湖南省臭氧污染基本特征分析及长期趋势变化主控因素识别 |
摘要点击 4868 全文点击 1199 投稿时间:2021-04-02 修订日期:2021-08-03 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 臭氧(O3) 时空变化 气象校正 长期趋势 主控因素 |
英文关键词 ozone (O3) spatial-temporal evolution meteorological adjustment long-term trend driving factor |
作者 | 单位 | E-mail | 刘妍妍 | 湖南省生态环境监测中心, 长沙 410014 | 124917785@qq.com | 杨雷峰 | 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 | yangleifeng@scies.org | 谢丹平 | 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 | xiedanping@scies.org | 泽仁央宗 | 香港理工大学土木及环境工程学系, 香港 | | 黄志炯 | 暨南大学环境与气候研究院, 广州 511443 | | 杨俊 | 华南理工大学环境与能源学院, 广州 510006 | | 赵鹏 | 西交利物浦大学健康与环境科学系, 苏州 215123 | | 韩静磊 | 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 | | 贾文超 | 生态环境部华南环境科学研究所华南生态环境监测分析中心(南海生态环境监测评价研究中心), 广州 510655 | | 袁自冰 | 华南理工大学环境与能源学院, 广州 510006 | |
|
中文摘要 |
近些年来湖南省臭氧(O3)污染程度呈现持续恶化态势,针对该区域O3污染相关研究较为缺乏的现状,基于观测数据对2015~2020年期间湖南省14个地级市O3污染浓度的时空演化特征进行了分析,并利用广义相加模型(GAM)对O3污染长期趋势变化的主控因素进行了识别(气象校正).结果表明,时间上,湖南省区域O3具有明显的日际、月际和季节性变化特征,不同月份和季节中分别以5月、9月和秋季浓度较高,在年际变化方面O3年际90百分位数以4.7 μg·(m3·a)-1的速率升高,空间上,O3浓度的高、低值分别集中在偏东北和偏西部区域.整体上,O3污染长期趋势变化主导因素为前体物排放生成贡献,气象对O3浓度的上升起促进作用,其平均影响的程度达到了1 μg·(m3·a)-1,其中对不同季节和区域影响状况有所差异,体现在对春、夏季和偏东部区域O3浓度的上升起促进作用,对秋、冬季和西北区域起抑制作用.与O3污染不同的是,气象对颗粒物长期趋势变化的影响较小.本研究结果提示O3污染防控工作需要因时因地制宜,在气象不利的时间段和区域需强化前体物的减排力度以抵消气象的副作用,同时需要加强区域之间的合作以减少上风向的传输作用. |
英文摘要 |
Despite the alleviation of particulate matter (PM), the ambient ozone (O3) concentration is continuously increasing in Hunan province where the investigation of O3 pollution has been rarely reported. Accordingly, the spatio-temporal evolution of O3 pollution was first analyzed based on hourly air quality data observed by national monitoring stations from 2015 to 2020 over 14 cities in Hunan province. Afterwards, the combination of meteorological data from the European Center for Medium-range Weather Forecast (ECMWF) and the generalized additive model (GAM) was applied to investigate the driving factors of the O3 long-term trend during this period. The results presented obvious diurnal, monthly, and seasonal characteristics of O3 variations. High O3 concentrations occurred in May and September monthly, and the peak O3 season was autumn. Furthermore, the 90th percentile O3 increased at a rate of 4.7 μg·(m3·a)-1 temporally, and high O3 values mainly occurred in the north-eastern region spatially, in contrast to the low O3 values in the western region. The modeling results indicated that the increase in O3 was mainly ascribed to precursor emissions. Furthermore, meteorology promoted a rise in O3 with the impact magnitude of 1 μg·(m3·a)-1. Remarkably, meteorology accelerated the O3 increases in spring, summer, and the eastern region, whereas it restrained increases in autumn, winter, and the northwest. The effect of meteorology on PM10 was different from O3 during this period. Overall, this study highlighted the importance of meteorological impacts when regulating emission reduction measures for O3 abatement. It required greater effort regarding O3 mitigation to offset the side-effect from meteorology in meteorology-sensitive seasons and regions. Additionally, the regional corporation is indispensable to reduce O3 transportation from upwind. |
|
|
|