首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
污水处理过程N2O排放:过程机制与控制策略
摘要点击 2616  全文点击 926  投稿时间:2022-04-04  修订日期:2022-05-14
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  生物脱氮  碳排放  氧化亚氮(N2O)  硝化/反硝化  AOB同步亚硝化及其反硝化  同步硝化/反硝化(SND)
英文关键词  biological nitrogen removal  carbon emissions  nitrous oxide (N2O)  nitrification/denitrification  AOB simultaneous partial nitrification and its denitrification  simultaneous nitrification/denitrification (SND)
作者单位E-mail
郝晓地 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 中-荷未来污水处理技术研发中心, 北京 100044 haoxiaodi@bucea.edu.cn 
杨振理 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 中-荷未来污水处理技术研发中心, 北京 100044  
于文波 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 中-荷未来污水处理技术研发中心, 北京 100044  
刘然彬 北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室, 中-荷未来污水处理技术研发中心, 北京 100044  
中文摘要
      污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍.因此,国际上对N2O排放机制与控制策略的研究层出不穷.N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2 OH与NOH之非生物化学途径.常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N2O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N2O产生量也不足TN负荷的0.5%.不可忽视的是AOB亚硝化及其同步反硝化,它们已被确认为是污水处理生物脱氮过程中N2O排放的首要途径;AOB过程中间产物(NH2 OH与NOH)非生物化学过程以及AOB反硝化生物过程(主途径)共同导致的N2O排放量可高达TN负荷的13.3%,主要是因为硝化过程溶解氧(DO)受限引起NO2-积累所诱发的AOB反硝化过程.需要特别注意的是,污水处理过程进水碳源不足而导致的HDN反硝化进行不完全情形,这会让NO3-反硝化止步于N2O,致N2O积累,其释放量可高达TN负荷的30%.此外,污泥絮凝体内部同步硝化/反硝化(SND)现象也是N2O不容忽视的产生源,其释放量可高达TN负荷的7.7%,产生根源实际上是AOB反硝化.污水处理生物脱氮过程中为防止N2O产生,应着力促进HDN反硝化进行完全和避免AOB反硝化过程.为此,运行过程中应控制曝气池中DO处于正常水平(~2 mg ·L-1),并尽可能延长污泥龄(SRT→20 d),以避免AOB亚硝化积累NO2-并诱发AOB反硝化出现;同时,应及时补充进水碳源,以促进HDN反硝化进行完全至终点——N2.综述总结生物脱氮过程中涉及N2O产生的所有机制,并根据过程机制讨论对其运行控制的策略.
英文摘要
      As a direct carbon emission source, the amount of nitrous oxide (N2, which is actually caused by AOB denitrification. To control the N2O emission during biological N-removal, complete HND and NO2- accumulation for AOB denitrification should be avoided to a large extent. For this purpose, DO in aerobic tanks should be controlled at a normal level (approximately 2 mg·L-1), and solid retention time (SRT) should be extended, up to 20 d, which would avoid accumulating N2O for AOB denitrification. Additionally, external carbon should be supplemented in time to promote HDN approaching the end, N2. This review summarizes the mechanisms of all the mentioned N2O emission pathways and discusses the control strategies of N2O emission according to the associated mechanisms.

您是第75723161位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2