首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
商丘市夏秋季臭氧光化学反应特征及减排策略
摘要点击 1328  全文点击 301  投稿时间:2023-10-26  修订日期:2024-01-22
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  臭氧(O3  相对增量反应活性(RIR)  光化学反应特征  经验动力学(EKMA)曲线  减排策略
英文关键词  ozone(O3  relative incremental reaction activity(RIR)  photochemical reaction characteristics  empirical kinetics(EKMA) curve  emission reduction strategy
作者单位E-mail
蒋小梅 华南理工大学环境与能源学院, 广州 510006 xmnaan1998@163.com 
孙雷涛 华南理工大学环境与能源学院, 广州 510006  
王玲玲 河南省生态环境监测和安全中心, 郑州 450000  
侯生贤 河南省商丘生态环境监测中心, 商丘 476000 1711008587@qq.com 
范丽雅 华南理工大学环境与能源学院, 广州 510006
挥发性有机物污染治理技术与装备国家工程实验室, 广州 510006
广东省大气环境与污染控制重点实验室, 广州 510006
广东省环境风险防控与应急处置工程技术研究中心, 广州 510006 
fanly@scut.edu.cn 
叶代启 华南理工大学环境与能源学院, 广州 510006
挥发性有机物污染治理技术与装备国家工程实验室, 广州 510006
广东省大气环境与污染控制重点实验室, 广州 510006
广东省环境风险防控与应急处置工程技术研究中心, 广州 510006 
 
中文摘要
      近年来,商丘市臭氧(O3)污染日益凸显,尤其是夏秋季,严重影响了当地环境空气质量.基于商丘市环境监测站2022年6月和9月(分别代表夏季和秋季)O3污染天的监测数据,运用基于观测的模型(OBM)研究了该市O3污染成因和光化学反应特征,并开展了前体物减排策略研究.观测结果表明,商丘市夏季ρ(O3)和O3日最大8 h滑动浓度[ρ(MDA8-O3)]均值分别为149.7 μg·m-3和195.4 μg·m-3,而秋季ρ(O3)和ρ(MDA8-O3)均值分别为119.8 μg·m-3和173.9 μg·m-3,夏季O3浓度显著高于秋季.臭氧敏感性研究表明,商丘市夏秋季O3生成均为挥发性有机物(VOCs)控制区,其中,含氧类挥发性有机物(OVOCs)、芳香烃和烯烃物种对臭氧生成潜势(OFP)和·OH反应性(L·OH)贡献最大,需加强管控.OBM模拟结果表明,夏秋季O3生成速率最大值分别为23.0×10-9 h-1和13.6×10-9 h-1,净生成速率最大值分别为17.4×10-9 h-1和10.4×10-9 h-1,夏季O3的生成速率最大值和净生成速率最大值均为秋季的1.68倍,说明夏季光化学反应明显强于秋季;与夏季相比,秋季O3生成受其他区域输入影响较大,最大输入量达14.2×10-9 h-1.商丘市夏秋季O3污染防治应以控制VOCs为主,秋季VOCs/氮氧化物(NOx)的减排比例应大于夏季,可分别采取夏季3∶1和秋季4∶1的减排比例进行管控.
英文摘要
      Recently, ozone (O3) pollution in Shangqiu has become increasingly prominent, especially in summer and autumn, crucially affecting the local environmental air quality. Based on the monitoring data of O3 pollution days from the Environmental Monitoring Station in June and September 2022 (representing summer and autumn) in Shangqiu, an observation-based model (OBM) was used to study the causes and photochemical reaction characteristics of O3 pollution in the city and precursor emission reduction strategies were studied. The observation results indicated that during summer in Shangqiu, the ρ(O3) and O3 daily maximum 8 h moving concentrations [ρ(MDA8-O3)] were 149.7 μg·m-3 and 195.4 μg·m-3, whereas in autumn, ρ(O3) and ρ(MDA8-O3) were 119.8 μg·m-3 and 173.9 μg·m-3, respectively; the O3 concentration in summer was significantly higher than that in autumn. Ozone sensitivity research showed that the generation of O3 in summer and autumn in Shangqiu was controlled by volatile organic compounds (VOCs). Among them, oxygen-containing volatile organic compounds (OVOCs), aromatic hydrocarbons, and alkenes contributed the most to the ozone generation potential (OFP) and ·OH reactivity (L·OH), and the control must have been strengthened. The OBM simulation results indicated that the maximum O3 generation rates in summer and autumn were 23.0×10-9 h-1 and 13.6×10-9 h-1, with maximum net generation rates of 17.4×10-9 h-1 and 10.4×10-9 h-1 and the maximum and maximum net generation rates of O3 in summer were 1.68 times higher than those in autumn, indicating that the photochemical reactions in summer were significantly stronger than those in autumn. Compared with that in summer, the generation of O3 in autumn was greatly influenced by regional inputs from other regions or cities, with a maximum input of 14.2×10-9 h-1. The prevention and control of O3 pollution in the summer and autumn seasons in Shangqiu should mainly focus on controlling VOCs. The reduction ratio of VOCs/nitrogen oxides (NOx) in autumn should be greater than that in summer and the reduction ratios of 3∶1 in summer and 4∶1 in autumn could be adopted for control.

您是第75739857位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2