首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅指南  |  联系我们  |  微信  |  出版道德声明  |  Ei收录本刊数据
低温SNAD颗粒污泥工艺启动方式
摘要点击 254  全文点击 91  投稿时间:2018-06-26  修订日期:2018-07-10
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  同步短程硝化、厌氧氨氧化与反硝化(SNAD)  颗粒污泥  启动方式  低温
英文关键词  simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD)  granular sludge  startup strategies  low temperature
作者单位E-mail
李冬 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124 lidong2006@bjut.edu.cn 
崔雅倩 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
赵世勋 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
刘志诚 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124  
张杰 北京工业大学建筑工程学院, 水质科学与水环境恢复工程北京市重点实验室, 北京 100124
哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室, 哈尔滨 150090 
 
中文摘要
      为研究启动方式对同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺的影响,低温(12.7~18.3℃)条件下,R1和R2反应器分别通过先启动全程自养脱氮(CANON)工艺和先启动厌氧氨氧化耦合反硝化(SAD)工艺的方式逐步启动SNAD颗粒污泥工艺.结果表明,R1反应器启动成功后,氨氮几乎完全去除,总氮去除率达到86.7%.低氨氮浓度运行时,出水总氮去除率下降至75.3%,出水总氮浓度在10 mg·L-1左右,NOB存在过量增殖现象,出水总氮浓度超过北京市水污染物排放标准一级A规定.R2反应器启动成功后,出水几乎不含氨氮,总氮去除率在89.1%左右,略高于R1反应器.低氨氮浓度运行时,出水氨氮浓度小于1.0 mg·L-1,出水总氮浓度小于6 mg·L-1,出水氨氮和总氮浓度满足地标一级A标准.先启动SAD工艺可以在启动初期通过厌氧运行将NOB逐渐淘汰出系统内,维持了系统的稳定性,为后续曝气启动SNAD工艺提供了良好的基础,维持了反应器的稳定运行,实现出水总氮长期排放达标.
英文摘要
      To study the effect of the startup strategies on the simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD) granular sludge processes, these processes were initiated by starting the completely autotrophic nitrogen removal over nitrite (CANON) process and anaerobic ammonia oxidation-denitrification (SAD) process at 12.7℃ and 18.3℃, respectively. The results show that the ammonia nitrogen was almost completely removed and the total nitrogen removal rate reached 86.7% after the R1 reactor was successfully started. When the ammonia concentration was low, the total nitrogen removal rate in the effluent decreased to 75.3%, the total nitrogen concentration in the effluent was~10 mg·L-1, and excessive proliferation of the NOB was observed. The total nitrogen concentration in the effluent exceeded the 1A level of the integrated discharge standard of water pollutants applied in Beijing City. After the R2 reactor was successfully started, the effluent contained almost no ammonia nitrogen and the total nitrogen removal rate was~89.1%, that is, slightly higher than that of the R1 reactor. When the ammonia concentration was low, the concentration of ammonia nitrogen in effluent was less than 1.0 mg·L-1 and the total nitrogen concentration in the effluent was less than 6 mg·L-1. The concentrations of ammonia nitrogen and total nitrogen in the effluent reached the 1A level of the integrated discharge standard of water pollutants applied in Beijing City. First, the startup of the SAD process gradually eliminated the NOB from the system through anaerobic operation in the initial stage of the startup, maintained the stability of the system, provided a good basis for the subsequent aeration to start the SNAD process, maintained the stable operation of the reactor, and the long-term discharge of total nitrogen reached the standard.

您是第15967005位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102,62849343 传真:010-62849343 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号