δ-MnO2/沸石纳米复合材料同时去除地下水中的铁锰氨氮 |
摘要点击 2310 全文点击 941 投稿时间:2019-03-28 修订日期:2019-04-30 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 环境矿物 沸石 地下水 水处理 吸附机制 |
英文关键词 environmental minerals zeolite groundwater water treatment adsorption mechanism |
作者 | 单位 | E-mail | 马文婕 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | 673839794@qq.com | 陈天虎 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | chentianhu@hfut.edu.cn | 陈冬 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | | 刘海波 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | | 程鹏 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | | 张泽鑫 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | | 陶琼 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | | 张玉珠 | 合肥工业大学资源与环境工程学院, 纳米矿物与污染控制安徽省重点实验室, 合肥 230009 | |
|
中文摘要 |
以天然沸石颗粒、高锰酸钾、硫酸锰为原料,通过常温氧化还原沉淀法制备δ-MnO2/沸石纳米复合材料,用于同时去除地下水中铁锰氨氮.扫描电镜(SEM)、透射电镜(TEM)、Zeta电位、红外光谱(FTIR)和X射线光电子能谱(XPS)表征负载锰氧化物和吸附离子的存在形态,探讨δ-MnO2/沸石对Fe2+、Mn2+和NH4+-N的吸附机制.通过静态无/低氧水处理实验研究了δ-MnO2/沸石对Fe2+、Mn2+和NH4+-N的吸附性能.结果表明,沸石表面负载的锰氧化物为δ-MnO2;复合材料对3种离子的吸附符合准二级动力学,吸附等温曲线符合Langmuir模型,最大饱和吸附容量可分别达到215.1、23.6和7.64 mg·g-1;水中氨氮去除机制是沸石对NH4+的优先选择性离子交换吸附;水中Fe2+和Mn2+的去除是沸石颗粒表面负载δ-MnO2的吸附和催化氧化作用.研究表明δ-MnO2/沸石纳米复合材料可以作为一种高效吸附剂同时去除水中的Fe2+、Mn2+和NH4+-N离子. |
英文摘要 |
δ-MnO2/zeolite nanocomposites were prepared with natural zeolite, potassium permanganate, and manganese sulfate by oxidation-reduction precipitation, which were used to simultaneously remove Fe2+, Mn2+, and NH4+-N from groundwater. To investigate the performance and mechanism of Fe2+, Mn2+, and NH4+-N removal from groundwater by δ-MnO2/zeolite nanocomposites, static batch experiments were conducted under different environmental conditions in a zero-oxygen atmosphere using SEM, TEM, Zeta potential, FTIR, and XPS techniques. The experimental results showed that the manganese-oxide-coated natural zeolite was δ-MnO2, and Fe2+, Mn2+, and NH4+-N adsorption on the δ-MnO2/zeolite nanocomposites could be best described with the pseudo-second-order kinetic model and the Langmuir model. In addition, the maximum adsorption capacities of Fe2+, Mn2+, and NH4+-N were calculated to be 215.1, 23.6, and 7.64 mg·g-1, respectively. The removal mechanism of NH4+-N from the solutions by zeolite was via the action of ion exchange, and the adsorption and oxidation catalysis of δ-MnO2-coated zeolite were responsible for the removal of Fe2+ and Mn2+. This research indicates that δ-MnO2/zeolite nanocomposites could be used as highly efficient adsorbents to simultaneously remove Fe2+, Mn2+, and NH4+-N from water. |
|
|
|