CO2-咸水-砂岩相互作用过程中微生物群落结构动态变化特征 |
摘要点击 2994 全文点击 892 投稿时间:2016-12-08 修订日期:2017-02-08 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 CO2捕获 高温 咸水 微生物群落结构 宏基因组 |
英文关键词 CO2 capture high temperature brine microbial community structure metagenomics |
|
中文摘要 |
采用MiSeq高通量测序技术,分析CO2-咸水-砂岩相互作用过程中微生物群落结构及多样性的动态变化特征.结果表明CO2注入咸水层后,部分微生物可在极端条件(高温、酸性)下生长.在CO2-咸水-砂岩相互作用过程中,微生物菌属种类趋于单一,变形菌门相对丰度最终达到99.77%.优势菌属在群落结构变化过程依次为假单胞菌属,柠檬酸杆菌属及短波单胞菌属.同时,CO2注入后还存在着芽孢杆菌属,嗜氢菌属,根瘤菌属等微生物群落结构变化过程中特有的微生物菌群;随着CO2注入时间的延长,香农指数逐渐变小,辛普森指数逐渐变大,表明微生物群落结构变化过程中,细菌多样性显著降低,且变化过程中所发现的芽孢杆菌属、柠檬酸杆菌属、假单胞菌属等菌属均能够促进CO2在微生物介导的CO2-咸水-砂岩相互作用过程中的溶解/沉淀捕获.此外,注入CO2后香农指数从5.3302降至1.9465,表明生物多样性显著减少.研究发现,以上几类菌属对钾、钠长石类矿物以及绿泥石的溶蚀有着积极的作用,同时也促进了方解石、菱铁矿等矿物的生成.反之,CO2-咸水-砂岩相互作用过程中矿物溶解或沉淀过程导致的pH的变化,水化学组分中的阴阳离子浓度的变化等,与微生物群落结构变化存在着密切的关系. |
英文摘要 |
In this study, the dynamic variation of the structure, functionality and biodiversity of indigenous microorganism during the CO2-brine-sandstone interaction process was investigated using MiSeq sequencing techniques. The results indicated that some kinds of indigenous microorganisms could grow well under the extreme condition induced by CO2-injection. After injection of CO2, the species of indigenous microorganisms tended to be single and the relative abundance of Proteobacteria reached up to 99.77% after 6 months. The dominant species varied as follows:Pseudomonas sp., Citrobacter sp. and Brevundimonas sp.. Meanwhile, some special genera such as Bacillus sp., Hydrogenophaga sp. and Rhizobium sp. with functionality of iron-reducing and denitrification were found in this study, which may have a potential effect on the capture and storage of CO2. In addition, the Shannon index decreased from 5.3302 to 1.9465 after injection of CO2, suggesting that the biodiversity reduced significantly. Function and main metabolites analysis of bacteria in the CO2-brine-sandstone interaction process showed that bacteria like Bacillus sp., Citrobacter sp. and Pseudomonas sp. could enhance CO2 solubility-trapping process. Bacteria metabolisms could accelerate the dissolution of feldspar and chlorites, and facilitate the formation of transition-state calcite and siderite. Otherwise, the great variation was mainly attributed to the change of condition driven by CO2-brine-sandstone interactions, such as pH and the chemical composition of brine water(anion and cation), etc. |
|
|
|