南昌市湖泊丰水期浮游细菌群落结构及影响因素 |
摘要点击 2515 全文点击 891 投稿时间:2022-03-29 修订日期:2022-05-30 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 南昌市湖泊 细菌群落结构 地理距离衰减 确定性过程 随机过程 |
英文关键词 lakes of Nanchang City bacterioplankton communities geographical distance decay deterministic processes stochastic processes |
作者 | 单位 | E-mail | 高鹏飞 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | gpf952076321@163.com | 王鹏 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | wangpengjlu@jxnu.edu.cn | 黄祎 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | | 丁明军 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | | 张华 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | | 聂明华 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | | 黄高翔 | 江西师范大学地理与环境学院, 南昌 330022 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 南昌 330022 | |
|
中文摘要 |
浮游细菌群落对城市湖泊中的营养元素循环及有机质分解发挥着重要作用.基于高通量测序技术,对南昌市湖泊浮游细菌群落结构的时间(4、6和8月)和城郊差异及其影响因素进行了研究.结果表明:①南昌湖泊浮游细菌优势类群为放线菌门(Actinobacteria,41.60%)、变形菌门(Proteobacteria,22.29%)、蓝藻菌门(Cyanobacteria,16.21%)和拟杆菌门(Bacteroidota,10.17%).②南昌湖泊细菌群落结构在4、6和8月间存在显著差异,但在城区湖泊与郊区湖泊间不存在显著差异;以Proteobacteria (4月>6月>8月)和Cyanobacteria (6月>8月>4月)为主的10种菌门的丰度在3个月份间存在显著差异;6月菌群结构的相似性会随地理距离的增加产生明显的减小趋势,4月和8月的减小趋势不明显.③在降水偏多的6月,湖泊非淡水细菌的占比显著高于4月和8月,城区湖泊与郊区湖泊的非淡水细菌占比没有显著差异.④确定性过程主导了湖泊细菌群落的构建,随机过程对湖泊菌群构建的贡献较低;水温是影响南昌湖泊细菌群落的最重要环境因子. |
英文摘要 |
Bacterioplankton communities play an important role in nutrient cycling and organic matter decomposition in urban lakes. Based on high-throughput sequencing, we analyzed the temporal (April, June, and August) and urban-suburban difference and assembly of bacterioplankton communities in lakes of Nanchang City. Our results showed that:① the dominant bacterioplankton communities in the lakes were Actinobacteria (41.60%), Proteobacteria (22.29%), Cyanobacteria (16.21%), and Bacteroidota (10.17%). ② There were significant differences in bacterial communities between April, June, and August but not between urban lakes and suburban lakes. The abundance of 10 bacteria, mainly Proteobacteria (April>June>August) and Cyanobacteria (June>August>April), was significantly different among the three months. There was a significant distance decay pattern in June, which was not seen in April and August. ③ The proportion of non-freshwater bacteria was significantly higher in June than that in April and August, but there were no significant differences between urban lakes and suburban lakes. ④ Deterministic processes dominated the assembly of bacterioplankton communities, whereas stochastic processes had a lower contribution. Water temperature (WT) was the environmental factor that best explained the changes in bacterioplankton communities in the lakes. |
|
|
|