环境科学  2025, Vol. 46 Issue (5): 3200-3208   PDF    
管式炉裂解-热脱附-气相色谱质谱法同时定量5种微塑料方法建立及应用
武志鑫1,2, 刘琳3, 余若祯1, 邓梓懿3, 杨刚4, 吴玉暄1,2, 刘承友5, 刘凡尘6, 张兵7, 杨颖1,8, 郑涵云1, 张子晔1, 李佳楠1, 黄林艳4, 杨毓珏6, 赵亚娴4, 赵高峰3, 张利飞5, 刘国瑞6, 代然1, 刘亚清1, 裴淑玮1, 唐晗昱5, 王宏伟2, 高俊敏8, Qadeer Abdul1, 安立会1, 赵兴茹1     
1. 中国环境科学研究院环境基准标准与风险管控全国重点实验室, 环境基准与风险评估国家重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 生态环境部环境标准研究所, 北京 100012;
2. 河北大学生命科学学院, 保定 071002;
3. 中国农业科学院农业环境与可持续发展研究所, 北京 100081;
4. 生态环境部环境发展中心环境标准样品研究所, 国家环境保护污染物计量和标准样品研究重点实验室, 北京 100029;
5. 国家环境分析测试中心, 国家环境保护二英污染控制重点实验室, 北京 100029;
6. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
7. 玛珂思仪器(上海)有限公司, 上海 200233;
8. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
摘要: 建立了一种能够同时定量粒径0.22 μm以上聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)和聚对苯二甲酸乙二醇酯(PET)微塑料的高灵敏度分析方法. 将5种微塑料在管式炉中完全热裂解, 用Tenax TA吸附管捕集裂解产物, 在热脱附仪中产物脱附并进入气相色谱-质谱联用仪, 筛选优化特征裂解产物定性目标微塑料, 同时建立标准曲线, 最终确定5种微塑料的仪器检出限为0.03~1.91 μg, 方法检出限分别为0.07~2.87 μg·L-1(水)、0.31~16.52 μg·g-1(土壤/沉积物)和0.11~7.41 μg·g-1(生物), 相对标准偏差3.31%~22.37%, 回收率74.21%~119.63%, 线性定量范围分别为3.7~75 µg(PS)、15~300 µg(PP、PVC和PET)和30~600 µg(PE). 该方法对样品前处理要求简单, 避免了复杂基质干扰, 提高了样品测试结果的重复性和可靠性. 随后利用建立的方法初步分析了水、土壤/沉积物和生物组织中微塑料, 结果显示5种微塑料在水样中总浓度为4.48~37.34 μg·L-1, 在土壤/沉积物中总含量为10.55~218.98 μg·g-1, 在生物样品中总含量为8.82~19.81 μg·g-1, 这为开展环境微塑料污染调查监测提供了可靠的技术保障.
关键词: 微塑料      管式炉      热脱附      气相色谱/质谱      环境基质     
Method for Simultaneous Quantifying Five Types of Microplastics by Tubular Furnace Pyrolysis-thermal Desorption-gas Chromatography-mass Spectrometry
WU Zhi-xin1,2 , LIU Lin3 , YU Ruo-zhen1 , DENG Zi-yi3 , YANG Gang4 , WU Yu-xuan1,2 , LIU Cheng-you5 , LIU Fan-chen6 , ZHANG Bing7 , YANG Ying1,8 , ZHENG Han-yun1 , ZHANG Zi-ye1 , LI Jia-nan1 , HUANG Lin-yan4 , YANG Yu-jue6 , ZHAO Ya-xian4 , ZHAO Gao-feng3 , ZHANG Li-fei5 , LIU Guo-rui6 , DAI Ran1 , LIU Ya-qing1 , PEI Shu-wei1 , TANG Han-yu5 , WANG Hong-wei2 , GAO Jun-min8 , Qadeer Abdul1 , AN Li-hui1 , ZHAO Xing-ru1     
1. State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. School of Life Sciences, Hebei University, Baoding 071002, China;
3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
4. State Environmental Protection Key Laboratory of Environmental Pollutant Metrology and Reference Materials, Institute of Environmental Reference Materials, Environmental Development Center of the Ministry of Ecology and Environment, Beijing 100029, China;
5. State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China;
6. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
7. Markes International Limited / SepSolve Analytical Ltd., Shanghai 200233, China;
8. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
Abstract: A susceptible method has been established to simultaneously quantify five types of microplastics greater than 0.22 μm across various environmental matrices, namely, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET). In detail, five types of microplastics were completely pyrolyzed within a tubular furnace. Pyrolyzates were captured using a Tenax TA absorbent. Subsequently, target compounds were rereleased in a thermal desorption instrument and transferred into gas chromatography/mass spectrometry (GC/MS). The indicative compounds were filtered and selected to identify and quantify target microplastics. The instrument detection limits for the five types of microplastics ranged from 0.03 μg to 1.91 μg, whereas the method detection limits of target microplastics were 0.07-2.87 μg·L-1 in water, 0.31-16.52 μg·g-1 in soil/sediment, and 0.11-7.41 μg·g-1 in the organism, respectively. The relative standard deviations of 3.31%-22.37%, recoveries of 74.21%-119.63%, and quantitative ranges of 3.7-75 µg for PS; 15-300 µg for PP, PVC, and PET; and 30-600 µg for PE were also implemented. Importantly, this method had simple requirements for sample pretreatment, avoided the interference of complex matrix, and improved the repeatability and reliability of results. Subsequently, the technique quantified target microplastics in water, soil, sediments, and biological tissue. The results showed that the total mass concentrations of five microplastics in water samples were 4.48-37.34 μg·L-1 and 10.55-218.98 μg·g-1 in soil and sediments, respectively, and 8.82-19.81 μg·g-1 in biological samples. This present study provided a reliable technical guarantee for future investigation and monitoring of environmental microplastic pollution.
Key words: microplastic      tubular furnace      thermal desorption      gas chromatography mass spectrometry      environmental matrix     

微塑料是一类新型污染物[1, 2],在水[3~9]、土壤[10]和大气[11]等环境介质中广泛分布,近年来更是在人的胎盘[12]、肺[13, 14]甚至母乳[15]和血液[16, 17]中相继检出,环境微塑料污染产生的生态危害和健康风险已成为社会关注热点. 2022年,第五届联合国环境大会续会通过了一项旨在推动全球治理塑料污染包括微塑料的《终止塑料污染决议(草案)》决议,当年我国也将微塑料纳入《新污染物行动治理方案》并做出了“完善新污染物监测技术体系”的具体部署[18].

目前,微塑料的分析方法主要有光谱法和质谱法. 其中,光谱法主要有傅里叶变换红外光谱(FTIR)和拉曼光谱(Raman)[19~25],但FTIR受光衍射极限的限制,空间分辨率最低为10 µm[26],并且易受水分影响[27],而Raman易受荧光背景干扰,对样品前处理质量要求高[28];质谱法主要有热裂解气相色谱/质谱法(pyrolysis-gas chromatography/mass spectrometry,Py-GC/MS)[29~45]和热萃取解吸附气相色谱/质谱法(thermoextraction and desorption-gas chromatography/mass spectrometry,TED-GC/MS)[46]. 尽管Py-GC/MS已用于水体[33]、土壤[35, 36, 41]、沉积物[37, 38]和生物组织[39, 40]中微塑料的分析,但裂解区域小[47]导致上样量小[48],受杂质干扰严重[49],更适用于分析100µm以上较大微粒[50];与Py-GC/MS相比,TED-GC/MS上样量是Py-GC/MS的200倍以上[46],抗基质干扰能力强[26],但分析过程中吹扫气体流量不易受控制,检测结果重复性较差[51]. 最近,Sorolla-Rosario等[52]利用管式炉代替了TGA,提高了样品分析能力,但因搅拌棒比表面积小吸附能力低,仍未解决热裂解分析样品量小并且重复性差的不足.

随着环境微塑料污染研究快速进展,对微塑料快速定量技术需求不断提升,急需一种既能够有效避免环境复杂介质干扰、测试结果重复性好、又能够定量小粒径微塑料的灵敏度高、适用范围广的分析方法,这也是落实《新污染物行动治理方案》的迫切需求. 在现有质谱分析方法基础上,本文开发了一种大体积裂解管,可将富集微塑料的全部滤膜进行热裂解,随后利用Tenax TA高性能吸附管选择性吸附挥发性和半挥发性裂解产物,并在脱附后进入气相色谱/质谱进行定性定量分析,最终建立了聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)和聚对苯二甲酸乙二醇酯(PET)5种常见微塑料的定性定量方法,提升了检测效率,并且适用范围广,以期为新污染物治理提供了可靠的技术保障.

1 材料与方法 1.1 仪器与试剂

气相色谱/质谱联用仪(Agilent 8890 GC/5977B MSD, 美国Agilent公司), 热脱附仪(TD100-xr, 德国Markes公司), 热重分析仪(TGA2 STAR System, 瑞士Mettler Toledo公司), 管式裂解炉(OTF-1000X-SS, 杭州卓驰仪器有限公司).

聚丙烯(PP, 10 μm, 密度为0.90~0.91 g·cm-3)、聚乙烯(PS, 10 μm, 密度:1.04~1.09 g·cm-3)、聚氯乙烯(PVC, 10 μm, 密度:1.38 g·cm-3)和聚对苯二甲酸乙二醇酯(PET, 10μm, 密度:1.37 g·cm-3)购自中国东菀市特塑朗化工原料有限公司, 低密度聚乙烯(PE)(1000目, 密度:0.910~0.925 g·cm-3)购自上海麦克林生化科技有限公司, 苯乙烯(styrene)、联苯(diphenyl)、萘(naphthalene)(99.9%)购自德国DR EHRENSTORFER公司, 2, 4-二甲基-1-庚烯(2, 4-dimethyl-1-heptene)(98.6%)购自中国TM standard公司, 十二烯(1-dodecene)(99.5%)购自天津阿尔塔科技有限公司. 实验用甲醇和丙酮为农残级, H2O2(30%)、KOH和甲酸钾为分析纯, 实验用水为娃哈哈超纯水.

微塑料颗粒不溶于水, 无法准确配制低浓度样品, 本研究首先根据微塑料密度配制二氯甲烷、四氯呋喃、六氟异丙醇、氯仿和二氯甲烷的单一或混合溶剂溶解微塑料固体颗粒(表 1), 进而用于制备不同浓度的微塑料标准溶液.

表 1 5种微塑料标准溶液 Table 1 Standard solutions of five types of microplastics

1.2 样品采集

严格按照HJ/T 166、HJ 164-2020和HJ 1019-2019相关规定采集水样[53~56]. 其中, 地表水和地下水采自北京市某自来水厂水源水, 生活污水采自北京市某生活污水处理厂, 海水采自渤海湾近岸表层水, 工业废水采自河北某企业生产废水. 采样过程中使用不锈钢采水器采集, 玻璃瓶分装后带回实验室处理分析, 整个过程避免使用塑料制品以减少背景污染.

严格按照HJ/T 166和HJ 1019-2019要求采集土壤样品[55], 按照GB 17378.3要求采集沉积物样品. 其中, 红土、黑土和黄土分别采自江西、黑龙江和内蒙古农田表层土, 沉积物分别采自小兴凯湖表层沉积物和渤海湾近岸表层沉积物. 采样过程中利用铁锹或抓斗式采泥器采集样品, 棕色玻璃瓶封装并带回实验室处理分析, 采集过程中避免使用塑料制品以减小背景污染.

生物样品(新鲜海水鱼和虾)购自北京某水产品市场, 去掉表皮、肠道以及内脏膜后仅留取肌肉组织, 高速匀浆后置于玻璃瓶中, 冷冻备用分析.

1.3 样品处理 1.3.1 水样前处理

将采集水样充分混合后经5 mm不锈钢筛过滤, 然后取1 L水样过玻璃纤维滤膜(孔径:0.22 µm). 将滤膜对折后放入50 mL烧杯中, 随后加入20 mL H2O2并在50 ℃条件下超声消解;30 min后, 将消解液连同滤膜转移至玻璃纤维滤膜过滤, 随后用超纯水清洗烧杯3次, 清洗液一并过滤;随后依次加10 mL甲醇和10 mL丙酮净化滤膜, 然后将滤膜对折并用铝箔纸包裹, 50 ℃烘干, 保存备测.

1.3.2 土壤/沉积物前处理

取2.0 g研磨的土壤/沉积物样品放入50 mL烧杯中, 加入20 mL H2O2并在50 ℃条件下超声消解;3 h后, 向烧杯中加入5.0 g无水硫酸钠并超声5 min, 随后将全部溶液和样品转移至离心管中离心:4 000 r·min-1, 1 min. 取上清液过玻璃纤维滤膜(孔径:0.22 µm)备用;同时将离心管中土壤/沉积物样品全部转移至烧杯中, 加入40 mL甲酸钾溶液(1.5 g·mL-1)超声浮选5 min, 然后全部转移至离心管中离心:4 000 r·min-1, 1 min. 离心后取上清液过玻璃纤维滤膜(孔径:0.22 µm), 用超纯水清洗烧杯和离心管一并过滤. 后续操作同水样处理.

1.3.3 生物组织前处理

取1.0 g鱼或虾的肌肉组织, 按照质量体积比1∶30加入30 mL新鲜配制的KOH溶液(10%), 50 ℃条件下超声消解至溶液澄清, 随后将消解液全部过玻璃纤维滤膜(孔径:0.22 µm), 后续操作同水样处理.

1.4 仪器分析 1.4.1 管式炉裂解

将富集微塑料的玻璃纤维滤膜全部置于石英舟中, 水平推入石英管, 并将装有玻璃纤维滤膜的石英管部位固定在管式炉加热区. 管式炉(图 1)初始温度为60 ℃, 以20 ℃·min-1速率升温至550 ℃, 并保持14 min, 随后冷却至60 ℃. 在管式炉高温条件下微塑料快速发生热裂解, 同时用氮气(100 mL·min-1)吹扫裂解产物并用Tenax TA吸附管捕集.

1.石英舟, 2.富集样品的玻璃纤维滤膜, 3.石英管, 4.炉体加热区域, 5. Tenax TA吸附管 图 1 管式裂解炉示意 Fig. 1 Schematic of tubular furnace

1.4.2 热脱附

将吸附有裂解产物的Tenax TA吸附管置于热脱附仪中进行脱附:300 ℃, 10 min;同时利用氮气吹扫脱附的裂解产物进入冷阱:低温30 ℃, 高温300 ℃, 吹扫时间1 min, 随后通过气相色谱系统进行分离和检测, 分流比82∶1.

1.4.3 气相色谱

色谱柱选用DB-624(250 μm × 1.4 μm, 30 m), 色谱进样口温度120 ℃, 不分流进样:初始温度35 ℃, 5 min;10 ℃·min-1升至260 ℃, 10 min;传输线温度260 ℃, 高纯氦气(He).

1.4.4 质谱

电离源为电子轰击离子源(electron impact ionization, EI)70 eV, 离子源温度230 ℃, 四极杆温度150 ℃, 全扫描(full scan), 扫描范围35~350 u.

1.5 质量控制

为避免背景污染, 整个实验操作过程在铺设干净铝箔纸的实验台上进行, 待测样品置于铺有干净铝箔的搪瓷盘中备用, 实验用装置随时用铝箔纸包裹. 整个实验过程避免使用塑料工具, 同时禁用油性笔做标记. 实验人员穿棉质实验服, 并减少使用可能含微塑料材质的护肤品和化妆品. 石英舟、滤膜使用前在马弗炉(500 ℃)烘烧去除杂质, 实验过程使用的所有溶液用0.22 μm的玻璃纤维滤膜过滤处理;Tenax TA在使用之前做老化处理以避免二次干扰, 保持裂解样品干燥.

配制标准曲线时, 玻璃纤维膜对折两次, 放在石英舟上, 为防止溶液渗透损失, 将标准溶液滴加在滤膜3层重叠的一侧, 然后用铝箔包裹石英舟, 待溶剂完全挥发后, 移入管式炉热裂解. 实验重复6次以保证数据的可靠性.

1.6 数据处理

利用NIST MS Search Program(V2.4)标准谱库检索裂解产物, 使用Origin 2022软件完成数据制图.

2 结果与讨论 2.1 微塑料分析条件优化 2.1.1 确定裂解温度

利用TGA裂解微塑料, 从热重曲线可以看出在260 ℃前微塑料质量几乎没有变化, 说明微塑料没有发生裂解;在260~320 ℃微塑料质量发生短暂降低, 说明发生了一定裂解;随后在390~520 ℃时质量急速降低, 说明微塑料发生了快速裂解, 并在520 ℃时几乎裂解完全(图 2). 为确保不同微塑料聚合物能够完全裂解, 本方法最终确定550 ℃作为目标微塑料的热裂解温度.

样品1:PP、PE、PS、PVC和PET各200μg, 样品2:PP、PE、PS、PVC和PET各500 μg, 样品3:PP、PE、PS、PVC和PET各1 000 μg 图 2 5种微塑料热重曲线 Fig. 2 Thermogravimetric curves of five types of microplastics

2.1.2 微塑料特征化合物的确定

利用质谱识别微塑料的裂解产物并提取特征离子(图 3), 选择响应信号最强并且特异性好的化合物作为微塑料的指示化合物, 并在相同色谱条件下以指示化合物标准品进行色谱扫描和质谱验证, 确定指示化合物, 最终选择每种微塑料的特征指示化合物(表 2).

(a)总离子;特征化合物:(b1)2, 4-dimethyl-1-heptene, t=12.56 min, PP(m/z):70;(b2)styrene, t=14.23 min, PS(m/z):104;(b3)1-dodecene, t=18.97 min, PE(m/z):83;(b4)naphthalene, t=19.92 min, PVC(m/z):128;(b5)biphenyl, t=22.62 min, PET(m/z):154 图 3 5种微塑料聚合物色谱-离子质谱图 Fig. 3 Chromatograms and MS spectra of five types of microplastics

表 2 5种微塑料对应聚合物的裂解产物信息1) Table 2 Information of pyrolysis products, corresponding to five types of microplastics

为考察微塑料标准品溶解态与颗粒态之间的可能响应差异, 比较每种微塑料标准品相同质量的液体和固体、以及5种微塑料标准品混合液和固体的响应强度, 结果发现各组响应强度偏差均小于10%(图 4), 说明微塑料聚合物固体和液体状态对特征指示化合物的响应强度没有明显影响.

图 4 微塑料液体和固体状态特征指示化合物的响应强度 Fig. 4 Response intensities of indicative compounds, corresponding to solid and dissolved microplastics

2.2 方法检出限和标准曲线

利用超纯水、石英砂和去内脏虾肌肉分别做水样、土壤/沉积物和生物组织空白基质, 平行测定7次后计算方法检出限, 仪器检出限为3倍信噪比(表 3). 总体上看, 水中PS的方法检出限最低(0.07 μg·L-1), 而土壤/沉积物中PET则最高(16.52 μg·g-1);水样中各物质检出限则明显低于生物组织和土壤/沉积物. 在此基础上, 取每种微塑料标准溶液建立对应的标准曲线(图 5), 其中PP、PVC和PET的线性范围为15~300 µg, PE为30~600 µg, 而PS因响应强度最高, 线性范围较窄(3.7~75 µg), 但每种微塑料线性范围相关系数(R2)均大于0.99, 可用于定量目标微塑料的质量浓度. 需要指出的是, KOH溶液会严重影响生物组织中PET测试结果的重复性, 因此当前方法暂时无法对生物组织中PET微塑料进行准确定量.

表 3 水、土壤/沉积物和生物组织样品中微塑料检出限1) Table 3 Limits of detection of microplastics in water, soil/sediment, and biological tissues

阴影表示拟合区间 图 5 5种微塑料定量标准曲线 Fig. 5 Quantifying curves for five types of microplastics

2.3 精密度和回收率实验

取PP、PS、PVC、PET和PS标准溶液加入超纯水、石英砂和去内脏虾肌肉空白基质, 利用本方法平行测定6次, 结果用于计算方法精密度和回收率(表 4). 总体上看, 方法的相对标准偏差在3.31%~22.37%, 回收率在74.21%~119.63%, 说明本方法具有较好的精密度和准确度.

表 4 空白基质微塑料加标精密度和回收率1)n=6) Table 4 Precision and recoveries of microplastics in blank matrix (n=6)

2.4 环境样品微塑料污染水平

利用本方法分析了环境水样、土壤/沉积物和生物组织中5种微塑料的浓度/含量(图 6). 总体上看, 渤海湾表层海水中的PS较低(ND~6.45 μg·L-1), 但高于埃布罗三角洲海水(粒径 > 100 μm)(1.08~136.7 ng·L-1[57], 而生产废水中(12.55~29.79 μg·L-1)和地表水(31.81~37.72 μg·L-1)5种微塑料浓度均高于德国某地废水(6~2 525 μg·m-3)和地表水(4.2~5.5 μg·m-3)中的PE、PP、PMMA、PS和PVC(粒径 > 20 μm)[32], 但生活污水5种微塑料浓度(12.81~25.66 μg·L-1)低于德国某生活污水微塑料浓度(PP、PE、PS和PET:1 500~83 600 μg·m-3)(粒径 > 10 μm)[33];同时, 海水鱼中PVC含量为7.75~10.46 μg·g-1, 明显低于澳大利亚某海鲜市场沙丁鱼中PVC(粒径 > 2.7 μm)含量(75 μg·g-1[58];尽管海洋沉积物中5种微塑料(15.22~60.65 μg·g-1)低于湖泊沉积物(66.4~218.98 μg·g-1), 但仍高于德国海洋沉积物的微塑料含量(PE、PP、PMMA、PC、PS和PVC:8~144 μg·kg-1)(粒径 > 20 μm)[32];本调查中黄土(47.14~89.69 μg·g-1)和黑土(10.55~70.02 μg·g-1)微塑料含量相近, 但均明显低于上海工业园内土壤(粒径 > 1 μm)(PP、PE、PS和PET:ND~271 μg·g-1[35]和沈阳农田土壤微塑料含量(粒径 > 0.45 μm)(PP、PE和PS:217~2 512 μg·g-1[41]. 不同研究间结果差异不仅与各研究采取的前处理方法和调查区域微塑料污染程度有关, 还与分析目标微塑料组成及粒径范围有关, 如本研究分析了5种常见微塑料, 并且定量微塑料的最小粒径达到了0.22 μm, 而其它研究分析微塑料最小粒径一般多为20 μm[59]. 考虑到小粒径微塑料是环境微塑料的主要组成成分[60, 61], 造成微塑料环境污染水平可能被低估, 这也说明提高分析方法的灵敏度和适用范围对全面了解微塑料污染水平至关重要.

图 6 环境样品中5种微塑料含量 Fig. 6 Concentration of five of microplastics in environmental samples

3 结论

(1)优化了水、土壤/沉积物和生物组织的前处理条件, 利用管式炉热裂解-TD-GC/MS建立了能够同时定量PE、PP、PS、PVC和PET微塑料(0.22 µm~5 mm)分析方法, 显著提高了环境微塑料的分析效率.

(2)调查的3类环境介质普遍受到微塑料污染, 其中湖泊沉积物污染水平相对较高(66.4~218.98 μg·g-1), 而海水相对较低(4.48~17.19 μg·L-1).

(3)在调查的3类环境介质中, 以PVC浓度/含量最高, 其中水样为1.72~10.34 μg·L-1、土壤/沉积物为5.40~100.86 μg·g-1和生物组织为5.32~10.46 μg·g-1;PS浓度/含量最低, 其中水样为0.08~6.45 μg·L-1、土壤/沉积物为0.32~11.55 μg·g-1和生物组织为0.06~0.17 μg·g-1.

参考文献
[1] Zhang K, Hamidian A H, Tubić A, et al. Understanding plastic degradation and microplastic formation in the environment: a review[J]. Environmental Pollution, 2021, 274. DOI:10.1016/j.envpol.2021.116554
[2] Ren Z F, Gui X Y, Xu X Y, et al. Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants-A critical review[J]. Journal of Hazardous Materials, 2021, 419. DOI:10.1016/j.jhazmat.2021.126455
[3] Nash R, Joyce H, Pagter E, et al. Deep sea microplastic pollution extends out to sediments in the northeast Atlantic Ocean margins[J]. Environmental Science & Technology, 2023, 57(1): 201-213.
[4] Koelmans A A, Mohamed Nor N H, Hermsen E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality[J]. Water Research, 2019, 155: 410-422. DOI:10.1016/j.watres.2019.02.054
[5] Mintenig S M, Löder M G J, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635. DOI:10.1016/j.scitotenv.2018.08.178
[6] Wu Z X, Dong J, Wu Y X, et al. Mass-based fates of microplastics throughout wastewater treatment processes[J]. Chemical Engineering Journal, 2024, 487. DOI:10.1016/j.cej.2024.150497
[7] 弥启欣, 国晓春, 卢少勇, 等. 千岛湖水体中邻苯二甲酸酯(PAEs)的分布特征及健康风险评价[J]. 环境科学, 2022, 43(4): 1966-1975.
Mi Q X, Guo X C, Lu S Y, et al. Distribution characteristics and ecological and health risk assessment of phthalic acid esters in surface water of Qiandao lake, China[J]. Environmental Science, 2022, 43(4): 1966-1975.
[8] 范梦苑, 黄懿梅, 张海鑫, 等. 湟水河流域地表水体微塑料分布、风险及影响因素[J]. 环境科学, 2022, 43(10): 4430-4439.
Fan M Y, Huang Y M, Zhang H X, et al. Distribution, risk, and influencing factors of microplastics in surface water of Huangshui River Basin[J]. Environmental Science, 2022, 43(10): 4430-4439.
[9] 孙晓楠, 陈浩, 贾其隆, 等. 我国陆域水体系统表层水中微塑料生态风险评估[J]. 环境科学, 2022, 43(11): 5040-5052.
Sun X N, Chen H, Jia Q L, et al. Ecological risk assessment of microplastics occurring in surface water of terrestrial water systems across China[J]. Environmental Science, 2022, 43(11): 5040-5052.
[10] He L Y, Li Z B, Jia Q, et al. Soil microplastics pollution in agriculture[J]. Science, 2023, 379(6632): 547-547. DOI:10.1126/science.adf6098
[11] Deng Y, Peng L, Li Z D, et al. First determination on two kinds of microplastic-air partition coefficients of seven per-and polyfluoroalkyl substances under environmentally relative conditions: Experiment measurement and model prediction[J]. Journal of Hazardous Materials, 2023, 459. DOI:10.1016/j.jhazmat.2023.132042
[12] Zhu L, Zhu J Y, Zuo R, et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy[J]. Science of the Total Environment, 2023, 856. DOI:10.1016/j.scitotenv.2022.159060
[13] Zhang H J, Zhang S Y, Duan Z H, et al. Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro[J]. Environment International, 2022, 162. DOI:10.1016/j.envint.2022.107177
[14] Jenner L C, Rotchell J M, Bennett R T, et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831. DOI:10.1016/j.scitotenv.2022.154907
[15] Ragusa A, Notarstefano V, Svelato A, et al. Raman Microspectroscopy detection and characterisation of microplastics in human breastmilk[J]. Polymers, 2022, 14(13). DOI:10.3390/polym14132700
[16] Wu D, Feng Y D, Wang R, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of Advanced Research, 2023, 49: 141-150. DOI:10.1016/j.jare.2022.09.004
[17] Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood[J]. Environment International, 2022, 163. DOI:10.1016/j.envint.2022.107199
[18] 郭闻. 国务院办公厅印发《新污染物治理行动方案》[J]. 中国石油和化工, 2022(6): 75. DOI:10.3969/j.issn.1673-4076.2022.06.028
[19] Nawab J, Khan H, Ghani J, et al. New insights into the migration, distribution and accumulation of micro-plastic in marine environment: A critical mechanism review[J]. Chemosphere, 2023, 330. DOI:10.1016/j.chemosphere.2023.138572
[20] 耿娜, 赵广明, 张大海, 等. 黄河三角洲湿地表层沉积物中微塑料的分布、来源和风险评价[J]. 环境科学, 2023, 44(9): 5046-5054.
Geng N, Zhao G M, Zhang D H, et al. Distribution, sources, and risk assessment of microplastics in surface sediments of Yellow River delta wetland[J]. Environmental Science, 2023, 44(9): 5046-5054.
[21] Weisser J, Beer I, Hufnagl B, et al. From the well to the bottle: identifying sources of microplastics in mineral water[J]. Water, 2021, 13(6). DOI:10.3390/w13060841
[22] Patil S, Kamdi P, Chakraborty S, et al. Characterization and removal of microplastics in a sewage treatment plant from urban Nagpur, India[J]. Environmental Monitoring and Assessment, 2023, 195(1). DOI:10.1007/s10661-022-10680-x
[23] Hansen J, Hildebrandt L, Zimmermann T, et al. Quantification and characterization of microplastics in surface water samples from the Northeast Atlantic Ocean using laser direct infrared imaging[J]. Marine Pollution Bulletin, 2023, 190. DOI:10.1016/j.marpolbul.2023.114880
[24] Glockler F, Foschum F, Kienle A. Continuous sizing and identification of microplastics in water[J]. Sensors, 2023, 23(2). DOI:10.3390/s23020781
[25] Kor K, Mehdinia A. Neustonic microplastic pollution in the Persian Gulf[J]. Marine Pollution Bulletin, 2020, 150. DOI:10.1016/j.marpolbul.2019.110665
[26] Ivleva N P. Chemical analysis of microplastics and nanoplastics: challenges, advanced methods, and perspectives[J]. Chemical Reviews, 2021, 121(19): 11886-11936. DOI:10.1021/acs.chemrev.1c00178
[27] Löder M G J, Imhof H K, Ladehoff M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24): 14283-14292.
[28] Pico Y, Alfarhan A, Barcelo D. Nano- and microplastic analysis: Focus on their occurrence in freshwater ecosystems and remediation technologies[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 409-425. DOI:10.1016/j.trac.2018.08.022
[29] Ravit B, Cooper K, Buckley B, et al. Organic compounds associated with microplastic pollutants in New Jersey, U.S.A. surface waters[J]. AIMS Environmental Science, 2019, 6(6): 445-459. DOI:10.3934/environsci.2019.6.445
[30] Funck M, Yildirim A, Nickel C, et al. Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC-MS[J]. Methods X, 2020, 7. DOI:10.1016/j.mex.2019.100778
[31] Kirstein I V, Hensel F, Gomiero A, et al. Drinking plastics? – Quantification and qualification of microplastics in drinking water distribution systems by µFTIR and Py-GCMS[J]. Water Research, 2021, 188. DOI:10.1016/j.watres.2020.116519
[32] Primpke S, Fischer M, Lorenz C, et al. Comparison of pyrolysis gas chromatography/mass spectrometry and hyperspectral FTIR imaging spectroscopy for the analysis of microplastics[J]. Analytical And Bioanalytical Chemistry, 2020, 412(30): 8283-8298. DOI:10.1007/s00216-020-02979-w
[33] Funck M, Al-Azzawi M S M, Yildirim A, et al. Release of microplastic particles to the aquatic environment via wastewater treatment plants: The impact of sand filters as tertiary treatment[J]. Chemical Engineering Journal, 2021, 1526. DOI:10.1016/j.cej.2021.130933
[34] Zhang X N, Shi K, Liu Y N, et al. Rapid and efficient method for assessing nanoplastics by an electromagnetic heating pyrolysis mass spectrometry[J]. Journal of Hazardous Materials, 2021, 419. DOI:10.1016/j.jhazmat.2021.126506
[35] 江竹莲, 陈雪煜, 金宪丹. 热裂解-气质联用技术测试环境土壤中的微塑料[J]. 环境化学, 2022, 41(5): 1824-1826.
Jiang Z L, Chen X Y, Jin X D. Determination of microplastics in Soil by pyrolizer-GC-MS[J]. Environmental Chemistry, 2022, 41(5): 1824-1826.
[36] Steinmetz Z, Kintzi A, Muñoz K, et al. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 2020, 147. DOI:10.1016/j.jaap.2020.104803
[37] La Nasa J, Biale G, Mattonai M, et al. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples[J]. Journal of Hazardous Materials, 2021, 401. DOI:10.1016/j.jhazmat.2020.123287
[38] Li Z C, Gao Y, Wu Q H, et al. Quantifying the occurrence of polystyrene nanoplastics in environmental solid matrices via pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Hazardous Materials, 2022, 440. DOI:10.1016/j.jhazmat.2022.129855
[39] Okoffo E D, Chan C M, Rauert C, et al. Identification and quantification of micro-bioplastics in environmental samples by pyrolysis‐gas chromatography‐mass spectrometry[J]. Environmental Science & Technology, 2022, 56(19): 13774-13785.
[40] Okoffo E D, Ribeiro F, O'Brien J W, et al. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography‐mass spectrometry[J]. Science of the Total Environment, 2020, 715: 136924. DOI:10.1016/j.scitotenv.2020.136924
[41] 时馨竹, 孙丽娜, 李珍, 等. 沈阳周边农田土壤中微塑料组成与分布[J]. 农业环境科学学报, 2021, 40(7): 1498-1508.
Shi X Z, Sun L N, Li Z, et al. Composition and distribution of microplastics in farmland soil around Shenyang[J]. Journal of Agro-Environment Science, 2021, 40(7): 1498-1508.
[42] Garcia M A, Liu R, Nihart A, et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry[J]. Toxicological Sciences, 2024, 199(1): 81-88. DOI:10.1093/toxsci/kfae021
[43] Hermabessiere L, Himber C, Boricaud B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6663-6676. DOI:10.1007/s00216-018-1279-0
[44] Choi J H, Jung Y J, Kim H J, et al. A Janus branch filter for washing machines: Simultaneous removal of microplastics and surfactants[J]. Chemosphere, 2023, 331. DOI:10.1016/j.chemosphere.2023.138741
[45] Hermabessiere L, Rochman C M. Microwave-assisted extraction for quantification of microplastics using pyrolysis-gas chromatography/mass spectrometry[J]. Environmental Toxicology and Chemistry, 2021, 40(10): 2733-2741. DOI:10.1002/etc.5179
[46] Dümichen E, Barthel A K, Braun U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85: 451-457. DOI:10.1016/j.watres.2015.09.002
[47] Zhou X X, Hao L T, Wang H Y Z, et al. Cloud-point extraction combined with thermal degradation for nanoplastic analysis using pyrolysis gas chromatography–mass spectrometry[J]. Analytical Chemistry, 2019, 91(3): 1785-1790. DOI:10.1021/acs.analchem.8b04729
[48] Li C J, Gao Y, He S, et al. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry[J]. Environmental Science & Technology Letters, 2021, 8(8): 633-638.
[49] Ivleva N P, Wiesheu A C, Niessner R. Microplastic in aquatic ecosystems[J]. Angewandte Chemie International Edition, 2017, 56(7): 1720-1739. DOI:10.1002/anie.201606957
[50] Dekiff J H, Remy D, Klasmeier J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186: 248-256. DOI:10.1016/j.envpol.2013.11.019
[51] Dümichen E, Braun U, Senz R, et al. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry[J]. Journal of Chromatography A, 2014, 1354: 117-128. DOI:10.1016/j.chroma.2014.05.057
[52] Sorolla-Rosario D, Llorca-Porcel J, Pérez-Martínez M, et al. Microplastics' analysis in water: easy handling of samples by a new thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) methodology[J]. Talanta, 2023, 253. DOI:10.1016/j.talanta.2022.123829
[53] DB21/T 2751-2017, 海水中微塑料的测定 傅立叶变换显微红外光谱法[S].
DB21/T 2751-2017, Determination of microplastics in seawater-micro-Fourier transform infrared spectroscopy[S].
[54] HJ 164-2020, 地下水环境监测技术规范[S].
HJ 164-2020, Technical specifications for environmental monitoring of groundwater[S].
[55] HJ 1019-2019, 地块土壤和地下水中挥发性有机物采样技术导则[S].
HJ 1019-2019, Technical guideline for site soil and groundwater sampling of volatile organic compounds[S].
[56] DZ/T0420-2022  地下水采样技术规程[Z].
DZ/T0420-2022Code of practice for groundwater sampling[Z].
[57] Schirinzi G F, Llorca M, Seró R, et al. Trace analysis of polystyrene microplastics in natural waters[J]. Chemosphere, 2019, 236. DOI:10.1016/j.chemosphere.2019.07.052
[58] Ribeiro F, Okoffo E D, O'Brien J W, et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry[J]. Environmental Science & Technology, 2020, 54(15): 9408-9417.
[59] Dibke C, Fischer M, Scholz-Böttcher B M. Microplastic mass concentrations and distribution in German bight waters by pyrolysis‐gas chromatography‐mass spectrometry/thermochemolysis reveal potential impact of marine coatings: Do ships leave skid marks?[J]. Environmental Science & Technology, 2021, 55(4): 2285-2295.
[60] Onink V, Kaandorp M L A, van Sebille E, et al. Influence of particle size and fragmentation on large-scale microplastic transport in the Mediterranean Sea[J]. Environmental Science & Technology, 2022, 56(22): 15528-15540.
[61] Vethaak A D, Legler J. Microplastics and human health[J]. Science, 2021, 371(6530): 672-674. DOI:10.1126/science.abe5041