锆-十六烷基三甲基氯化铵改性活性炭对水中硝酸盐和磷酸盐的吸附特性 |
摘要点击 3860 全文点击 1999 投稿时间:2014-09-29 修订日期:2015-01-06 |
查看HTML全文
查看全文 查看/发表评论 下载PDF阅读器 |
中文关键词 锆-十六烷基三甲基氯化铵改性活性炭 硝酸盐 磷酸盐 吸附 解吸 |
英文关键词 zirconium-hexadecyltrimethylammonium chloride modified activated carbon nitrate phosphate adsorption desorption |
|
中文摘要 |
采用锆(Zr)和阳离子表面活性剂十六烷基三甲基氯化铵(CTAC)对活性炭进行联合改性,考察了所制备的Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附去除作用,并探讨了相关的吸附去除机制. 结果表明,Zr-CTAC 改性活性炭对水中硝酸盐和磷酸盐均具备较好的吸附去除能力. Zr-CTAC 改性活性炭对硝酸盐和磷酸盐吸附动力学过程满足准二级动力学模型. Langmuir、Freundlich和Dubinin-Radushkevich (D-R)等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中硝酸盐的等温吸附过程,Langmuir和D-R等温吸附模型可以较好地描述Zr-CTAC改性活性炭对水中磷酸盐等温吸附过程,通过Langmuir模型计算得到吸附剂对硝酸盐和磷酸盐的最大单位吸附量分别为7.58 mg·g-1和10.9 mg·g-1. 高的pH会抑制Zr-CTAC改性活性炭对水中硝酸盐和磷酸盐的吸附. 水中共存的Cl-、HCO3-和SO42-等阴离子均会抑制Zr-CTAC 改性活性炭对硝酸盐和磷酸盐的吸附,且对吸附硝酸盐的抑制作用较强而对吸附磷酸盐的抑制作用较弱. 水中共存的磷酸盐对Zr-CTAC改性活性炭吸附硝酸盐的抑制作用较强,而水中共存的硝酸盐对Zr-CTAC改性活性炭吸附磷酸盐的抑制作用较弱. 1 mol·L-1 NaCl 溶液可以使90%左右被吸附到Zr-CTAC 改性活性炭表面上的硝酸盐解吸下来. 1 mol·L-1的NaOH溶液可以使78%左右被吸附到Zr-CTAC 改性活性炭表面上的磷酸盐解吸下来. Zr-CTAC 改性活性炭对硝酸盐的吸附机制主要包括阴离子交换作用和静电吸引作用,对磷酸盐的吸附机制主要包括配位体交换作用、阴离子交换作用和静电吸引作用. 上述结果说明Zr-CTAC改性活性炭适合作为一种吸附剂去除废水中的硝酸盐和磷酸盐. |
英文摘要 |
A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and D-R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg·g-1 and 10.9 mg·g-1, respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO42- in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol·L-1 NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol·L-1 NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction. |
|
|
|