首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于随机森林模型的武汉市城区大气PM2.5来源解析
摘要点击 2751  全文点击 862  投稿时间:2021-08-06  修订日期:2021-08-27
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  PM2.5  主成分分析(PCA)  随机森林(RF)  来源解析  污染特征
英文关键词  PM2.5  principal component analysis (PCA)  random forest (RF)  source apportionment  pollution characteristics
作者单位E-mail
张志豪 武汉大学资源与环境科学学院, 武汉 430072 zzhoz@foxmail.com 
陈楠 湖北省生态环境监测中心站, 武汉 430074  
祝波 湖北省生态环境监测中心站, 武汉 430074  
陶卉婷 武汉大学资源与环境科学学院, 武汉 430072  
成海容 武汉大学资源与环境科学学院, 武汉 430072 chenghr@whu.edu.cn 
中文摘要
      基于2019年12月~2020年11月期间武汉市城区大气PM2.5及其主要化学组分(碳质组分、水溶性离子和元素组分)的在线监测数据,分析武汉城区大气PM2.5的污染特征,并利用主成分分析方法和随机森林模型,对PM2.5进行来源解析.结果表明,武汉市大气ρ(PM2.5)冬季最高,为(61.33±35.32)μg·m-3,而夏季最低,为(17.87±10.06)μg·m-3.其中碳质组分以有机碳为主,年均值为(7.27±3.51)μg·m-3,离子组分中ρ(NO3-)、ρ(SO42-)和ρ(NH4+)最高,年均值分别为(11.55±3.86)、(7.55±1.53)和(7.34±1.99)μg·m-3,元素组分中ρ(K)、ρ(Fe)和ρ(Ca)最高,年均值分别为(752.80±183.98)、(542.34±142.55)和(459.70±141.99)ng·m-3.通过主成分分析因子提取和随机森林定量分析,得到5类主要污染源,其在春、夏、秋、冬这4个季节贡献率结果分别如下:燃煤与二次源(46%、39%、41%、52%)、机动车排放源(22%、28%、27%、21%)、工业排放源(14%、18%、17%、13%)、扬尘源(10%、8%、6%、6%)和生物质燃烧源(8%、7%、9%、8%).最后对随机森林模型进行评价,发现4个季节模拟效果R2均达到了0.85以上,处于较高水平,其中冬季(R2=0.974)模型拟合效果最好,春季(R2=0.936)与秋季(R2=0.937)效果次之,夏季(R2=0.866)表现相对较弱.
英文摘要
      Based on the online monitoring data of fine particle(PM2.5) mass concentration, carbonaceous components, ionic constituents, and elemental components in an urban site of Wuhan from December 2019 to November 2020, the chemical characteristics of PM2.5 were analyzed. In addition, seasonal source apportionment of PM2.5 was conducted using the principal component analysis(PCA) method and random forest(RF) algorithm model. The results indicated that ρ(PM2.5) was the highest in winter[(61.33±35.32) μg·m-3] and the lowest in summer[(17.87±10.06) μg·m-3]. Furthermore, organic carbon(OC), with a concentration of(7.27±3.51) μg·m-3, accounted for the major proportion compared with that of elemental carbon(EC) in the carbonaceous component of PM2.5. NO3-, SO42-, and NH4+ had the highest proportion in ionic components, with concentrations of (11.55±3.86),(7.55±1.53), and (7.34±1.99) μg·m-3, respectively. K, Fe, and Ca were the main elements in elemental components, with concentrations of (752.80±183.98),(542.34±142.55), and (459.70±141.99) ng·m-3, respectively. Relying on main factor extraction by PCA and quantitative analysis by RF, five emission sources were ultimately confirmed. The seasonal concentration distribution of these emission sources was as follows:coal burning and secondary sources(46%, 39%, 41%, and 52% for spring, summer, autumn, and winter, respectively) made the highest contribution to PM2.5, followed by vehicle emission sources(22%, 28%, 27%, and 21%), industrial emission sources (14%, 18%, 17%, and 13%), dust sources (10%, 8%, 6%, and 6%), and biomass burning sources (8%, 7%, 9%, and 8%). The valuation of the RF model was evaluated using multiple indicators, including RMSE, MSE, and R2. The evaluation results showed that the model for winter had the best performance (R2=0.974, RMSE=3.795 μg·m-3, MAE=2.801 μg·m-3), the models for spring (R2=0.936, RMSE=3.512 μg·m-3, MAE=2.503 μg·m-3) and autumn (R2=0.937, RMSE=4.114 μg·m-3, MAE=3.034 μg·m-3) performed with moderate-fitting goodness, and the summer model showed a relatively weak-fitting performance (R2=0.866, RMSE=5.665 μg·m-3, MAE=3.889 μg·m-3). The RF model had a satisfactory performance in PM2.5 source apportionment and had excellent prospects in analyzing massive historical data of air pollutants.

您是第55236505位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2