首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
珠三角夏秋转换季臭氧污染成因及前体物减排策略分析
摘要点击 1691  全文点击 388  投稿时间:2023-10-09  修订日期:2024-01-10
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  珠三角(PRD)  盒子模型  臭氧(O3)成因  挥发性有机物(VOCs)  减排分析
英文关键词  Pearl River Delta (PRD)  box model  O3 formation  volatile organic compounds (VOCs)  emission reduction analysis
DOI    10.13227/j.hjkx.20241011
作者单位E-mail
尉晴晴 广东轻工职业技术学院轻化工技术学院, 广州 510300 2021070128@gdip.edu.cn 
杨威强 广东省环境科学研究院, 广州 510045
粤港澳生态环境科学中心大气光化学联合研究实验室, 广州 510045
中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州 510640 
gzdxywq@163.com 
裴成磊 广东省广州生态环境监测中心站, 广州 510060 peichenglei@gdee.gd.gov.cn 
王新明 中国科学院广州地球化学研究所有机地球化学国家重点实验室, 广州 510640  
中文摘要
      为分析夏秋转换季珠三角地区臭氧(O3)污染成因及防控策略,以珠三角中心城市广州为例,在综合观测基础上,使用盒子模型分析O3生消路径及减排方案. 结果表明,观测期间呈静稳气象条件且温度偏高,非常适宜O3的二次生成,并导致出现大范围长时间O3污染. 芳香烃类物质对O3生成潜势(OFP)贡献最大,间/对-二甲苯、甲苯和邻-二甲苯是对OFP贡献最大的挥发性有机物(VOCs)物种. 盒子模型分析发现污染期间O3平均净生成速率为23.2×10-9 h-1,峰值可高达39.2×10-9 h-1;HO2·+NO和NO2+·OH反应途径分别对本地光化学O3生成(51.2%)和去除(47.0%)贡献率最大,观测O3体积分数受本地光化学O3生成和以输出性为主的传输共同控制.相对增量反应活性(RIR)和经验动力学模型曲线(EKMA)分析可知,夏秋转换季广州市O3生成主要受VOCs控制,芳香烃类对O3生成敏感性最大,其中甲苯、间/对-二甲苯、邻-二甲苯、正丁烷和丙烯是影响O3生成的5大关键组分.削减情景分析表明,单独减少人为源VOCs排放最有利降低O3体积分数,但若在减排人为源VOCs后再强化NOx排放管控,则会使O3体积分数短时反弹,结果表明实施以VOCs减排为主的VOCs和NOx协同减排策略才能使未来O3体积分数持续降低.
英文摘要
      To analyze the causes of ozone pollution in the Pearl River Delta (PRD) Region during the summer and autumn transition seasons, a case study was carried out in Guangzhou, which is located in the center of the PRD Region, to analyze the ozone photochemical production and destruction pathways as well as emission reduction scenarios using a box model based on comprehensive observation. The results showed that the stagnant meteorological conditions and high temperature during the observation period were suitable for the photochemical production of ozone, which led to widespread and prolonged ozone pollution. Aromatic hydrocarbons (AHs) contributed the most to the ozone formation potential (OFP), and m/p-xylene, toluene, and o-xylene were the major three VOC species contributing to the OFP. Box model analysis revealed that the averaged net O3 production rate during the polluted period was 23.2×10-9 h-1 and the peak reached 39.2×10-9 h-1. The HO2·+NO and NO2+·OH reaction pathways contributed the most to the local photochemical ozone production (51.2%) and destruction (47.0%), respectively. Observed ozone concentration was primarily controlled by both the local photochemical O3 production and the export-dominated transport. The RIR and EKMA analyses showed that O3 formation in Guangzhou during the summer-autumn transition seasons was mainly a VOC-limited regime and AHs showed the greatest sensitivity to O3 production. Toluene, m/p-xylene, o-xylene, n-butane, and propylene were the five key components affecting O3 generation. The analysis of reduction scenarios showed that reducing anthropogenic VOC emissions was the most favorable way to reduce O3 concentrations; however, if NOx emission was controlled after reducing VOCs, the O3 concentration would rebound in a short time. Our results suggested that the synergistic reduction of VOCs and NOx while mainly focusing on VOCs alleviation should be implemented to continuously reduce ozone concentrations in the future.

您是第83095131位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2