首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
天津隧道机动车VOCs污染特征与排放因子
摘要点击 3148  全文点击 833  投稿时间:2018-04-23  修订日期:2018-07-11
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  挥发性有机物(VOCs)  隧道测试  二次有机气溶胶(SOA)  排放因子(EFs)  臭氧生成潜势(OFPs)
英文关键词  volatile organic compounds (VOCs)  tunnel test  secondary organic aerosol (SOA)  emission factors (EFs)  ozone formation potentials (OFPs)
作者单位E-mail
孙露娜 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071 sln@mail.nankai.edu.cn 
刘妍 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
赵静波 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
孙世达 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
宋从波 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
张静 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
李悦宁 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
林应超 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071  
王婷 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071 wangting@nankai.edu.cn 
毛洪钧 南开大学环境科学与工程学院, 城市交通污染防治研究中心, 天津 300071 hongjun_mao@hotmail.com 
中文摘要
      应用隧道测试方法在天津市五经路隧道于工作日和非工作日对机动车挥发性有机物(VOCs)污染特征及排放因子(EFs)进行研究,采用3.2 L真空采样罐采集隧道内气体样品,应用气相色谱-质谱联用仪(GC-MS)对罐内VOCs组分进行分析,得到99种组分的定量结果.对VOCs浓度水平与变化特征、EFs进行了分析,计算隧道内VOCs的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),并与已发表的研究数据进行了对比.结果表明,隧道入口VOCs平均浓度为(190.85±51.15)μg·m-3,中点平均浓度为(257.44±62.02)μg·m-3.隧道总排放因子为(45.12±10.97)mg·(km·辆)-1,烷烃、烯烃、炔烃、芳香烃、卤代烃和含氧VOCs(OVOCs)的EFs分别为(22.79±7.15)、(5.04±1.20)、(0.78±0.34)、(9.86±2.81)、(0.26±0.17)和(6.25±2.27)mg·(km·辆)-1,与2009年测试结果相比下降明显.其中,异戊烷、甲苯、乙烯、甲基叔丁基醚(MTBE)和乙烷是机动车排放VOCs中排放因子较高的组分;甲基叔丁基醚/苯(MTBE/B)、甲基叔丁基醚/甲苯(MTBE/T)比值分别为1.07和0.77,说明蒸发排放对机动车排放VOCs的贡献不可忽视.隧道内VOCs的OFPs和SOAFPs分别为(145.50±37.85)mg·(km·辆)-1和(43.87±12.75)mg·(km·辆)-1,较2009年天津测试结果分别降低94.23%和90.88%,OFPs和SOAFPs的锐减与排放标准加严和油品升级密切相关.
英文摘要
      The pollution characteristics and emission factors (EFs) of the volatile organic compounds (VOCs) of vehicles were investigated using the tunnel test method on weekdays and weekends in the Wujinglu Tunnel in Tianjin, China. Gas samples in the tunnel were collected with 3.2 L stainless steel canisters and 99 VOCs species were analyzed by gas chromatography-mass spectrometry (GC-MS). The concentration levels, variation characteristics, and EFs of the VOCs were analyzed. The ozone formation potentials (OFPs) and secondary organic aerosol formation potentials (SOAFPs) of the VOCs in the tunnel were calculated. Moreover, a comparison of the study results with current literature was conducted. The total concentrations of VOCs at the inlet and midpoint are (190.85±51.15) μg·m-3 and (257.44±62.02) μg·m-3, respectively. The total EFs are (45.12±10.97) mg·(km·veh)-1 and the EFs for alkanes, alkenes, alkynes, aromatics, halocarbons, and oxygenated volatile organic compounds (OVOCs) are (22.79±7.15), (5.04±1.20), (0.78±0.34), (9.86±2.81), (0.26±0.17), and (6.25±2.27) mg·(km·veh)-1, respectively. They are notably smaller than the values obtained in a previous test in 2009. Isopentane, toluene, ethylene, methyl tert-butyl ether (MTBE), and ethane were the top five species among the VOC EFs. The ratios of methyl tert-butyl ether/benzene (MTBE/B) and methyl tert-butyl ether/toluene (MTBE/T) are 1.07 and 0.77, respectively. This implies that the contribution of evaporative emissions from vehicles to VOCs emissions cannot be ignored. The OFPs and SOAFPs in the tunnel are (145.50±37.85) and (43.87±12.75) mg·(km·veh)-1, respectively. Compared with the test in 2009, the OFPs and SOAFPs are 94.23% and 90.88% smaller, respectively. The sharp decrease of the OFPs and SOAFPs is closely related to stricter emission standards and the upgrade of oil products.

您是第52727712位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2