪泽湖表层水ΣPPCPs浓度范围在1.56~2 534.44 ng·L-1之间, 平均值为204.19 ng·L-1, 检出浓度最高的物质为林可霉素和舒必利, 林可霉素和舒必利最高值分别为551.26ng·L-1和63.26ng·L-1; 高邮湖表层水ΣPPCPs浓度范围在3.32~1 027.47 ng·L-1之间, 平均值为98.28 ng·L-1, 检出浓度最高的物质也是林可霉素和舒必利, 最高值分别为223.04ng·L-1和38.72ng·L-1.从检出率方面来看, 洪泽湖表层水中检出率达到100%的PPCPs共有16种, 其余PPCPs的检出率在7.14%~92.86%之间; 高邮湖表层水中检出率为100%的PPCPs共有15种, 其余PPCPs的检出率在11.11%~88.89%之间.
![]() |
图 2 洪泽湖和高邮湖表层水中PPCPs浓度分布 Fig. 2 Distribution of PPCPs content in surface water of Hongze Lake and Gaoyou Lake |
从主要检出物质来看, 林可霉素、舒必利和克林霉素都是两座湖泊表层水的主要检出物质, 且与同是淮河流域的骆马湖检出结果相似[22], 但是同其他河流湖泊相比, 咖啡因和避蚊胺在两座湖泊检出浓度则较低, 不是主要污染物.从浓度范围来看, 洪泽湖ΣPPCPs浓度范围(1.56~2 534.44 ng·L-1)整体高于高邮湖(3.32~1 027.47 ng·L-1), 可能与洪泽湖作为淮河流域中游大型的过水性湖泊, 既是上游地区污染的“汇”, 也是下游地区和南水北调污染的“源”有关[23].洪泽湖和高邮湖ΣPPCPs浓度范围明显低于北运河(132~25 474 ng·L-1)[24]、白洋淀(42.3~7 710 ng·L-1)[25]和骆马湖(2.67~6 514.91 ng·L-1)[22], 而高于长江南京段(2.25~739.40ng·L-1)[26]、长江中游(35.40~704.57ng·L-1)[27]、洞庭湖(3.03~695.7 ng·L-1)[8]、金沙江(1.26~525.8 ng·L-1)[28]、河南省水源地(24.2~317.6 ng·L-1)[29]和汉江(37.47~292.96 ng·L-1)[30].总体来说, 洪泽湖和高邮湖表层水中PPCPs浓度处于中低水平.
从空间分布来看, 洪泽湖H13和H8点位的ΣPPCPs浓度最高, 分别为706.84 ng·L-1和434.57ng·L-1. H13点位于淮河干流, H8点位于徐洪河, 这两条河均为洪泽湖的主要入湖河流, 尤其淮河干流更是占到洪泽湖70%以上入湖水量, 入湖河流接纳的生活污水和工业废水汇入可能造成了高浓度的检出[31].高邮湖G2和G9点位的ΣPPCPs浓度高, 分别为331.53ng·L-1和339.05ng·L-1.G2点位位于淮河入江水道, G9点位位于金湖县禽畜养殖区, 淮河入江水道是连接洪泽湖与高邮湖的重要河道, 因而淮河经洪泽湖来水对高邮湖北部湖区PPCPs有一定影响, 而金湖县养殖区污水的外源输入可能是G9点位浓度高的主要原因[32].
洪泽湖和高邮湖表层水PPCPs组分特征如图 3所示.根据检出情况, 洪泽湖和高邮湖表层水中抗生素类药物的占比明显高于非抗生素类药物和个人护理品的占比.洪泽湖和高邮湖表层水抗生素类药物占比分别为81.7%和79.3%, 平均值分别为250.19ng·L-1和164.49ng·L-1; 非抗生素类药物占比分别为16.4%和18.7%, 平均值分别为50.29ng·L-1和38.74ng·L-1; 个人护理品占比分别为1.9%和2.0%, 平均值分别为5.84 ng·L-1和4.25 ng·L-1.造成这种现象的原因可能是养殖业是研究区周边几个县市的主要产业(盱眙的龙虾、高邮的麻鸭和洪泽的螃蟹), 大量养殖废水的排放造成了表层水中抗生素类药物的高浓度检出[33].
![]() |
图 3 洪泽湖和高邮湖表层水中PPCPs组分对比 Fig. 3 Comparison of PPCPs components in surface water of Hongze Lake and Gaoyou Lake |
洪泽湖和高邮湖沉积物中PPCPs检出结果如图 4所示.其中洪泽湖沉积物61种PPCPs共检出24种, 高邮湖检出16种.从含量水平来看, 洪泽湖沉积物ΣPPCPs含量范围在1.7~926.7 ng·g-1之间, 平均值为134.74 ng·g-1, 检出含量最高的物质为强力霉素和四环素, 最高值分别为97.23ng·g-1和63.61ng·g-1; 高邮湖沉积物ΣPPCPs含量范围在1.02~289.37ng·g-1之间, 平均值为49.64ng·g-1, 检出含量最高的物质为强力霉素和酮洛芬, 最高值分别为36.17ng·g-1和29.91ng·g-1.从检出率方面来看, 洪泽湖沉积物中检出率达到100%的PPCPs共有9种, 其余PPCPs的检出率在8.3%~75%之间; 高邮湖沉积物中检出率为100%的PPCPs共有9种, 其余PPCPs的检出率在12.5%~75%之间.
![]() |
图 4 洪泽湖和高邮湖沉积物中PPCPs含量分布 Fig. 4 Distribution of PPCPs content in sediments of Hongze Lake and Gaoyou Lake |
从主要检出物质来看, 强力霉素、酮洛芬和四环素均为两座湖泊沉积物中的主要检出物质, 且主要以四环素类抗生素(TCs)为主.从含量范围来看, 洪泽湖ΣPPCPs含量范围(1.7~926.7 ng·g-1)显著低于珠江口(152~1 483 ng·g-1)[34], 高于骆马湖(0.25~330.02 ng·g-1)[35]、上海青浦区水体(0.07~688.59 ng·g-1)[36]和太湖(1.60~129 ng·g-1)[37]; 高邮湖ΣPPCPs含量范围(1.02~289.37 ng·g-1)低于白洋淀(131.65~750.27 ng·g-1)[38], 高于黄河三角洲(40.97~207.44 ng·g-1)[39]、汉江(3.35~171.84 ng·g-1)[30]和西藏申扎镇水体(0.96~56.38 ng·g-1)[40].洪泽湖沉积物中PPCPs污染水平整体高于高邮湖, 且同国内其他河湖相比处于中高水平, 这可能与其检出种类主要以TCs为主有关, TCs本身官能团较多, 容易吸附到沉积物上, 而高邮湖水量比洪泽湖小, 因而处于中低水平[41].
从空间分布来看, 洪泽湖H1和H3点位的ΣPPCPs含量最高, 分别为353.63ng·g-1和336.52ng·g-1.H1和H3点位于洪泽湖中北部的非过水区, 水力交互较小, 污染物更易沉积, 周边养殖废水的排入都可能导致该点位PPCPs含量高于其他点位.高邮湖G7点位的ΣPPCPs含量最高, 为196.48 ng·g-1.G7点位于南部郭集镇水产养殖区, 该养殖区拥有2 km2的罗氏沼虾养殖面积, TCs的大量使用可能造成了该点位的高含量[42].
洪泽湖和高邮湖沉积物PPCPs组分特征如图 5所示.洪泽湖和高邮湖沉积物中抗生素类药物的占比明显高于非抗生素类药物和个人护理品的占比.洪泽湖和高邮湖沉积物抗生素类药物占比分别为80.7%和69.7%, 含量平均值分别为220.12ng·g-1和83.45ng·g-1; 非抗生素类药物占比分别为18.1%和28.8%, 含量平均值分别为49.48ng·g-1和34.46ng·g-1; 个人护理品占比分别为1.2%和1.5%, 含量平均值分别为3.18 ng·g-1和1.84 ng·g-1.
![]() |
图 5 洪泽湖和高邮湖沉积物中PPCPs组分对比 Fig. 5 Comparison of PPCPs components in sediments of Hongze Lake and Gaoyou Lake |
当环境条件发生变化时, 沉积物可作为PPCPs的二次污染源, 将PPCPs重新释放到水体中, 因此PPCPs在水/沉积物系统的分配行为日益引发关注.有机污染物在水/沉积物系统的分配系数Kd值(沉积物与水中污染物含量比值)是用来研究其在水环境中分配行为的重要参数[43].考虑到研究区水和沉积物之间检测频率的差异, 仅选择表层水和沉积物中检测频率较高的PPCPs进行分析.
由图 6(a)和图 6(b)可以看出, 洪泽湖与高邮湖典型PPCPs的lgKd值介于-3.88~1.97 L·kg-1和-3.19~2.53L·kg-1之间, 同上海市青浦区水体(lgKd值范围为2.86~5.61L·kg-1)[36]和黄河三角洲(lgKd值范围为1.55~4.06L·kg-1)[39]相比较低, 表明研究区内检出率较高的PPCPs更倾向于停留在水中.其中, 酮洛芬(KPF)是研究区内的lgKd值范围最高的PPCPs(洪泽湖0.83~1.97 L·kg-1, 均值1.32 L·kg-1; 高邮湖1.26~2.53 L·kg-1, 均值1.78 L·kg-1), 这表明KPF更倾向于吸附到沉积物上, 这可能与KPF的辛醇-水分配系数(lgKow为3.12)较高有关.此外, 研究区内不同采样点和不同种类PPCPs的lgKd值变化较大, 这表明PPCPs自身性质、沉积物特性及采样点环境因素都是影响PPCPs在水/沉积物系统分配的重要因素[44].如图 6(c)和图 6(d)所示, 将Kd值除以对应沉积物TOC值计算有机碳归一化分配系数(Koc), 来进一步探究TOC对PPCPs的分配影响作用, 洪泽湖与高邮湖lgKoc值范围分布为-0.8~5.09 L·kg-1和0.03~5.38 L·kg-1[45].如图 6(e)和图 6(f)所示, 将目标PPCPs的lgKd值和lgKoc值进行相关性分析发现PPCPs的lgKd和lgKoc之间存在显著线性关系, 表明沉积物TOC值能够影响沉积物和水间PPCPs分配特征, 这与剧泽佳等[46]在石家庄地表水得出的抗生素Kd值同沉积物TOC之间呈显著相关的研究结论相似.
![]() |
图 6 洪泽湖和高邮湖典型PPCPs的分配特征 Fig. 6 Distribution characteristics of typical PPCPs in Hongze Lake and Gaoyou Lake |
根据检测的PPCPs数据, 运用商值法计算PPCPs的RQ值, 研究区表层水和沉积物PPCPs对藻类、蚤类和鱼类的生态风险评价结果如图 7所示.不同营养级生物对PPCPs的敏感程度存在差异, 藻类和蚤类的敏感程度明显高于鱼类, 尤其PPCPs对藻类的风险最高.以藻类为保护对象, 研究区表层水中LIN的风险等级最高, 达到了中风险(0.1≤RQ<1), 沉积物中DOX、TC和KPF的RQ均大于0.1, 处于中风险; 以蚤类为保护对象, 研究区表层水中SDZ、SMM、SPD、SMX、LIN、CLD、MTP和SP的RQ处于低风险(0.01≤RQ<0.1), 沉积物中SDZ、DOX、TC和KPF为低风险; 以鱼类为保护对象, 研究区表层水和沉积物PPCPs污染物均无明显风险(RQ<0.01).
![]() |
图 7 表层水和沉积物中目标PPCPs生态风险评价 Fig. 7 Ecological risk assessment of the target PPCPs in the surface water and sediments |
从空间分布来看, 研究区各采样点的RQsum如图 8所示.表层水中H8、H11、H13点位的藻类风险水平达到中风险(0.1≤RQsum<1), 这3个点位均位于洪泽湖, 其他点位的藻类为低风险水平(0.01≤RQsum<0.1), 蚤类所有点位均为低风险, 鱼类为无风险(RQsum<0.01); 沉积物中H1和G7点位的藻类风险水平为中风险, H1位于洪泽湖, G7位于高邮湖, 藻类在其他点位均为低风险, 鱼类在洪泽湖H1、H2和H3点位达到低风险, 其余点位均为无风险, 蚤类在所有点位均为低风险.总体而言, 研究区所有点位表层水和沉积物的藻类风险高于蚤类和鱼类, 表层水和沉积物中PPCPs对于洪泽湖的总体风险大于高邮湖.
![]() |
图 8 各采样点PPCPs生态风险 Fig. 8 Ecological risk of PPCPs at each sampling site |
(1) 洪泽湖和高邮湖表层水中ΣPPCPs浓度分别为1.56~2 534.44 ng·L-1和3.32~1 027.47 ng·L-1, 沉积物中ΣPPCPs含量分别为1.7~926.7 ng·g-1和1.02~289.37 ng·g-1.表层水中林可霉素、舒必利检出浓度较高, 沉积物中强力霉素、四环素检出浓度较高, 都以抗生素类PPCPs为主要组分.PPCPs含量的空间分布受入湖河流和周边养殖影响较大, 整体呈现洪泽湖高、高邮湖低的特征.
(2) PPCPs水/沉积物系统分配特征变化较大, 洪泽湖与高邮湖典型PPCPs的lgKd值介于-3.88~1.97L·kg-1和-3.19~2.53L·kg-1之间, PPCPs整体倾向停留在水相, TOC对PPCPs在水/沉积物系统的分配行为影响显著.
(3) 生态风险评价结果显示, 表层水和沉积物中PPCPs对藻类的生态风险明显高于蚤类和鱼类, 表层水中林可霉素对藻类均处于中风险, 沉积物中四环素、强力霉素和酮洛芬对藻类均处于中风险.各点位空间风险评价结果显示, 表层水中洪泽湖H8、H11和H13点位藻类为中风险, 沉积物中洪泽湖H1点位、高邮湖G7点位藻类为中风险.沉积物中PPCPs的生态风险值低于表层水体, 洪泽湖的生态风险高于高邮湖.
[1] | Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: a review[J]. Science of the Total Environment, 2021, 788. DOI:10.1016/j.scitotenv.2021.147819 |
[2] | Su C, Cui Y, Liu D, et al. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: which chemicals are the prioritized ones?[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137652 |
[3] | He S N, Dong D M, Zhang X, et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China)[J]. Environmental Science and Pollution Research, 2018, 25(24): 24003-24012. DOI:10.1007/s11356-018-2459-3 |
[4] | Zhang P W, Zhou H D, Li K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in North China[J]. Environmental Geochemistry and Health, 2018, 40(4): 1525-1539. DOI:10.1007/s10653-018-0069-0 |
[5] | Wang L F, Li H, Dang J H, et al. Occurrence, distribution, and partitioning of antibiotics in surface water and sediment in a typical tributary of Yellow River, China[J]. Environmental Science and Pollution Research, 2021, 28(22): 28207-28221. DOI:10.1007/s11356-021-12634-1 |
[6] | Kong M, Bu Y Q, Zhang Q, et al. Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water, China[J]. Journal of Environmental Management, 2021, 280. DOI:10.1016/j.jenvman.2020.111738 |
[7] | Kong M, Xing L Q, Yan R M, et al. Spatiotemporal variations and ecological risks of typical antibiotics in rivers inflowing into Taihu Lake, China[J]. Journal of Environmental Management, 2022, 309. DOI:10.1016/j.jenvman.2022.114699 |
[8] | Xu X M, Xu Y R, Xu N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam[J]. Chemosphere, 2022, 301. DOI:10.1016/j.chemosphere.2022.134721 |
[9] |
任丙南, 耿静. 三亚市水体中PPCPs的污染水平、分布特征及生态风险评价[J]. 环境科学, 2021, 42(10): 4717-4726. Ren B N, Geng J. Occurrence, distribution, and ecological risk assessment of pharmaceutical and personal care products in the aquatic environment of Sanya City, China[J]. Environmental Science, 2021, 42(10): 4717-4726. DOI:10.13227/j.hjkx.202102031 |
[10] | Hong B, Lin Q Y, Y uS, et al. Urbanization gradient of selected pharmaceuticals in surface water at a watershed scale[J]. Science of the Total Environment, 2018, 634: 448-458. DOI:10.1016/j.scitotenv.2018.03.392 |
[11] | Cui Y F, Wang Y H, Pan C G, et al. Spatiotemporal distributions, source apportionment and potential risks of 15 pharmaceuticals and personal care products (PPCPs) in Qinzhou Bay, South China[J]. Marine Pollution Bulletin, 2019, 141: 104-111. DOI:10.1016/j.marpolbul.2019.02.012 |
[12] |
李富娟, 高礼, 李凌云, 等. 宁夏第三排水沟中药物和个人护理品(PPCPs)的污染特征与生态风险评估[J]. 环境科学, 2022, 43(8): 4087-4096. Li F J, Gao L, Li L Y, et al. Contamination characteristics and ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in the Third Drain of Ningxia[J]. Environmental Science, 2022, 43(8): 4087-4096. |
[13] | Zhang X J, Wang G Q, Tan Z X, et al. Effects of ecological protection and restoration on phytoplankton diversity in impounded lakes along the eastern route of China's South-to-North Water Diversion Project[J]. Science of the Total Environment, 2021, 795. DOI:10.1016/j.scitotenv.2021.148870 |
[14] |
卞宇峥, 薛滨, 张风菊. 近三百年来洪泽湖演变过程及其原因分析[J]. 湖泊科学, 2021, 33(6): 1844-1856. Bian Y Z, Xue B, Zhang F J. The changes of Lake Hongze and its driving forces over the past three hundred years[J]. Journal of Lake Science, 2021, 33(6): 1844-1856. |
[15] |
杨霄, 韩昭庆. 1717-2011年高宝诸湖的演变过程及其原因分析[J]. 地理学报, 2018, 73(1): 129-137. Yang X, Han Z Q. The change of the Gaobao lakes and its driving forces (1717-2011)[J]. Acta Geographica Sinica, 2018, 73(1): 129-137. |
[16] |
邓恒. 洪泽湖与淮河河湖关系及其调蓄能力研究[D]. 天津: 天津大学, 2018. Deng H. Study on the relationship between Hongze Lake and Huaihe River and its storage capacity[D]. Tianjin: Tianjin University, 2018. |
[17] |
韩年, 袁旭音, 周慧华, 等. 洪泽湖入湖河流沉积物有机磷分布特征及外源输入对其形态转化的影响[J]. 湖泊科学, 2020, 32(3): 665-675. Han N, Yuan X Y, Zhou H H, et al. Distribution characteristics of organic phosphorus in the sediments of rivers entering the Lake Hongze and the effects of exogenous substances on their fraction transformation[J]. Journal of Lake Science, 2020, 32(3): 665-675. |
[18] |
胡斌, 王沛芳, 张楠楠, 等. 洪泽湖溶解态有机质与重金属汞的结合特性[J]. 环境科学, 2022, 43(5): 2510-2517. Hu B, Wang P F, Zhang N N, et al. Binding affinity between heavy metal hg and dissolved organic matter in Hongze Lake[J]. Environmental Science, 2022, 43(5): 2510-2517. |
[19] | Verlicchi P, Al Aukidy M, Galletti A, et al. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment[J]. Science of the Total Environment, 2012, 430: 109-118. DOI:10.1016/j.scitotenv.2012.04.055 |
[20] | Hu Y, Yan X, Shen Y, et al. Antibiotics in surface water and sediments from Hanjiang River, Central China: occurrence, behavior and risk assessment[J]. Ecotoxicology and Environmental Safety, 2018, 157: 150-158. DOI:10.1016/j.ecoenv.2018.03.083 |
[21] | Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects[J]. Toxicology Letters, 2003, 142(3): 185-194. DOI:10.1016/S0378-4274(03)00068-7 |
[22] |
陈宇, 王涌涛, 黄天寅, 等. 骆马湖水体中药品及个人护理品的污染特征及风险评估[J]. 环境科学研究, 2021, 34(4): 902-909. Chen Y, Wang Y T, Huang T Y, et al. Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J]. Research of Environmental Sciences, 2021, 34(4): 902-909. |
[23] |
刘超, 胡智华, 姚天启, 等. 洪泽湖入湖河流对湖区水质的响应关系[J]. 江苏水利, 2022(1): 40-46, 50. Liu C, Hu Z H, Yao T Q, et al. Response of inflow river to the water quality of Hongze Lake[J]. Jiangsu Water Resources, 2022(1): 40-46, 50. |
[24] | Meng Y, Zhang J L, Fiedler H, et al. Influence of land use type and urbanization level on the distribution of pharmaceuticals and personal care products and risk assessment in Beiyun River, China[J]. Chemosphere, 2022, 287. DOI:10.1016/j.chemosphere.2021.132075 |
[25] | Yang L, Wang T Y, Zhou Y Q, et al. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China[J]. Science of the Total Environment, 2021, 760. DOI:10.1016/j.scitotenv.2020.144080 |
[26] | Yang H H, Lu G H, Yan Z H, et al. Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113132 |
[27] | He P, Wu J M, Peng J Q, et al. Pharmaceuticals in drinking water sources and tap water in a city in the middle reaches of the Yangtze River: occurrence, spatiotemporal distribution, and risk assessment[J]. Environmental Science and Pollution Research International, 2022, 29(2): 2365-2374. |
[28] | Liu S, Wang C, Wang P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China[J]. Environmental Research, 2021, 198. DOI:10.1016/j.envres.2020.110449 |
[29] |
周颖, 吴东海, 陆光华, 等. 河南省地表水源中PPCPs分布及生态风险评价[J]. 环境科学, 2021, 42(1): 159-165. Zhou Y, Wu D H, Lu G H, et al. Distribution and ecological risk assessment of PPCPs in drinking water sources of Henan Province[J]. Environmental Science, 2021, 42(1): 159-165. |
[30] |
高月, 李杰, 许楠, 等. 汉江水相和沉积物中药品和个人护理品(PPCPs)的污染水平与生态风险[J]. 环境化学, 2018, 37(8): 1706-1719. Gao Y, Li J, Xu N, et al. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang River[J]. Environmental Chemistry, 2018, 37(8): 1706-1719. |
[31] |
万杰, 袁旭音, 叶宏萌, 等. 洪泽湖不同入湖河流沉积物磷形态特征及生物有效性[J]. 中国环境科学, 2020, 40(10): 4568-4579. Wan J, Yuan X Y, Ye H M, et al. Characteristics and bioavailability of different forms of phosphorus in sediments of rivers flowing into Hongze Lake[J]. China Environmental Science, 2020, 40(10): 4568-4579. |
[32] |
翁郁馨, 杨慧婷, 陈辉辉, 等. 江苏高宝邵伯湖表层水体典型精神类药物及其代谢产物的污染水平、分布特征及风险评估[J]. 湖泊科学, 2022, 34(6): 1993-2007. Weng Y X, Yang H T, Chen H H, et al. Pollution level, distribution characteristics and risk assessment of psychotropic substances and their metabolites in surface water of Lakes Gaoyou, Shaobo and Baoying, Jiangsu Province[J]. Journal of Lake Science, 2022, 34(6): 1993-2007. |
[33] | Divya K R, Zhao S S, Chen Y S, et al. A comparison of zooplankton assemblages in Nansi Lake and Hongze Lake, potential influences of the East Route of the South-to-North Water Transfer Project, China[J]. Journal of Oceanology and Limnology, 2021, 39(2): 623-636. |
[34] | Li S, Shi W Z, Li H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, South China[J]. Science of the Total Environment, 2018, 636: 1009-1019. |
[35] |
陈宇, 许亚南, 项颂, 等. 骆马湖表层沉积物中PPCPs的赋存特征及生态风险评估[J]. 环境科学研究, 2021, 34(8): 1835-1843. Chen Y, Xu Y N, Xiang S, et al. Characteristics and ecological risk assessment of PPCPs in surface sediments of Luoma Lake[J]. Research of Environmental Sciences, 2021, 34(8): 1835-1843. |
[36] |
张智博, 段艳平, 沈嘉豪, 等. 长三角一体化示范区青浦区水环境中22种PPCPs的多介质分布特征及风险评估[J]. 环境科学, 2022, 43(1): 349-362. Zhang Z B, Duan Y P, Shen J H, et al. Multimedia distribution characteristics and risk assessment of 22 PPCPs in the water environment of Qingpu District, Yangtze River Delta demonstration area[J]. Environmental Science, 2022, 43(1): 349-362. |
[37] |
张盼伟, 周怀东, 赵高峰, 等. 太湖表层沉积物中PPCPs的时空分布特征及潜在风险[J]. 环境科学, 2016, 37(9): 3348-3355. Zhang P W, Zhou H D, Zhao G F, et al. Spatial, temporal distribution characteristics and potential risk of PPCPs in surface sediments from Taihu Lake[J]. Environmental Science, 2016, 37(9): 3348-3355. |
[38] |
王同飞, 张伟军, 李立青, 等. 白洋淀清淤示范区沉积物中抗生素和多环芳烃的分布特征与风险评估[J]. 环境科学, 2021, 42(11): 5303-5311. Wang T F, Zhang W J, Li L Q, et al. Distribution characteristics and risk assessment of antibiotics and polycyclic aromatic hydrocarbons in the sediments of desilting demonstration area in Baiyangdian Lake[J]. Environmental Science, 2021, 42(11): 5303-5311. |
[39] | Zhao S N, Liu X H, Cheng D M, et al. Temporal-spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China[J]. Science of the Total Environment, 2016, 569. |
[40] |
侯先宇, 高俊敏, 王德睿, 等. 西藏申扎镇水土环境中抗生素的残留水平与分布特征[J]. 中国环境科学, 2021, 41(12): 5849-5856. Hou X Y, Gao J M, Wang D R, et al. Residue levels and distribution characteristics of antibiotics in the soil and water environment of Shenzha Town, Tibet[J]. China Environmental Science, 2021, 41(12): 5849-5856. |
[41] | Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China[J]. Journal of Hazardous Materials, 2008, 151(2-3): 833-839. |
[42] | 孙文祥, 许飞, 魏文志. 高邮湖生态修复区渔业资源恢复效果评价[J]. 水产养殖, 2020, 41(1): 64-67, 70. |
[43] | Cheng D M, Xie Y J, Yu Y J, et al. Occurrence and partitioning of antibiotics in the water column and bottom sediments from the intertidal zone in the Bohai Bay, China[J]. Wetlands, 2016, 36(1): 167-179. |
[44] | Li S, Huang Z, Wang Y, et al. Migration of two antibiotics during resuspension under simulated wind-wave disturbances in a water-sediment system[J]. Chemosphere, 2018, 192: 234-243. |
[45] | Cao S S, Duan Y P, Tu Y J, et al. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: occurrence and human health risk assessment[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137624 |
[46] |
剧泽佳, 付雨, 赵鑫宇, 等. 喹诺酮类抗生素在城市典型水环境中的分配系数及其主要环境影响因子[J]. 环境科学, 2022, 43(9): 4543-4555. Ju Z J, Fu Y, Zhao X Y, et al. Distribution coefficient of QNs in urban typical water and its main environmental influencing factors[J]. Environmental Science, 2022, 43(9): 4543-4555. |