2. 山东省地质矿产勘查开发局八〇一水文地质工程地质大队, 济南 250014;
3. 山东省农业生态与资源保护总站, 济南 250100;
4. 山东省农业技术推广中心, 济南 250100
2. No. 801 Hydrogeology and Engineering Geology Brigade of Shandong Exploration Bureau of Geology and Mineral Resources, Ji'nan 250014, China;
3. Rural Energy and Environment Agency of Shandong, Ji'nan 250100, China;
4. Agricultural Technology Promotion Center of Shandong Province, Ji'nan 250100, China
微塑料(microplastics, MPs)指粒径小于5 mm的塑料, 最初在海洋中被发现.据调查, 每年排入海洋的微塑料达9.3~23.6 t[1].与海洋相比, 土壤中存在的微塑料是海洋的4~23倍[2], 土壤成为微塑料重要的“汇”.微塑料污染在第二届联合国环境大会上被列入环境与生态科学研究领域的第二大科学问题, 成为重大全球环境问题之一[3].微塑料可通过有机肥和农膜使用进入农田土壤, 其中, 我国经有机肥使用进入农田土壤的微塑料含量高达52.4~26 400 t[1].农业灌溉和大气沉降也是微塑料进入农田土壤的重要途径[4].全球各地不同土地利用方式下的农田土壤中均有微塑料检出[5, 6].微塑料不仅会影响土壤容重、微生物群落、土壤动植物等物理化学和生物学性质[7, 8], 还可与其他污染物结合形成复合污染[9~16], 最终对环境产生潜在生态风险和对人体产生潜在健康风险.
基于Web of Science和中国知网(CNKI)数据库, 查询了2012~2022年间发表的关于土壤微塑料的学术论文, 有关土壤微塑料的研究增长较快, 已成为研究的热点和焦点.基于此, 本文总结了国内外有关农田土壤微塑料行为特征的最新研究进展, 包括土壤微塑料的分布、丰度、来源和形貌等方面的特征, 同时对土壤中微塑料的迁移规律进行了总结, 最后对土壤微塑料的研究重点进行了展望, 以期为土壤微塑料的污染风险管控与治理提供科学依据.
1 全球农田土壤中微塑料分布和丰度全球农田土壤中微塑料的分布和丰度调查研究比较匮乏, 加之微塑料检测和计数尚未有统一标准, 导致全球各地农田土壤中微塑料丰度差异较大.从现有研究结果来看, 全球内所调查农田土壤均有微塑料检出(表 1).德国南部传统耕作方式下的农田土壤受微塑料影响较小, 其丰度范围为0~1.25个·kg-1, 平均值仅为0.34个·kg-1; 相比德国, 加拿大、伊朗、瑞士农田土壤微塑料丰度较高, 最高丰度值接近600个·kg-1; 墨西哥菜田土壤微塑料丰度平均值达到870个·kg-1; 西班牙和巴基斯坦农田土壤微塑料丰度范围接近; 智利和韩国农田土壤微塑料丰度变异较大, 丹麦农田土壤微塑料丰度异常高, 最高丰度值达236 000个·kg-1.
![]() |
表 1 全球不同国家和地区农田土壤微塑料基本特征1) Table 1 Characteristics of MPs in farmland soil in different countries and regions around the world |
相比国外, 我国农田土壤微塑料调查研究虽然起步较晚, 仍取得了一定的进展.有研究发现, 除中国香港、中国澳门和中国台湾未见相关报道外, 我国大部分农田土壤均有微塑料检出(表 1), 从时空分布上看, 各省市农田土壤微塑料丰度在空间上呈现较大差异, 具体表现为:同一利用方式下不同地区和不同利用类型农田土壤微塑料丰度均呈现较大差异. 就菜田而言, 河北土壤微塑料丰度平均值最高, 均值为2 110个·kg-1, 其次是北京、山东、河南和安徽, 均值分别为1 246、1 444、632和360个·kg-1, 上海、贵州、重庆、福建和四川土壤微塑料丰度平均值低于100个·kg-1.对于粮田来说, 甘肃土壤微塑料丰度平均值高达5 090个·kg-1, 其次是黑龙江和江西.果园土壤微塑料丰度虽然较低, 但依然呈现一定分布差异.由于多数研究未将农田进一步细分利用类型, 吉林、辽宁、云南、西藏、江苏、浙江、湖北、内蒙古、陕西、山西和宁夏等地只列出农田土壤中微塑料的丰度, 难以准确对比分析不同地区间特定土地利用类型下的土壤微塑料丰度差异.因此, 下一步有必要从建立土壤微塑料数据库, 以便有效监测农田土壤可能发生的微塑料污染.
2 农田土壤微塑料来源农田土壤中微塑料的来源主要包括农用塑料薄膜及农田投入品塑料包装、有机肥、污泥、地表径流与农业灌溉、大气沉降和轮胎磨损颗粒等.
2.1 农用塑料薄膜及农田投入品塑料包装塑料薄膜因其显著的经济效益被广泛用于农业生产, 其主要成分为PVC和PE.我国是农膜消费大国.国家统计局数据显示, 2018年全国农用薄膜使用量246.5万t, 地膜使用量140.4万t, 覆盖面积1.77×107 hm2(约2.66亿亩), 在新疆、山东、内蒙古和甘肃等9省区覆盖面积均超过6.67×105 hm2(约1 000万亩).Zhang等[51]研究发现, 我国每年有18.6%的农膜留在农田土壤中, 西北和黄土高原地区土壤塑料残膜量达71.9~259.1 kg·hm-2, 当残膜量超过240 kg·hm-2时, 作物产量会显著下降[52].土壤中残留的薄膜会在光照和微生物等外力作用下逐渐破碎分解成微塑料[53], 并且微塑料残留量会随着地膜使用年限增加而增加[33].此外, 中国作为农业大国, 化肥和农药使用量大, 塑料包装废弃物产生量大.据统计, 2018年化肥包装废弃物每年达15万t, 2019年农药废弃包装多达1010个[54], 大部分为塑料材质, 多数残留在田间地头或附近水体, 回收难度大, 最终会分解成微塑料并通过灌溉等形式进入农田.因此, 需要加强残膜和农田投入品塑料包装的回收和监管.
2.2 有机肥的使用有机肥是农业生产过程中重要的投入品, 在菜田中使用较为广泛.我国在推进果菜茶有机肥替代化肥行动以来, 有机肥应用更加广泛.然而, 有机肥也是土壤微塑料的重要来源.德国学者调查发现有机肥中含粒径大于1 mm的塑料碎片丰度达到14~895个·kg-1[55], 进一步发现粒径>0.5 mm的微塑料含量达到2.38~180 mg·kg-1[56], 更有学者发现有机肥中塑料高达1 200 mg·kg-1[57].尽管如此, 上述有机肥中统计的数据仍未将0.5 mm以下的微塑料计算在内.澳大利亚和德国分别制定了相关标准, 澳大利亚允许有机肥中存在0.5%的硬质塑料和0.05%的轻质塑料, 德国则允许有机肥中含有0.1%的塑料(未考虑粒径小于2 mm的微塑料)[55].我国是有机肥生产和使用大国, 据估算, 每年由有机肥施用带入的农田土壤微塑料量最高可达26 400 t[1].加强有机肥制作原料的监管是限制微塑料进入农田土壤的重要措施.
2.3 污泥的使用污泥含有大量的有机质、大量和中微量元素, 在国外通常被当作肥料施用到农田中[56]. 北美和欧洲约有50%的城市污泥农用, 芬兰等国的污泥农用比例高达80%[2].然而, 国内外大量研究表明, 污泥中含有大量的微塑料, 其含量范围为1 500~56 000个·kg-1[58~60].常规污泥预处理方法难以有效去除微塑料[59], 污泥进入土壤后比如导致土壤微塑料丰度增加.据估算, 欧洲和北美每年进入农田土壤的微塑料分别达6.3×104~4.3×105 t和4.3×104~3.0×105 t[2].我国每年通过污泥进入环境中的微塑料约有1.56×1014个.限制含高丰度微塑料的污泥农用是防控农田土壤微塑料增加的另一重要举措.
2.4 地表径流和农业灌溉地表径流、渗透和农业灌溉是微塑料进入农田土壤中的一个重要途径.Pion-Colin等[61]研究发现墨西哥Tijuana地区雨水径流中微塑料丰度为66~191个·L-1, 据此估算得出雨水径流中微塑料的年排放量为8×105~3×106个·hm-2, 该部分径流可直接或通过渗透进入农田土壤.全球范围内, 农业灌溉水源包括地表水、地下水和净化污水.我国在长江和翻阳湖等大型地表水体均有微塑料的发现[62~64], 例如, 重庆至宜昌江段长江水体中微塑料丰度为46.7~204个·L-1, 鄱阳湖中表面水体微塑料丰度为5~34个·L-1, 青藏高原地区河流表层水同样发现微塑料的存在, 丰度为0.48~0.97个·L-1[65].美国的伊利诺伊州地下水中微塑料污染的最高丰度可达15.2个· L-1[66].据统计, 全球目前有2×107 hm2的农田使用污水(含未处理和部分处理)进行灌溉, 而经处理厂处理后的污水也不能完全拦截去除微塑料, 微塑料丰度仍可达到1个·L-1.所以, 需要从源头上切断微塑料进入水体的途径.
2.5 大气沉降大气沉降也是微塑料进入农田土壤的途径之一.Allen等[67]研究发现微塑料通过大气传输的距离可高达95 km, 并且数量惊人.巴黎地区大气环境中每天沉降的微塑料为29~280个·m-2, 每年沉降的微塑料可达到3~10 t, 其中纤维状占比达90%.我国烟台大气中微塑料的年沉降量高达1.46×105个·m-2[68], 东莞和上海等城市也发现大气中存在纤维状的微塑料[69].然而, 目前有关微塑料在大气和土壤之间传输的相关性研究相对较少, 未来需加强探索.
2.6 轮胎磨损颗粒随着经济社会的发展和农业机械的普及, 人均汽车和各类农业机械保有量持续增加, 轮胎磨损颗粒在土壤中也逐渐被发现[70~72].有研究表明, 轮胎颗粒可从道路扩散至100 m远的土壤[73], 约有74%的轮胎磨损颗粒直接沉淀进入路边5 m以内的土壤[74].据估算, 全球道路车辆轮胎磨损产生的微塑料量人均达0.81 kg·a-1[75], 欧盟和美国每年产生的轮胎磨损颗粒分别约为1.33×106 t和1.12×106 t[76].Kole等[77]估算了2021年全球的轮胎磨损颗粒年释放量为7.22×109 t, 如此数量惊人的轮胎磨损颗粒在土壤中的迁移、转化和危害等方面却鲜有报道, 未来亟待加强该方面的研究和探索.
3 农田土壤微塑料行为特征 3.1 不同利用方式下的农田土壤微塑料含量特征农田利用类型对土壤微塑料丰度有显著影响.从不同农田土地利用方式看, 覆膜菜田最高(图 1), 为(707±721)个·kg-1, 棉田、未覆膜粮田和果园土壤微塑料分别为(488±521)、(167±174)和(131±140)个·kg-1.在青藏高原地区也呈现类似趋势, 不同类型土壤的微塑料丰度从高到低分别为:地膜覆盖土壤>大棚土壤>裸露土壤[78].即使在同一土地利用类型下, 种植方式也影响土壤中微塑料丰度.例如, 废弃设施大棚土壤中微塑料丰度为(2 216±1 550)个·kg-1, 高于常规设施大棚(891±317)个·kg-1和简易拱棚(632±567)个·kg-1[22], 大棚内部土壤微塑料丰度高于外部[21].此外, 值得注意的是, 无论种植樟子松还是杨树, 土壤中微塑料丰度均随着种植年限的增加显著下降[79], 这给土壤微塑料污染治理提供了有益的启示, 可以通过改变农田利用方式防治土壤微塑料污染.
![]() |
图 1 不同利用方式下农田土壤中微塑料丰度 Fig. 1 Abundance of MPs in farmland soils under different utilization types |
微塑料主要存在形态有碎片、纤维、薄膜、颗粒和泡沫(表 1), 在我国30省市检出比例分别为93.3%、86.7%、60.0%、33.3%和13.3%.寿光菜田土壤中的碎片、薄膜、纤维、颗粒和泡沫形态微塑料分别占比46.3%、25.4%、15.1%、12.8%和0.4%[28]; 北京城郊废弃大棚、普通温室大棚和拱棚土壤中微塑料以碎片形态为主, 分别占比74.3%、47.1%和68.2%[27].陕西农田土壤中微塑料以纤维、碎片和薄膜为主, 平均占比达43.8%、27.4%和20.2%, 颗粒形态微塑料仅占8.1%[49, 79].在青藏高原地区, 设施菜田土壤、覆膜土壤和未覆膜土壤中薄膜形态微塑料占比最高, 分别占比33%、36%和29%, 其次是纤维和碎片形态微塑料, 泡沫和颗粒形态微塑料形态占比最低[41].Van Den Berg等[20]研究发现西班牙农田土壤微塑料以碎片形态为主, 占比超过80%, 且使用污泥后土壤微塑料会显著下降.德国农田土壤微塑料薄膜和碎片均占比43.75%、纤维占比12.50%[17].巴基斯坦农田土壤微塑料以纤维为主, 占比达64%, 其次是薄膜(28%)、碎片(7%)、泡沫(0.75%)和颗粒(0.25%)[25].农田土壤中微塑料形态差异较大的原因可能与其来源不同有关, 可进一步加强微塑料来源与农田土壤中微塑料形态相关性的研究.
3.3 聚合物组成特征农田土壤中微塑料聚合物形态主要包括PE、PP、PS和PVC等(表 1), 在30省市检出比例分别为80.0%、73.3%、50.0%和40.0%.Ren等[32]对我国19省市农田土壤微塑料聚合物形态进行分析发现, 微塑料以PE和PVC为主, 两者占比超过95%.北京城郊设施菜田土壤微塑料中聚合物以PP和PE为主, 分别占比37.1%和15.0%[27]; 寿光设施菜田土壤微塑料聚合物略有不同, PE占比39.7%, PP和EPC两者占比45.0%[28].陕西农田土壤微塑料中PP、PE、PS、PVC和PET分别占比53.1%、24.8%、15.9%、5.5%和0.67%[79]; 青藏高原地区农田土壤微塑料聚合物以PP和PE为主, 分别占比50.5%和22.0%, PET和PS均占比8%[78].瑞士农田土壤微塑料聚合物以PE为主, 占比高达88%[24]; Kim等[21]研究了韩国温室大棚内外土壤、稻田和覆膜农田的微塑料聚合物形态, 其中, 温室大棚内土壤微塑料聚合物形态为PE(68%)、PET(15%)和PP(11%), 棚外3种聚合物形态为PP(40%)、PE(27%)和PET(20%), 稻田土壤微塑料聚合物形态为PE(61%)、PP(18%)和PET(9%), 覆膜农田土壤微塑料聚合物形态为PP(31%)、PE(21%)、PET(10%); 除此以外, 不同形态微塑料中聚合物类型有显著差异, 如陕西农田土壤碎片和薄膜形态微塑料中PE和HDPE占比79.1%和21.9%, 纤维形态微塑料中PP、PET和PE分别占比65.2%、20.9%和13.9%, 颗粒形态微塑料中PS占比100%[49].韩国不同类型农田土壤微塑料形态中聚合物也呈现显著差异[21].造成农田土壤中微塑料组成差异大的原因可能也与其来源有关.
3.4 尺寸特征农田土壤中微塑料丰度随颗粒变小而增加.北京城郊菜田土壤中0~1 mm和1~2 mm微塑料平均占比为43.0%和35.1%, 2~5 mm微塑料累计占比21.9%[27].寿光菜田土壤在0~0.5 mm占比达到65.2%, 0.5~1.0 mm占比19.2%, 1.0~2.0 mm和2.0~5.0 mm分别占比9.7%和5.9%[28].陕西农田土壤微塑料0~0.5 mm占比达到79.7% ~84.2%, 0.5~1 mm微塑料占比8.16% ~11.6%, 2~5 mm微塑料累计占比仅为3.42% ~8.70%[49, 79].青海省农田土壤0~0.5、0.5~1和1~2 mm微塑料分别占比50%、33%和17%[42].青藏高原区温室土壤、覆膜土壤和粮田土壤中0~0.5 mm微塑料分别占比71%、62%和61%, 0.5~1 mm微塑料分别占比17%、27%和24%[41].西班牙学者Berg等[20]研究发现与未使用污泥相比, 污泥农用能增加0~0.5mm低密度微塑料的比例, 提高约5.4%, 但会降低高密度微塑料的比例, 降低比例达13.3%.
3.5 迁移特征微塑料进入土壤后, 会在耕作、淋溶、生物扰动和重力作用下发生迁移.农业频繁耕作会导致微塑料在土壤表层向深层迁移[80].通常耕作条件下, 土壤微塑料丰度随着深度的增加而降低[28, 41]; 然而, 也存在深层土壤微塑料丰度高于表层土壤的现象.以设施农田为例, 废弃设施大棚和常规设施大棚0~10 cm土壤中微塑料丰度分别为(827±261)个·kg-1和(560±52.9)个·kg-1, 10~20 cm土壤微塑料丰度为(1 073±306)个·kg-1和(720±111)个·kg-1[27]; 不同覆膜年限棉田土壤中微塑料丰度随着土壤深度(0~5、5~20和20~40 cm)的增加均呈现先增加后下降的趋势[33]; 此外, 还发现土壤微塑料丰度随着深度(0~5、5~10和10~25 cm)的增加无显著变化[28]和微塑料随着深度(0~5、5~10和10~15 cm)的增加而增加[23]的现象, 这可能是不同耕作方式所致, 翻耕更有利于微塑料向深层土壤迁移, 而浅耕、旋耕或耙地可导致微塑料颗粒分布在整个耕作层中[80].
微塑料在雨水淋溶和重力作用下可通过土壤孔隙发生自然的纵向迁移[17, 81], 并且干湿交替可加速微塑料向下运移[82].有研究发现, 直径为0.53 μm和3.7 μm的微塑料颗粒可通过淋溶移动至70 cm以上的深层土壤, 粒径范围为0.1~6 mm的微塑料颗粒同样可通过淋溶作用发生垂直移动[83].O'Connor等[82]利用我国347个城市的气象信息进一步估算了100 a后土壤中微塑料的迁移深度, 平均渗透深度达5.24 m, Nizzetto等[84]采用INCA-污染物理论模型发现残留在土壤中的微塑料比例为16% ~38%, 其余大部分微塑料最终会从土壤中迁移进入水体, 成为水环境中微塑料污染的来源, 从而提高水体中微塑料生态风险[85].因此, 微塑料在土壤和水体之间的迁移仍是未来研究的重点.
生物(动物、植物和微生物)扰动可驱动土壤中微塑料发生迁移.微塑料在蚯蚓体表的外部附着和被蚯蚓摄入和排泄可以驱动微塑料发生迁移, 14 d内其迁移距离可达约18 cm[86].螨虫及跳虫等土壤动物的活动也有利于微塑料在土壤中的迁移, 并且当跳虫的捕食-被捕食关系存在时, 微塑料在土壤的迁移能力显著增加, 而相比跳虫, 甲螨对微塑料迁移的促进效果更强[87].植物则主要通过根系运动、根系扩张和根系吸水等影响土壤中微塑料的运移, 当根系分解时, 可产生近似于根系的大孔隙, 有利于土壤中微塑料的迁移.除动物和植物外, 微生物也影响微塑料在土壤中的迁移, 铜绿假单胞菌、乳酸菌等细菌可附着在微塑料表面降低其迁移能力[88], 但另一方面细菌的生长基质又能掩蔽微塑料的沉积位点, 提高其迁移能力[89].而微塑料的迁移会进一步影响土壤中微生物的生物量[90].
4 展望(1) 土壤中微塑料的分离、提取和检测方法的标准化研究土壤中微塑料在分离提取和检测手段上缺乏统一标准, 难以科学客观地比较不同地区土壤中的微塑料含量水平, 应针对不同性质土壤开展不同类型微塑料的分离提取与检测的方法学研究, 并建立标准化技术规范.
(2) 农田土壤中微塑料数据库的建立和安全阈值研究基于土壤污染难治理性的特点, 农田土壤中的微塑料难以在短期内完全去除, 应建立土壤微塑料数据库, 研究影响农业生产和保障生态安全和人体健康的微塑料安全阈值, 以便有效监测和控制农田土壤微塑料污染.
(3) 农田土壤中微塑料的溯源、迁移和转化规律研究明确农田土壤中微塑料的来源和贡献, 揭示微塑料在土壤中的迁移和转化规律, 建立微塑料在土壤中的迁移转化模型, 预测微塑料在土壤的污染行为特征, 为防控微塑料污染和技术研发提供依据.
(4) 土壤中微塑料的潜在生态风险和潜在人体健康风险研究研究不同种类微塑料对土壤理化性质、微生物、植物和动物的影响, 明确微塑料在土壤中的潜在生态风险; 研究微塑料在食物链中的富集和传递效应, 明确其潜在的人体健康风险.
(5) 土壤微塑料污染修复技术研究研发土壤微塑料污染源头控制技术和降解修复技术, 构建农田土壤微塑料污染风险管控和治理的技术体系.
[1] |
骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021-1030. Luo Y M, Zhou Q, Zhang H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(10): 1021-1030. |
[2] | Nizzetto L, Futter M, Langaas S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20): 10777-10779. |
[3] | Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. DOI:10.1016/j.scitotenv.2017.01.190 |
[4] |
郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100-1111. Hao A H, Zhao B W, Zhang J, et al. Research progress on pollution status and ecological risk of microplastics in soil[J]. Environmental Chemistry, 2021, 40(4): 1100-1111. |
[5] |
冯雪莹, 孙玉焕, 张书武, 等. 微塑料对土壤-植物系统的生态效应[J]. 土壤学报, 2021, 58(2): 299-313. Feng X Y, Sun Y H, Zhang S W, et al. Ecological effects of microplastics on soil-plant systems[J]. Acta Pedologica Sinica, 2021, 58(2): 299-313. |
[6] |
杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281-298. Yang J, Li L Z, Zhou Q, et al. Microplastics contamination of soil environment: sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281-298. |
[7] | Massos A, Turner A. Cadmium, lead and bromine in beached microplastics[J]. Environmental Pollution, 2017, 227: 139-145. DOI:10.1016/j.envpol.2017.04.034 |
[8] | Li L Z, Luo Y M, Li R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929-937. DOI:10.1038/s41893-020-0567-9 |
[9] |
姬庆松, 孔祥程, 王信凯, 等. 环境微塑料与有机污染物的相互作用及联合毒性效应研究进展[J]. 环境化学, 2022, 41(1): 70-82. Ji Q S, Kong X C, Wang X K, et al. The interaction and combined toxic effects of microplastics and organic pollutants in the environment: a review[J]. Environmental Chemistry, 2022, 41(1): 70-82. |
[10] |
邵博群, 庞蕊蕊, 李烨, 等. 微塑料和其他新兴污染物相互作用研究进展[J]. 环境科学与技术, 2021, 44(7): 214-222. Shao B Q, Pang R R, Li Y, et al. Research progress on interaction between microplastics and other emerging contaminants[J]. Environmental Science & Technology, 2021, 44(7): 214-222. |
[11] |
胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353-363. Hu T T, Chen J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353-363. |
[12] |
宗海英, 刘君, 郭晓红, 等. 聚乙烯微塑料对花生幼苗镉吸收及生理特征影响[J/OL]. 农业环境科学学报. http://kns.cnki.net/kcms/detail/12.1347.S.20220322.2021.002.html, 2022-03-23. Zong H Y, Liu J, Guo X H, et al. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling[J/OL]. Journal of Agro-Environment Science. http://kns.cnki.net/kcms/detail/12.1347.S.20220322.2021.002.html, 2022-03-23. |
[13] |
宁瑞艳, 刘娜, 程红艳, 等. 微塑料和镉及其复合对超富集植物生长和富集镉的影响[J]. 环境科学学报, 2022, 42(6): 415-425. Ning R Y, Liu N, Cheng H Y, et al. Effects of microplastics, cadmium and their combination on the growth and cadmium accumulation of hyperaccumulators[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 415-425. |
[14] |
吴萍, 张杏锋, 高波, 等. 微塑料对超富集植物少花龙葵Cd累积的影响[J]. 环境科学与技术, 2022, 45(1): 174-181. Wu P, Zhang X F, Gao B, et al. Effects of Polyethylene on Cd accumulation of hyperaccumulator Solanum photeinocarpum[J]. Environmental Science & Technology, 2022, 45(1): 174-181. |
[15] |
徐熳, 王英雪, 陈佳敏, 等. 聚苯乙烯微塑料单独或与镉共同暴露诱导肝细胞铁死亡[J]. 环境科学学报, 2022, 42(9): 464-474. Xu M, Wang Y X, Chen J M, et al. Induction of Ferroptosis in hepatocytes by combined exposure of polystyrene microplastics and cadmium[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 464-474. |
[16] | Li W, Zu B, Yang Q W, et al. Adsorption of lead and cadmium by microplastics and their desorption behavior as vectors in the gastrointestinal environment[J]. Journal of Environmental Chemical Engineering, 2022, 10(3). DOI:10.1016/j.jece.2022.107379 |
[17] | Piehl S, Leibner A, Löder M G J, et al. Identification and quantification of macro- and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8(1). DOI:10.1038/s41598-018-36172-y |
[18] | Lwanga E H, Vega J M, Quej V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-14588-2 |
[19] | Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of the Total Environment, 2019, 671: 411-420. |
[20] | Van Den Berg P, Huerta-Lwanga E, Corradini F, et al. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils[J]. Environmental Pollution, 2020, 261. DOI:10.1016/j.envpol.2020.114198 |
[21] | Kim S K, Kim J S, Lee H, et al. Abundance and characteristics of microplastics in soils with different agricultural practices: importance of sources with internal origin and environmental fate[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123997 |
[22] | Vollertsen J, Hansen A A. Microplastic in danish wastewater: sources, occurrences and fate[R]. Copenhagen: The Danish Environmental Protection Agency, 2017. |
[23] | Crossman J, Hurley R R, Futter M, et al. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment[J]. Science of the Total Environment, 2020, 724. DOI:10.1016/j.scitotenv.2020.138334 |
[24] | Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. |
[25] | Rafique A, Irfan M, Mumtaz M, et al. Spatial distribution of microplastics in soil with context to human activities: a case study from the urban center[J]. Environmental Monitoring and Assessment, 2020, 192(11). DOI:10.1007/s10661-020-08641-3 |
[26] | Rezaei M, Riksen M J P M, Sirjani E, et al. Wind erosion as a driver for transport of light density microplastics[J]. Science of the Total Environment, 2019, 669: 273-281. |
[27] | Wang K, Chen W, Tian J Y, et al. Accumulation of microplastics in greenhouse soil after long-term plastic film mulching in Beijing, China[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154544 |
[28] | Yu L, Zhang J D, Liu Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China[J]. Science of the Total Environment, 2021, 756. DOI:10.1016/j.scitotenv.2020.143860 |
[29] | Li Q L, Zeng A R, Jiang X, et al. Are microplastics correlated to phthalates in facility agriculture soil?[J]. Journal of Hazardous Materials, 2021, 412. DOI:10.1016/j.jhazmat.2021.125164 |
[30] |
胡佳妮. 农田土壤中微塑料污染特征和典型塑料地膜的环境行为研究[D]. 上海: 华东师范大学, 2021. Hu J N. A study on pollution characteristics of microplasticsin agricultural soils and environmental behaviors of typical mulching films[D]. Shanghai: East China Normal University, 2021. |
[31] | Liu M T, Lu S B, Song Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242: 855-862. |
[32] | Ren S Y, Kong S F, Ni H G. Contribution of mulch film to microplastics in agricultural soil and surface water in China[J]. Environmental Pollution, 2021, 291. DOI:10.1016/j.envpol.2021.118227 |
[33] | Huang Y, Liu Q, Jia W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.114096 |
[34] | Zhang J J, Zou G Y, Wang X X, et al. Exploring the occurrence characteristics of microplastics in typical maize farmland soils with long-term plastic film mulching in Northern China[J]. Frontiers in Marine Science, 2021, 8. DOI:10.3389/fmars.2021.800087 |
[35] |
程万莉, 樊廷录, 王淑英, 等. 我国西北覆膜农田土壤微塑料数量及分布特征[J]. 农业环境科学学报, 2020, 39(11): 2561-2568. Cheng W L, Fan T L, Wang S Y, et al. Quantity and distribution of microplastics in film mulching farmland soil of Northwest China[J]. Journal of Agro-Environment Science, 2020, 39(11): 2561-2568. |
[36] | Yang J, Li R J, Zhou Q, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure[J]. Environmental Pollution, 2021, 272. DOI:10.1016/j.envpol.2020.116028 |
[37] | Zhang S L, Liu X, Hao X H, et al. Distribution of low-density microplastics in the mollisol farmlands of northeast China[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.135091 |
[38] | Wang J, Li J Y, Liu S T, et al. Distinct microplastic distributions in soils of different land-use types: a case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269. DOI:10.1016/j.envpol.2020.116199 |
[39] |
时馨竹. 沈阳周边农田土壤中微塑料分布特征[D]. 沈阳: 沈阳大学, 2021. Shi X Z. Distribution characteristics of microplastics in farmland soil around shenyang[D]. Shenyang: Shenyang University, 2021. |
[40] | Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12-20. |
[41] | Feng S S, Lu H W, Liu Y L. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: different land use and mulching time in facility agriculture[J]. Environmental Pollution, 2021, 279. DOI:10.1016/j.envpol.2021.116939 |
[42] | Lang M F, Wang G Y, Yang Y Y, et al. The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai Province, northwest China[J]. Science of the Total Environment, 2022, 810. DOI:10.1016/j.scitotenv.2021.152174 |
[43] | Zhang H X, Huang Y M, An S S, et al. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 2022, 426. DOI:10.1016/j.jhazmat.2021.127806 |
[44] | Li Q L, Wu J T, Zhao X P, et al. Separation and identification of microplastics from soil and sewage sludge[J]. Environmental Pollution, 2019, 254. DOI:10.1016/j.envpol.2019.113076 |
[45] | Zhou B Y, Wang J Q, Zhang H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121814 |
[46] | Zhang Z Q, Peng W X, Duan C J, et al. Microplastics pollution from different plastic mulching years accentuate soil microbial nutrient limitations[J]. Gondwana Research, 2022, 108: 91-101. |
[47] | Chen Y L, Leng Y F, Liu X N, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113449 |
[48] |
王志超, 孟青, 于玲红, 等. 内蒙古河套灌区农田土壤中微塑料的赋存特征[J]. 农业工程学报, 2020, 36(3): 204-209. Wang Z C, Meng Q, Yu L H, et al. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 204-209. |
[49] | Ding L, Zhang S Y, Wang X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720. DOI:10.1016/j.scitotenv.2020.137525 |
[50] |
朱宇恩, 文瀚萱, 李唐慧娴, 等. 汾河沿岸农田土壤微塑料分布特征及成因解析[J]. 环境科学, 2021, 42(8): 3894-3903. Zhu Y E, Wen H X, LiT H X, et al. Distribution and sources of microplastics in farmland soil along the fenhe river[J]. Environmental Science, 2021, 42(8): 3894-3903. |
[51] | Zhang Q Q, Ma Z R, Cai Y Y, et al. Agricultural plastic pollution in China: generation of plastic debris and emission of phthalic acid esters from agricultural films[J]. Environmental Science & Technology, 2021, 55(18): 12459-12470. |
[52] | Gao H H, Yan C R, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis[J]. Science of the Total Environment, 2019, 651: 484-492. |
[53] | He D F, Luo Y M, Lu S B, et al. Microplastics in soils: analytical methods, pollution characteristics and ecological risks[J]. TrAC Trends in Analytical Chemistry, 2018, 109: 163-172. |
[54] |
李鹏飞, 侯德义, 王刘炜, 等. 农田中的(微)塑料污染: 来源、迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58(2): 314-330. Li P F, Hou D Y, Wang L W, et al. (Micro)plastics pollution in agricultural soils: sources, transportation, ecological effects and preventive strategies[J]. Acta Pedologica Sinica, 2021, 58(2): 314-330. |
[55] | Weithmann N, Möller J N, Löder M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4(4). DOI:10.1126/sciadv.aap8060 |
[56] | Bläsing M, Amelung W. Plastics in soil: analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. |
[57] | Gajst T. Analysis of plastic residues in commercial compost[D]. Nova Gorica: University of Nova Gorica, 2016. |
[58] | Mintenig S M, Int-Veen A, Löder M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372. |
[59] | Mahon A M, O'Connell B, Healy M G, et al. Microplastics in sewage sludge: effects of treatment[J]. Environmental Science & Technology, 2017, 51(2): 810-818. |
[60] | Li X W, Chen L B, Mei Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75-85. |
[61] | Piñon-Colin T D J, Rodriguez-Jimenez R, Rogel-Hernandez E, et al. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico[J]. Science of the Total Environment, 2020, 704. DOI:10.1016/j.scitotenv.2019.135411 |
[62] | Di M X, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China[J]. Science of the Total Environment, 2018, 616. |
[63] | Fan J X, Zou L, Zhao G L. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China[J]. Journal of Soils and Sediments, 2021, 21(4): 1840-1851. |
[64] | Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. |
[65] | Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91-98. |
[66] | Panno S V, Kelly W R, Scott J, et al. Microplastic contamination in karst groundwater systems[J]. Groundwater, 2019, 57(2): 189-196. |
[67] | Allen S, Allen D, Phoenix V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5): 339-344. |
[68] |
周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33): 3902-3909. Zhou Q, Tian C G, Luo Y M. Various forms and deposition fluxes of microplastics identifiedin the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. |
[69] | Liu C G, Li J, Zhang Y L, et al. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure[J]. Environment International, 2019, 128: 116-124. |
[70] |
陈瑶, 刘金, 张颖昕, 等. 环境中的黑色微塑料——轮胎磨损颗粒的来源、迁移扩散及环境风险[J]. 应用生态学报, 2022, 33(8): 2260-2270. Chen Y, Liu J, Zhang Y X, et al. Black microplastics in the environment: origin, transport and risk of tire wear particles[J]. Chinese Journal of Applied Ecology, 2022, 33(8): 2260-2270. |
[71] |
方芹, 牛司平, 陈予东, 等. 城市路面积尘微塑料污染特征[J]. 环境科学, 2022, 43(1): 189-198. Fang Q, Niu S P, Chen Y D, et al. Characteristics of microplastic present in urban road dust[J]. Environmental Science, 2022, 43(1): 189-198. |
[72] | Baensch-Baltruschat B, Kocher B, Kochleus C, et al. Tyre and road wear particles-a calculation of generation, transport and release to water and soil with special regard to German roads[J]. Science of the Total Environment, 2021, 752. DOI:10.1016/j.scitotenv.2020.141939 |
[73] | Müller A, Kocher B, Altmann K, et al. Determination of tire wear markers in soil samples and their distribution in a roadside soil[J]. Chemosphere, 2022, 294. DOI:10.1016/j.chemosphere.2022.133653 |
[74] | Sieber R, Kawecki D, Nowack B. Dynamic probabilistic material flow analysis of rubber release from tires into the environment[J]. Environmental Pollution, 2020, 258. DOI:10.1016/j.envpol.2019.113573 |
[75] | Wagner S, Hüffer T, Klöckner P, et al. Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects[J]. Water Research, 2018, 139: 83-100. |
[76] | Guo J J, Huang X P, Xiang L, et al. Source, migration and toxicology of microplastics in soil[J]. Environment International, 2020, 137. DOI:10.1016/j.envint.2019.105263 |
[77] | Kole P J, Löhr A J, Van Belleghem F G A J, et al. Wear and tear of tyres: a stealthy source of microplastics in the environment[J]. International Journal of Environmental Research and Public Health, 2017, 14(10). DOI:10.3390/ijerph14101265 |
[78] |
冯三三, 卢宏玮, 姚天次, 等. 青藏高原典型区微塑料分布特征及来源分析[J]. 地理学报, 2021, 76(9): 2130-2141. Feng S S, Lu H W, Yao T C, et al. Distribution and source analysis of microplastics in typical areas of Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2021, 76(9): 2130-2141. |
[79] | Ding L, Wang X L, Ouyang Z Z, et al. The occurrence of microplastic in Mu Us Sand Land soils in northwest China: different soil types, vegetation cover and restoration years[J]. Journal of Hazardous Materials, 2021, 403. DOI:10.1016/j.jhazmat.2020.123982 |
[80] | Rillig M C, Ingraffia R, De Souza Machado A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8. DOI:10.3389/fpls.2017.01805 |
[81] | Li J, Song Y, Cai Y B. Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113570 |
[82] | O'Connor D, Pan S Z, Shen Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249: 527-534. |
[83] | Grayling K M, Young S D, Roberts C J, et al. The application of X-ray micro computed tomography imaging for tracing particle movement in soil[J]. Geoderma, 2018, 321: 8-14. |
[84] | Nizzetto L, Bussi G, Futter M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments[J]. Environmental Science: Processes & Impacts, 2016, 18(8): 1050-1059. |
[85] |
孙晓楠, 陈浩, 贾其隆, 等. 我国陆域水体系统表层水中微塑料生态风险评估[J]. 环境科学, 2022, 43(11): 5040-5052. Sun X N, Chen H, Jia Q L, et al. Ecological risk assessment of microplastics occurring in surface water of terrestrial water systems across China[J]. Environmental Science, 2022, 43(11): 5040-5052. |
[86] | Lwanga E H, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531. |
[87] | Zhu D, Chen Q L, An X L, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition[J]. Soil Biology and Biochemistry, 2018, 116: 302-310. |
[88] | Mitzel M R, Sand S, Whalen J K, et al. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand[J]. Water Research, 2016, 92: 113-120. |
[89] | Tripathi S, Champagne D, Tufenkji N. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm[J]. Environmental Science & Technology, 2012, 46(13): 6942-6949. |
[90] | Huang D L, Wang X Y, Yin L S, et al. Research progress of microplastics in soil-plant system: ecological effects and potential risks[J]. Science of the total Environment, 2022, 812. DOI:10.1016/j.scitotenv.2021.151487 |