首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
2018~2021年成都市碳质气溶胶变化特征分析
摘要点击 464  全文点击 108  投稿时间:2023-07-13  修订日期:2023-10-13
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  成都市  有机碳(OC)  元素碳(EC)  长期变化特征  挥发性有机物(VOCs)  碳质气溶胶
英文关键词  Chengdu  organic carbon (OC)  element carbon (EC)  long-time change characteristics  volatile organic compounds (VOCs)  carbonaceous aerosol
作者单位E-mail
徐雪梅 四川省生态环境科学研究院, 成都 610041
四川省环保科技工程有限责任公司, 成都 610041 
1097124705@qq.com 
冯小琼 四川省生态环境科学研究院, 成都 610041
四川省环保科技工程有限责任公司, 成都 610041 
 
尹寒梅 四川省生态环境科学研究院, 成都 610041
四川省环保科技工程有限责任公司, 成都 610041 
 
王成辉 四川省生态环境科学研究院, 成都 610041  
姜涛 四川省生态环境科学研究院, 成都 610041 3488226@qq.com 
陈军辉 四川省生态环境科学研究院, 成都 610041  
陈强 四川省生态环境科学研究院, 成都 610041  
中文摘要
      碳质气溶胶是细颗粒物(PM2.5)的重要组成部分,可影响全球气候变化、大气能见度、区域空气质量和人类健康. 为了探究减排背景下碳质气溶胶的长期变化特征,通过实时在线监测获取了2018~2021年成都市PM2.5样品中的有机碳(OC)、元素碳(EC)、挥发性有机物(VOCs)浓度以及相应的气象数据. 结果表明,监测期间ρ(OC)和ρ(EC)均值分别为(10.9 ±5.7)μg·m-3和(2.6 ±1.9)μg·m-3,在PM2.5中占比分别为25.2%和6.0%,ρ(SOC)均值为(5.7 ±3.3)μg·m-3,在OC中的占比为52.9%. OC和EC浓度随PM2.5年际变化趋势一致,2018~2020年呈下降趋势[PM2.5:年均下降浓度为-7.1 μg·(m3·a)-1,年均降幅为-14.6 %·a-1;OC:年均下降浓度为-1.7 μg·(m3·a)-1,年均降幅为-14.2 %·a-1;EC:年均下降浓度为-0.1 μg·(m3·a)-1,年均降幅为-4.4 %·a-1],2021年各污染物浓度较2020年均有不同幅度反弹. PM2.5和OC浓度大小为:冬>春>秋>夏,EC浓度大小为:冬>秋>春>夏,OC和EC占比分别呈夏季和秋季高于其他季节,对应季节OC和EC占比分别为26.8%和6.9%. 随着污染程度的加重,OC、EC和SOC浓度逐步上升,但在PM2.5中的占比却呈下降趋势,说明成都市PM2.5污染的控制因子并不是碳组分. 源解析结果表明,成都市碳质气溶胶主要受机动车、工业源、生物质燃烧源、VOCs二次转化影响. 2019~2021年,EC受VOCs中机动车特征组分影响逐年下降,春季和秋季OC和EC受VOCs影响大于其他季节,春秋季节应加大VOCs排放治理,减少二次转化影响.
英文摘要
      Carbonaceous aerosol is an important component of atmospheric fine particulates (PM2.5) that has an important effect on global climate change, atmospheric visibility, regional air quality, and human health. In order to investigate the long-term change characteristics of carbonaceous aerosols under the background of emission reduction, the concentrations of organic carbon (OC), elemental carbon (EC) in PM2.5 samples, and volatile organic compounds (VOCs) in Chengdu from 2018 to 2021 and the corresponding meteorological factors were obtained through real-time online monitoring. The results showed that the average ρ(OC) and ρ(EC) during the monitoring period were (10.9 ±5.7) μg·m-3 and (2.6 ±1.9) μg·m-3, accounting for 25.2% and 6.0% of PM2.5, respectively, and the average ρ(SOC) was (5.7 ±3.3) μg·m-3, accounting for 52.9% of OC. The concentrations of OC, EC, and PM2.5 showed a downward trend from 2018 to 2020 [PM2.5: The concentration of average annual decrease was -7.1 μg·(m3·a) -1, with an average annual decrease of -14.6 %·a-1; OC: -1.7 μg·(m3·a)-1, -14.2 %·a-1; EC: -0.1 μg·(m3·a)-1, -4.4 %·a-1], and the concentrations of each pollutant in 2021 rebounded in different ranges compared with those in 2020. The concentrations of PM2.5 and OC were as follows: winter > spring > autumn > summer, and the concentrations of EC were as follows: winter > autumn > spring > summer. The proportions of OC and EC were higher in summer and autumn than in other seasons, with the average proportions of 26.8% and 6.9%, respectively. With the aggravation of the pollution level, OC, EC, and SOC concentrations gradually increased, but the proportions in PM2.5 showed a gradual downtrend, indicating that the control factor of PM2.5 pollution in Chengdu was not the carbon component. Source apportionment results showed that carbonaceous aerosols in Chengdu were mainly affected by motor vehicles, industrial sources, biomass combustion sources, and VOCs secondary reaction. From 2019 to 2021, EC was affected by the characteristic components of motor vehicles and decreased yearly. OC and EC were affected by VOCs more in spring and autumn than in other seasons. VOCs emission management should be increased in spring and autumn to reduce the impact of secondary reaction.

您是第57699931位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2