首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
2006~2015年北京市不同地区O3浓度变化
摘要点击 3931  全文点击 1249  投稿时间:2017-05-27  修订日期:2017-07-19
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  北京  O3  长期  前体物  气象条件  控制区
英文关键词  Beijing  O3  long-term  precursor  meteorological condition  ozone-precursor sensitivity regimes
作者单位E-mail
王占山 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
18701650609@163.com 
李云婷 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
lee_yunting@163.com 
安欣欣 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
 
李倩 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
 
孙乃迪 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
 
王步英 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
 
潘锦秀 北京市环境保护监测中心,北京 100048
大气颗粒物监测技术北京市重点实验室,北京 100048 
 
中文摘要
      对2006~2015年北京市定陵、官园、琉璃河和前门这4个站点的O3连续监测数据进行分析,探讨其浓度水平、变化趋势、时间变化规律以及和前体物、气象要素的关系.结果表明,定陵站十年平均浓度水平最高(65.2 μg·m-3),其次为琉璃河(53.4 μg·m-3)、官园(49.6 μg·m-3)和前门(40.4 μg·m-3).定陵O3浓度呈下降趋势[0.5 μg·(m3·a)-1],而官园[0.9 μg·(m3·a)-1]、琉璃河[0.3 μg·(m3·a)-1]和前门[0.3 μg·(m3·a)-1]均呈上升趋势.从月变化来看,各站点O3浓度最高值均出现在6~8月,出现频次最高的为7月(17次),平均月均浓度为99.8 μg·m-3;最低值均出现在11、12月和1、2月,出现频次最高的为1月(14次),平均月均浓度为16.6 μg·m-3.从日变化来看,近年来O3浓度峰值出现的时间明显提前,近3年峰值均在15:00~16:00出现,提前了1~2 h.2015年定陵站O3重污染天数达到11 d,比2013年增加了10 d,表明近年来夏季北京下风向山区的O3重污染状况愈发严重.与前体物的相关性分析表明,定陵站O3浓度与NO2浓度呈正相关,其余站点两者浓度均呈负相关,暗示定陵站O3生成的前体物控制区可能为NO2控制区,而其他站点为VOCs控制区.与气象要素的相关性分析表明,O3浓度与温度呈正相关关系,与湿度和气压呈负相关关系,温度对O3浓度的影响最大,其次是气压和湿度.当日最高温度超过30℃,相对湿度介于30%至70%之间时,北京市O3日最大8 h滑动平均浓度超过200 μg·m-3的概率较高,空气质量级别会达到轻度至中度污染的级别.
英文摘要
      O3 continuous monitoring data for the Dingling, Guanyuan, Liulihe, and Qianmen sites from 2006-2015 were analyzed to investigate concentration levels, variation trends, temporal variations, and relationships with precursors and meteorological factors. The results showed that the ten year average concentrations of O3 at the Dingling site were the highest at 65.2 μg·m-3, followed by concentrations at Liulihe (53.4 μg·m-3), Guanyuan (49.6 μg·m-3) and Qianmen (40.4 μg·m-3). The O3 concentrations at Dingling showed a decreasing trend[0.5 μg·(m3·a)-1], while O3 concentrations at Guanyuan[0.9 μg·(m3·a)-1], Liulihe[0.3 μg·(m3·a)-1], and Qianmen[0.3 μg·(m3·a)-1] showed an increasing trend. The highest monthly average concentrations appeared during June and August, and the highest frequency occurred in July (17 times) with average concentrations of 99.8 μg·m-3. The lowest monthly average concentrations appeared during November and February, and the highest frequency occurred in January (14 times) with an average concentration of 16.6 μg·m-3. Notably, the time for the peak concentrations of O3 appeared earlier in the day in recent years. The peak concentrations of O3 appeared at 15:00-16:00 during 2013-2015, which was 1-2 hours earlier than previous years. The heavy air pollution of O3 occurred on 11 days at the Dingling site in 2015, which was ten days more than in 2013, indicating O3 pollution in the downwind suburban regions of Beijing in summer became more and more serious. The concentrations of O3 and NO2 at Dingling showed a positive correlation, while the concentrations of O3 and NO2 at the other sites showed a negative correlation, indicating O3 formation in Dingling was sensitive to NO2 chemistry, while O3 formation at the other sites was sensitive to VOC chemistry. The concentrations of O3 showed a positive correlation with temperature and negative correlations with humidity and surface pressure. Temperature had the greatest influence on O3 concentration, followed by surface pressure and humidity. For cases when daily maximum temperature exceeded 30℃ and relative humidity was between 30% and 70%, the probability of the O3 daily maximum 8 h concentration exceeding 200 μg·m-3 was high, indicating the air quality level reached levels for light pollution and moderate pollution.

您是第52904088位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2