环境科学  2025, Vol. 46 Issue (3): 1690-1702   PDF    
黄河流域煤矿区土壤有机碳库的修复及其影响因素:基于Meta分析
孙宏伟 , 闫美芳     
太原理工大学环境与生态学院, 晋中 030600
摘要: 采煤对生态系统造成严重干扰和破坏, 加剧区域碳排放. 对煤矿废弃地进行生态恢复, 可改善受损土壤的理化性质, 增加土壤碳库储量. 因此, 煤矿区生态恢复对区域碳汇水平提升和生态环境改善具有重要意义. 目前, 国内煤矿区修复方面的研究多分散在黄河流域主要产煤省份, 急需从流域尺度阐明其对土壤固碳功能的影响. 以黄河流域煤矿区土壤为研究对象, 通过整合分析方法, 研究土壤理化性质与酶活性在植被恢复后的变化规律, 并结合气候条件揭示土壤有机碳库修复的影响机制. 结果表明:①煤矿区生态恢复后, 土壤理化性质与酶活性均得到显著改善, 但不同土层间存在一定差异. ②矿区生态恢复使得土壤有机碳(SOC)、全氮和碱解氮分别增加62.2%、40.5%和36.0%, 且随着恢复年限的增加, 整体上呈现增大的趋势. 从植被恢复类型来看, 乔木混交林的土壤有机碳含量增加最为显著. ③氮磷含量的增加会提升土壤肥力, 有助于增加植被凋落物的土壤碳输入, 从而促进土壤有机碳库的修复. 年均温、年降水量和土壤类型也是影响土壤碳库恢复的主要因子. 未来应结合黄河流域不同地域的气候和土壤特点, 从碳库修复角度选择适宜的植被类型, 以促进流域整体碳汇水平的提升.
关键词: 黄河流域      煤矿区      整合分析      土壤有机碳库      生态恢复      土壤酶活性     
Soil Carbon Restoration and Its Influencing Factors in Coal Mining Areas of Yellow River Basin: A Meta-analysis
SUN Hong-wei , YAN Mei-fang     
College of Environment and Ecology, Taiyuan University of Technology, Jinzhong 030600, China
Abstract: Coal mining has caused notable disturbance and destruction to the ecosystem, leading to intensified regional carbon emissions. Ecological restoration of abandoned coal mines can improve the physical and chemical properties of damaged soil and increase soil carbon storage. Therefore, ecological restoration of coal mine areas is crucial for improving regional carbon sink levels and environments. Currently, most studies on ecological restoration in Chinese coal mining areas are scattered across the major coal-producing provinces in the Yellow River Basin. Its effect on soil carbon sequestration at a basin scale must be crucially elucidated. In this study, we focused on changes in soil physicochemical properties and enzyme activities after vegetation restoration using an integrated analysis method, combined with climate and soil characteristics in the Yellow River Basin's coal mining areas to reveal the major factors affecting soil carbon restoration. Our results showed that: ① Soil physicochemical properties and enzyme activities were improved significantly after ecological restoration; however, some differences were present among different soil layers. ② Soil organic carbon (SOC), total nitrogen, and alkali-hydrolyzed nitrogen increased by 62.2%, 40.5%, and 36.0%, respectively, showing an overall increasing trend with increasing restoration years. From the perspective of vegetation type, mixed forest had the largest increment in SOC. ③ The increase in nitrogen and phosphorus content improved soil fertility and helped to increase soil carbon input from vegetation litter, thus promoting the restoration of the soil organic carbon pool. In addition, average annual temperature and precipitation along with soil type also played important roles affecting soil C restoration. In the future, based on climate and soil characteristics of specific mining areas, suitable vegetation types should be selected from a perspective of C sequestration to enhance C sink of the whole basin.
Key words: Yellow River Basin      coal mining area      Meta-analysis      soil organic carbon pool      ecological restoration      soil enzyme activity     

在2020年联合国大会上, 我国承诺在2060年前争取实现“碳中和”. 煤炭行业是我国温室气体的主要来源之一, 除了直接燃煤导致的碳排放外, 长期采煤对土壤产生剧烈扰动, 通过有机碳矿化、淋溶和土壤团聚体破坏等过程, 造成土壤固碳功能的退化. 同时, 煤矸石等废弃物的自燃氧化, 加剧了区域CO2排放[1]. 通过对矿山损毁土地进行生态重建与植被修复, 增强土壤的固碳功能, 是实现区域碳汇增加的重要途径. 我国多数煤炭资源处于黄河流域, 煤炭开发极大地削弱了原本脆弱的生态系统功能[2]. 《黄河流域生态保护和高质量发展规划纲要》指出, 黄河流域要着力加强生态保护治理, 其中矿山生态修复为生态治理的重要内容之一. 所以, 在实现“碳中和”的大背景下, 结合国家生态保护与修复的重大需求, 加强煤矿区植被修复和土壤固碳功能研究, 拓展区域尺度“固碳增汇”新途径, 具有重要现实意义.

增强陆地生态系统碳汇功能是减缓大气CO2浓度上升的重要手段, 也是实现“碳中和”的有效途径[3 ~ 5]. 土壤有机碳(soil organic carbon, SOC)作为陆地生态系统中最大的碳库, 在全球碳循环和气候变化中发挥着重要作用[6, 7]. 有研究发现, 植被恢复有可通过促进土壤碳固持来减缓气候变化[8]. 随着煤矿区植被修复年限的增长, 枯枝落叶与根系分泌物逐渐累积, 有助于增加SOC含量, 改善土壤性质与结构[9], 从而提高酶活性, 所以, 植被修复是改善土壤质量和提升土壤碳汇水平的重要途径[10]. 除此之外, 植被修复时采用的物种类型也是影响因子之一, 如乔木、灌木和草类的凋落物数量和质量存在显著差异, 从而对土壤性质与功能产生不同影响. 因此, 矿区植被生长演替过程实际上是植被与土壤因素之间相互促进与相互制约的过程[11].

我国煤矿主要处于黄河流域的干旱半干旱区, 采煤导致土地严重退化. 且在修复过程中多利用人工机械覆土、平整等方法, 导致煤矿修复地土壤容重偏大, 土壤团聚体结构遭到破坏, 土壤微生物活性降低, 严重制约土壤固碳功能的恢复. 因此, 矿区的植被修复对改善土壤理化性质和重建土壤碳库至关重要[12].

十八大以来, 黄河流域矿山生态修复作为生态保护与修复的重要内容之一, 已上升为生态治理的国家战略. 2023年, 全国生态环境保护大会指出:应做好废弃矿山生态恢复工作[13]. 目前, 国内煤矿区植被恢复方面的研究多分散在黄河流域主要产煤省份, 但从流域尺度阐明其对土壤固碳功影响的研究较少. 在煤矿区植被恢复过程中, 需要综合考虑区域自然气候条件[14], 如区域降水量、年均温和年平均日照时数等. 本文基于黄河流域煤矿区的土壤理化性质与土壤酶活性数据, 通过整合分析, 明确矿区生态恢复后的土壤理化性质与土壤有机碳库的变化规律, 揭示土壤有机碳库的修复机制, 以期为矿区废弃地碳库管理与生态恢复提供理论依据与参考.

1 材料与方法 1.1 数据来源与收集

本文于2023年10月通过Elsevier Science Direct电子期刊全文数据库与万方数据知识服务系统、中国期刊全文数据库(CNKI)等文献检索系统, 利用关键词:有机碳(organic carbon)、土壤酶活性(soil enzyme activity)、土壤理化性质(physical and chemical properties of soil)等、黄河流域(Yellow River Basin)与矿区(mining area或mined area)进行文献检索, 且文献年限为2000~2023年, 最后共检索出903篇文献.

根据关键词等初步筛选出129篇, 进一步通过浏览全文筛选出41篇文献[15 ~ 55]. 筛选标准:①每篇文献中的研究必须包括对照组与试验组, 并且数据必须包含平均值±标准差;②文献中的研究区域为黄河流域煤矿区;③文献中的土壤采样深度必须以10 cm作为分层. 数据收集内容包括:样本量、对照组与试验组的平均值及标准差、试验地的年日照时数、无霜期、年均蒸发量、土壤类型、年均温、年均降水量、植被恢复年限、植被恢复类型以及土壤采样深度. 如果文献中数据以图的形式出现, 则使用图形数字化软件(Engauge Digitizer10.8)对图形进行处理, 获得相关数据.

1.2 数据处理与分析

本研究将试验地的年日照时数分为2 000~3 000 h和 > 3 000 h, 无霜期分为100~165 d和 > 165 d, 年均蒸发量分为900~1 400 mm和 > 1 400 mm, 土壤类型分为黄绵土、栗钙土与栗褐土、淋溶褐土、褐土、淡栗褐土、灰钙土、沼泽土和高山草甸土, 年均温分为 < 2、2~8和 > 8 ℃, 年均降水量分为200~460 mm和 > 460 mm, 植被恢复年限分为 < 6、6~10、11~15和 > 15 a(最大值为25 a), 植被恢复类型分为乔木(单一乔木林地)、乔木混交林(两种或两种以上)、乔-灌、乔-草、灌木、灌-草、草地和农田, 土壤采样深度分为0~10 cm和10~20 cm.

本文整合分析效应值采用效应比值(effect size, lnR), 计算公式为:

式中, Ye为各指标试验组平均值;Yc为各指标对照组平均值.

效应比值lnR的变异系数(Vln R )的计算公式为:

式中, SeSc为试验组和对照组的标准误差;NeNc为试验组和对照组的样本数.

文献数据整合分析使用软件MetaWin 2.0, 导入数据后得出每个研究的效应比值及其变异系数, 之后进行土壤指示指标的亚组分析, 通过随机效应模型计算出每个指标的效应比值(E+)、平均效应值(E++)及其置信区间(95%CI);通过Excel 2016软件进行图表绘制. 效应比值为正时, 表明某影响因子对该指标有促进作用;效应比值为负时, 影响因子对该指标有抑制作用. 置信区间不包括0时, 影响显著, 反之则不显著. 采用IBM SPSS Statistics 27的神经网络模型预测结果以及检验因素重要性. 运用RStudio 4.2.2的“lavaan”程序包构建结构方程模型.

2 结果与分析 2.1 矿区生态修复后土壤有机碳的变化

SOC是矿区土壤质量的关键指标. 从平均效应值E++和95%CI可以看出, 矿区修复后, 土壤有机碳含量得到显著提升(P < 0.05). 由图 1可知, 随着矿区生态恢复恢复年限的延长, 矿区土壤有机碳含量呈现先提升后下降的趋势. 一般在恢复11~15 a后, 土壤有机碳含量增加最多, 约为74.1%. 植被恢复模式对土壤有机碳含量影响显著. 不同植被恢复模式中, 乔木混交林地土壤有机碳增加最为显著(P < 0.05), 约增加了102.7%;其次为草地, 约为70.5%. 土壤类型对土壤有机碳含量影响显著. 植被恢复后, 淡栗褐土的土壤有机碳增加了约105.2%;而褐土与灰钙土增加不显著(P > 0.05), 且0~10 cm土壤有机碳恢复效果优于10~20 cm土壤(图 1).

区间对应95%置信区间(95%CI), 其效应值(E+)对应区间中点, 整个95%置信区间不跨越0表示差异性显著, 区间在0右侧为促进作用, 在0左侧为抑制作用, 平均效应值(E++)表示土壤有机碳的变化规律的平均情况, 横坐标表示效应值, 下同 图 1 矿区生态修复对土壤有机碳的影响 Fig. 1 Effect of ecological restoration on soil organic carbon in mining area

气候因子也是影响土壤有机碳的主要因素. 当矿区年均温为2~8 ℃时, 有机碳含量增加64.2%(P < 0.05), 而当年均温 < 2 ℃, 增加不显著(P > 0.05). 当矿区年均降水量 > 460 mm时, 有机碳增加不显著(P > 0.05), 而年均降水量为200~460 mm时, 增加显著(P < 0.05), 约为67.5%. 从黄河流域煤矿区的整体修复情况来看, 当年均温为2~8 ℃、年均降水量为200~460 mm、土壤类型为淡栗褐土、无霜期 > 165 d、年日照时数为2 000~3 000 h时, SOC提升效应最为显著(P < 0.05).

2.2 矿区生态修复修复后土壤养分与理化性质的变化 2.2.1 土壤氮

E++和95%CI可以看出, 矿区修复有助于土壤全氮含量提高, 且影响显著(P < 0.05, 图 2). 全氮的亚组分析表明(图 2), 矿区生态修复显著促进全氮(TN)含量增加(P < 0.05). 相较于矿区未复垦样地, 4个恢复阶段(0~5、6~10、11~15和 > 15 a)的土壤全氮含量均显著增加, 且随着恢复年限的推移, 增加效果越来越显著(P < 0.05). 乔木混交林中土壤全氮的提升效果最为显著(P < 0.05), 约增加了86.3%, 且0~10 cm土壤全氮恢复效果优于10~20 cm.

图 2 矿区生态修复对土壤全氮的影响 Fig. 2 Effect of ecological restoration on soil total nitrogen in mining area

图 3所示, 不同恢复阶段, 土壤碱解氮含量显著提升且恢复效果逐渐增强. 上层土壤碱解氮恢复效果优于下层土壤. 乔木林中土壤碱解氮含量的增加效应最为显著(P < 0.05), 约为50.7%. 从整体上看, 矿区通过植被恢复, 土壤碱解氮含量得到显著提升(P < 0.05).

图 3 矿区生态修复对土壤碱解氮的影响 Fig. 3 Effect of ecological restoration on soil alkali-hydrolyzed nitrogen in mining area

2.2.2 土壤磷

图 4所示, 乔木林中土壤全磷含量增加最为显著(P < 0.05). 上层土壤全磷恢复效果高于下层土壤. 从整体情况来看, 矿区修复有助于土壤全磷含量提高, 且影响显著(P < 0.05).

图 4 矿区生态修复对土壤全磷的影响 Fig. 4 Effect of ecological restoration on soil total phosphorus in mining area

2.2.3 土壤碳氮比

从碳氮比的森林图可以看出(图 5), 当恢复年限 < 6 a时, 碳氮比值提升不显著, 但随着修复年限的增加, 对碳氮比的影响显著增大(P < 0.05). 乔木林中土壤碳氮比(P < 0.05)约增加了46.1%, 且上层土壤碳氮比值高于下层土壤. 整合分析表明:植被修复后土壤碳氮比值显著增大(P < 0.05).

图 5 矿区生态修复对土壤碳氮比的影响 Fig. 5 Effect of ecological restoration on soil carbon nitrogen ratio in mining area

2.2.4 土壤容重

矿区土壤压实是土壤退化的表现形式之一, 导致土壤结构恶化和生产力退化[56]. 从容重的分析中可以得出(图 6), 当矿区废弃土地转变为农田时, 容重降低, 但不显著. 当转变为其他土地利用方式时, 容重显著降低(P < 0.05). 随着植被恢复时间的延长, 矿区土壤容重显著降低. 整体来看, 经过对矿区的修复, 土壤容重显著降低(P < 0.05).

图 6 矿区生态修复对土壤容重的影响 Fig. 6 Effect of ecological restoration on soil bulk density in mining area

2.3 矿区生态修复后土壤酶活性的变化 2.3.1 土壤脲酶

土壤酶活性作为衡量土壤质量或生产力变化的重要指标, 也是土壤碳循环过程的催化剂. 土壤脲酶的亚组分析如图 7所示, 矿区修复使得土壤脲酶活性提升, 且影响显著(P < 0.05);但当植被恢复类型为草地时, 脲酶活性提升不显著(P > 0.05). 随着修复年限的增加, 土壤脲酶活性呈现先逐渐提升后降低的趋势. 乔木林中土壤脲酶活性增加得最为显著(P < 0.05). 上层土壤恢复效果优于下层土壤. 整合分析表明, 矿区生态修复后, 土壤脲酶活性显著提升(P < 0.05).

图 7 矿区生态修复对土壤脲酶的影响 Fig. 7 Effect of ecological restoration on soil urease in mining area

2.3.2 土壤蔗糖酶

图 8所示, 植被恢复使得土壤蔗糖酶活性显著提升(P < 0.05). 但草地、乔-草植被类型中的蔗糖酶活性提升不显著(P > 0.05). 随着修复年限的增加, 土壤蔗糖酶活性先降低再提升最后降低. 乔-灌林中土壤蔗糖酶活性提高得最为显著(P < 0.05). 上层土壤恢复效果高于下层土壤. 整合分析表明, 矿区生态修复后, 土壤蔗糖酶活性显著提升(P < 0.05).

图 8 矿区生态修复对土壤蔗糖酶的影响 Fig. 8 Effect of ecological restoration on soil sucrase in mining area

2.4 土壤有机碳变化的主要驱动因素

本研究基于结构方程模型SEM, 构建土壤有机碳与土壤理化性质、年均温、年均降水量、恢复年限、植被恢复类型、土壤类型之间的驱动与耦合模型, 选取相关变量(土壤有机碳、全氮、全磷、碱解氮、碳氮比、容重、年均温、年均降水量和恢复年限)整合到SEM中(图 9). 结果表明:年均降水量和恢复年限对有机碳有显著的促进作用(K=0.653, P < 0.01;K=0.359, P < 0.01). 植被恢复类型与土壤类型属于定类变量, 其对有机碳的影响系数为0.582(P < 0.01)和0.591(P < 0.01). 全氮与有机碳之间存在相互促进作用, 且效果显著(K=0.46, P < 0.01), 碱解氮与全磷对有机碳起促进作用(K=0.391, P < 0.01;K=0.22, P < 0.05), 碳氮比对土壤有机碳产生一定的促进作用(K=0.475, P < 0.01), 土壤容重与有机碳之间呈负相关(K=-0.25, P < 0.05). 年均温与有机碳、全氮存在负相关关系(K=-0.608, P < 0.01;K=-0.571, P < 0.01). 年均降水量对全氮与碱解氮起促进作用(K=0.619, P < 0.01;K=0.52, P < 0.01). 植被恢复类型与土壤类型对全氮、全磷、碱解氮与碳氮比具有显著影响(P < 0.01).

DF:自由度, GFI:拟合优度指, RMESA:近似误差均方根, 箭头上的数字表示标准化的路径系数(K), 表明两两之间关联的效应强度;黑色实线与黑色数字表示正向关系, 红色虚线与红色数字表示负向关系, 蓝色实线和蓝色数字表示植被恢复方式与土壤类型两个定类变量与其他土壤理化性质的影响, 关系双箭头表示变量之间相互影响, 显著性水平如下:*为P < 0.05, **为P < 0.01, ***为P < 0.001 图 9 矿区土壤有机碳影响因子的结构方程模型 Fig. 9 Structural equation model of influencing factors of soil organic carbon in mining area

3 讨论 3.1 矿区植被恢复年限对土壤有机碳的影响

采煤扰动破坏土壤团聚体的保护作用, 使得有机碳极易通过矿化和淋溶等过程分解或流失, 导致矿区土壤碳库储量急剧减少. SOC含量主要取决于凋落物回归量和分解速率, 而植被恢复年限的差异, 会造成凋落物数量和累积量的不同, 从而导致土壤中有机碳含量的时间变异[29]. 前人研究表明, SOC与恢复年限成正比. 赵姣等[15]和孙梦媛等[40]研究发现, 内蒙古黑岱沟煤矿复垦20 a和25 a后乔木混交林地的ω(SOC)为6.54 g·kg-1和8.15 g·kg-1, 显著高于复垦初期. 本研究表明, 随着恢复时间的延长, 土壤有机碳得到有效恢复, 这是由于枯枝落叶、林下层植物和死亡细根生物量随群落演替逐渐累积, 增加了土壤的碳输入[57], 从而增加土壤碳库储量. 同时, 植被盖度增加可减少土壤有机碳的淋溶损失. 但不同恢复阶段的改善效果存在差异, 这可能是与土壤因素、气候变化及其交互作用有关. 前人Meta分析表明[58], 修复退化土地后土壤有机碳平均提高72.2%, 而本研究矿区经过植被修复后, 平均提高62.2%, 低于前者, 这可能是由于本研究区域土壤养分匮乏, 水热条件等因素与前者存在差异, 导致土壤固碳速率不同[59].

本研究表明, 随着矿区生态恢复时间的延长, 土壤全氮与碱解氮改善效果越来越显著. 这是因为随着矿区修复的进行, 土壤中不断积累凋落物分解物与植被分泌物, 可以为土壤微生物提供更多碳源和养分. 种植人工植被后, 新鲜凋落物经过矿化可释放出大量铵态氮和硝态氮, 根系分泌物中也含有易分解的有机态氮, 因此, 土壤全氮明显增加的同时, 碱解氮也明显增加[31]. 此外, 种植年限显著影响磷含量[60]. 同时前人研究表明, 土壤氮和磷等养分是矿区植被恢复的限制因子[6]. 土壤氮磷含量的增加可以促进植被生长和修复, 从而通过影响枯枝落叶与根系碳输入来调控土壤有机碳动态[61 ~ 63]. Tang等[64]研究发现, 氮提升对SOC引起的增加作用是因为植被残体碳输入大于微生物分解引起的碳损失量.

据估算, 全球森林0~10 cm土壤的碳氮比平均为12.4[65]. 本研究表明, 在大部分的植被修复样地, 平均碳氮比值略低于全球水平, 这说明矿区废弃地缺乏充足的碳源, 抑制了土壤的生物活性, 随着恢复时间延长, 碳氮比显著增大, 说明随着修复年限的增加, 氮含量相对不足. 当土壤微生物分解SOC时, 由于氮源不足导致SOC分解速率减缓, 有利于土壤有机碳的累积.

随着矿区生态恢复年限的增加, 枯枝落叶分解物和根系分泌物在土壤中不断积累和矿化, 将营养元素释放到土壤中, 进而改善土壤理化性质[66]. 本研究表明, 土壤容重显著降低, 且容重通常与SOC呈负相关[67], 容重小说明土壤疏松多孔、结构性良好, 适宜植被生长发育, 使得植被碳输入增大, 有利于SOC的提升. 此外, 土壤容重与土壤的通透性、抗蚀性、蓄水性有关[68]. 土壤容重降低有助于增加土壤孔隙度及持水力, 这对干旱区土壤至关重要, 土壤容重降低还有利于修复土壤团聚体结构, 增加对活性有机碳的保护作用.

3.2 矿区植被恢复类型对土壤有机碳的影响

植被恢复类型对SOC含量影响显著[69]. 前人研究表明, 将林地或草原转换为农田时, SOC大幅下降30%~80%[70, 71], 这是由于土壤碳输入较低、土壤侵蚀加重及团聚体结构破坏导致SOC稳定性下降, 同时土壤通气量上升加剧SOC矿化[72 ~ 74]. 在生态系统中, 由于植被恢复类型不同, 生境条件及生理特点也不同, 形成了不同的土壤有机质的输入和输出方式[75, 76]. 如图 1图 2所示, 不同植被恢复模式相比, 乔木混交林的土壤有机碳与土壤全氮恢复效果最为显著. 植被类型显著影响SOC库的恢复. 王翔等[18]和李君剑等[23]发现, 山西安太堡煤矿修复8 a后乔木混交林与乔-灌林地的ω(SOC)分别为18.17 g·kg-1和11.11 g·kg-1, 差异显著. 同时, 安太堡煤矿的土壤类型、气候条件存在一定差异, 也会导致SOC含量之间的明显差异. 平朔煤矿区废弃地的油松刺槐混交林的植被恢复22 a后, 0~20 cm土层内土壤ω(SOC)为41.59 g·kg-1, 高于其他植被修复模式[77, 78]P < 0.05). 同时, 0~10 cm土层内土壤ω(TN)为9.27 g·kg-1, 高于其他植被修复模式[21]P < 0.05). 这是因为该植被恢复模式凋落物丰富并易分解, 且混交林树种之间存在互补效应, 有更多的有机质和氮素等养分通过物质循环重新回到土壤[79, 80]. 除此之外, 其凋落物在降解过程中产生了较多的酸性物质, 有助于土壤中难溶性物质向有效性的方向转化.

不同植被恢复类型中, 乔木C/N随着植被恢复的进程而显著提高(图 5), 且提升效果最为显著. 一方面是由于种植乔木(针叶林)能有效减缓矿区土壤较快的矿化速率, 有利于土壤有机质的积累;另一方面是因为不同植被恢复模式下凋落物化学组成及结构不同, 其分解速率不同, 从而导致输入土壤中碳、氮含量的不同. 了解不同植被恢复类型在煤矿土壤质量恢复方面的作用, 对选择合适的人工植被模式具有重要意义.

3.3 矿区土壤酶活性对土壤有机碳的影响

土壤酶作为有机物分解的催化剂, 土壤酶活性越强, 表明土壤微生物活性越大, 土壤碳氮周转速率越快[81], 能快速为植被提供养分. 前人研究表明, 矿区土壤酶活性普遍偏低[47], 导致土壤养分匮乏, 严重抑制植被的生长发育.

本研究表明, 对矿区废弃地进行人工植被修复后, 复垦土壤的脲酶与蔗糖酶活性显著提升. 这是由于植被恢复为土壤提供碳、氮和磷等的来源, 促进了植物根系生长与微生物的活动[82], 使得微生物与植物根系分泌更多的酶. 有研究表明[83], 与草地、灌木相关的植被恢复模式对矿区土壤微生物的影响低于与乔木相关的恢复模式.

不同植被恢复方式下凋落物、微生物、根系及其分泌物不同, 必然造成土壤酶活性的差异[37]. 阳泉矿区废弃地在白毛杨林模式下恢复15 a后, 0~10 cm土层内矿区土壤脲酶活性为16.02 mg·(100 g·h)-1, 高于其他植被修复模式[48]P < 0.05). 平朔矿区废弃地在乔⁃草(刺槐、小叶杨、卫矛和紫苜蓿)模式下恢复6 a后, 0~10 cm土层内矿区土壤蔗糖酶活性为1.06 mg·(100 g·h)-1, 高于其他植被修复模式[46]P < 0.05). 这可能是因为不同植被类型的根系活动、凋落物、土壤微生物及土壤微环境综合作用的结果;其次, 乔木与乔-灌在相同时间内凋落物的积累量较多, 相应地土壤酶活性就较高. 土壤养分含量的增加改善了土壤微生物的生长环境, 从而改善了土壤酶活性状况. 本研究表明, 上层土壤恢复效果高于下层土壤, 这是因为0~10 cm是植物残体分布量较多的土层, 通气性和结构性良好, 凋落物丰富, 使得该土层微生物群落丰富, 有利于养分的积累, 因而酶活性较强. 总体上, 人工植被恢复增加了土壤营养物质来源, 促进了土壤微生物的生命代谢活动, 从而提高了土壤酶活性[84]. 土壤酶活性通过促进植被生长发育来增加碳输入, 有助于土壤固碳.

3.4 矿区土壤有机碳修复的主要驱动因素

本研究表明, 由于年日照时数、无霜期、土壤类型、年均温和年均降雨量等非生物因子不同, 导致矿区土壤有机碳修复效果有所差异, 说明其恢复效应是这些生物因子与非生物因子共同作用的结果[85]. 从图 9中可以看出, 年均温、年均降水量和植被恢复类型等因素均会通过影响植被生长发育来促进碳氮磷的提升.

采矿引起的植被损毁改变了矿山周围的地表温度, 导致对云层形成的贡献减少, 进而降低了当地湿度与降水量[86]. 本研究表明, 土壤有机碳含量与年平均降水量呈现极显著正相关关系, 干旱一方面会导致枯枝落叶质量[87]和分解率[88]降低. 有研究发现[89], 年均降水量在850 mm基础上如果减少50%, 则会使凋落物分解率下降约19%. 另一方面在干旱半干旱区生态系统中, 降水决定了净初级生产力, 枯枝落叶量和林下层植物生物量由于水分限制而减少, 从而影响土壤的碳输入[90].

温度是SOC储存的关键驱动因素, 在很大程度上影响SOC分解[91 ~ 93]. 有研究发现, 区域温度上升, 会导致有机碳出现降低趋势[94, 95]. 这与本文研究结果一致, 因为温度升高会加速土壤有机碳矿化速率, 造成有机碳含量降低. 除此之外, 土壤类型对土壤性质的影响十分显著[73]. 有研究表明[96, 97], 不同土壤类型对矿区植被恢复后SOC储存的影响存在很大差异. 一般情况下, 土壤质量随着恢复时间的增长而提高[98], 并且恢复年限与植被恢复类型对土壤质量改善都有显著影响[99].

与此同时, 土壤氮磷、容重、碳氮比和碱解氮也会促进土壤有机碳的增加. 有研究表明, 适量氮提升可促进土壤有机碳含量提高, 从而有助于土壤碳固持[100]. 这是由于氮提升后, 为植被生长发育提供养分[101], 使得植被凋落物增多, 有助于有机碳增加;此外, 土壤碳氮比与有机碳呈现显著的正相关关系[102]. 因此, 土壤理化性质、年均温和年均降水量等因素影响土壤的碳输入, 从而促进土壤有机碳库的修复.

综上所述, 黄河流域煤矿区土壤氮磷缺乏、酶活性偏低以及土壤容重偏大严重制约土壤有机碳固存, 矿区经人工植被修复后, SOC显著增加. 植被恢复通过细根周转、枯枝落叶和根系分泌物增加来提高土壤碳输入, 为土壤微生物提供更多能量与基质, 促进土壤微生物的生长, 从而刺激土壤酶活性[90, 103, 104], 有助于土壤惰性碳的累积. 土壤有机碳库取决于植被凋落物与根系分泌物的土壤碳输入过程和有机碳的分解输出过程[105], 这两个过程受到土壤理化性质与酶活性的共同影响. 所以, 有机碳固持既是退化区土壤生态功能修复的核心, 也是修复效应评估的关键.

4 结论

黄河流域煤矿区经生态修复后, 土壤有机碳显著增加. 此外, 矿区土壤有机碳受到植被恢复年限、植被类型、气候和土壤类型等因素的调控. 该地区土壤贫瘠, 生物活性低, 通过植被修复解除这些限制性因素对土壤有机碳固持的影响, 可促进土壤碳库的修复. 因此, 在煤矿区植被恢复过程中, 需要综合考虑区域自然气候条件(如矿区年降水量、年均温等)、土壤类型、植被类型和恢复年限等主要影响因素. 未来应结合黄河流域的气候和土壤特点, 选择与当地气候与土壤类型相适宜的固碳植被类型, 可促进黄河流域整体碳汇水平显著提升.

参考文献
[1] Shrestha R K, Lal R. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil[J]. Environment International, 2006, 32(6): 781-796. DOI:10.1016/j.envint.2006.05.001
[2] 彭苏萍, 毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 2020, 45(4): 1211-1221.
Peng S P, Bi Y L. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society, 2020, 45(4): 1211-1221.
[3] 杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534-574.
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science in China: Life Sciences, 2022, 52(4): 534-574.
[4] Hunter B D, Roering J J, Silva L C R, et al. Geomorphic controls on the abundance and persistence of soil organic carbon pools in erosional landscapes[J]. Nature Geoscience, 2024, 17(2): 151-157. DOI:10.1038/s41561-023-01365-2
[5] Even R J, Cotrufo M F. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation[J]. Geoderma, 2024, 442. DOI:10.1016/j.geoderma.2023.116760
[6] Bradford M A, Wieder W R, Bonan G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6(8): 751-758. DOI:10.1038/nclimate3071
[7] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296. DOI:10.1126/science.290.5490.291
[8] Yang W, Zhang D, Cai X W, et al. Natural revegetation over~160 years alters carbon and nitrogen sequestration and stabilization in soil organic matter on the Loess Plateau of China[J]. CATENA, 2023, 220. DOI:10.1016/j.catena.2022.106647
[9] Frouz J, Livečková M, Albrechtová J, et al. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites[J]. Forest Ecology and Management, 2013, 309: 87-95. DOI:10.1016/j.foreco.2013.02.013
[10] Liu Y L, Zhang R X, Wang X Z, et al. The contribution and flow of microbial residual carbon in soil aggregates following forest restoration on the Loess Plateau, China[J]. CATENA, 2024, 236. DOI:10.1016/j.catena.2023.107762
[11] Wang J M, Wang H D, Cao Y G, et al. Effects of soil and topographic factors on vegetation restoration in opencast coal mine dumps located in a loess area[J]. Scientific Reports, 2016, 6(1). DOI:10.1038/srep22058
[12] Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4039-4044.
[13] Ma W B, Li H D, Lei S G, et al. Good governance can save China's mine ecosystems[J]. Science, 2024, 383(6679): 157-158.
[14] 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21): 7921-7930.
Zhang J D, Xi F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica, 2020, 40(21): 7921-7930.
[15] 赵姣, 马静, 朱燕峰, 等. 植被类型对黄土高原露采矿山复垦土壤碳循环功能基因的影响[J]. 环境科学, 2023, 44(6): 3386-3395.
Zhao J, Ma J, Zhu Y F, et al. Effects of vegetation types on carbon cycle functional genes in reclaimed soil from open pit mines in the loess Plateau[J]. Environmental Science, 2023, 44(6): 3386-3395. DOI:10.13227/j.hjkx.202206219
[16] 李君剑, 温亮, 韩广, 等. 山西省孝义矿区不同植被恢复方式下土壤呼吸、温度和水分季节特征[J]. 水土保持通报, 2012, 32(3): 56-61.
Li J J, Wen L, Han G, et al. Seasonal characteristics of soil respiration, temperature and moisture under different regeneration scenarios in Xiaoyi mining area of Shanxi Province[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 56-61.
[17] 曹银贵, 白中科, 张耿杰, 等. 山西平朔露天矿区复垦农用地表层土壤质量差异对比[J]. 农业环境科学学报, 2013, 32(12): 2422-2428.
Cao Y G, Bai Z K, Zhang G J, et al. Soil quality of surface reclaimed farmland in large open-cast mining area of Shanxi Province[J]. Journal of Agro-Environment Science, 2013, 32(12): 2422-2428. DOI:10.11654/jaes.2013.12.015
[18] 王翔, 李晋川, 岳建英, 等. 安太堡露天矿复垦地不同人工植被恢复下的土壤酶活性和肥力比较[J]. 环境科学, 2013, 34(9): 3601-3606.
Wang X, Li J C, Yue J Y, et al. Comparison of soil fertility among open-pit mine reclaimed lands in Antaibao regenerated with different vegetation types[J]. Environmental Science, 2013, 34(9): 3601-3606.
[19] 李俊超, 党廷辉, 郭胜利, 等. 植被重建下煤矿排土场土壤熟化过程中碳储量变化[J]. 环境科学, 2014, 35(10): 3842-3850.
Li J C, Dang T H, Guo S L, et al. Soil organic carbon storage changes with land reclamation under vegetation reconstruction on opencast coal mine dump[J]. Environmental Science, 2014, 35(10): 3842-3850.
[20] 胡宜刚, 张鹏, 赵洋, 等. 植被配置对黑岱沟露天煤矿区土壤养分恢复的影响[J]. 草业科学, 2015, 32(10): 1561-1568.
Hu Y G, Zhang P, Zhao Y, et al. Effects of various vegetation patterns on soil nutrients recovery in Heidaigou coal mine[J]. Pratacultural Science, 2015, 32(10): 1561-1568. DOI:10.11829/j.issn.1001-0629.2014-0547
[21] 李晋川, 王翔, 岳建英, 等. 安太堡露天矿植被恢复过程中土壤生态肥力评价[J]. 水土保持研究, 2015, 22(1): 66-71, 79.
Li J C, Wang X, Yue J Y, et al. Evaluation on soil ecologic fertility during vegetation succession in Antaibao open pit[J]. Research of Soil and Water Conservation, 2015, 22(1): 66-71, 79.
[22] 李君剑, 刘峰, 周小梅. 矿区植被恢复方式对土壤微生物和酶活性的影响[J]. 环境科学, 2015, 36(5): 1836-1841.
Li J J, Liu F, Zhou X M. Effects of different reclaimed scenarios on soil microbe and enzyme activities in mining areas[J]. Environmental Science, 2015, 36(5): 1836-1841. DOI:10.13227/j.hjkx.2015.05.044
[23] 李君剑, 严俊霞, 李洪建. 矿区不同复垦措施对土壤碳矿化和酶活性的影响[J]. 生态学报, 2015, 35(12): 4178-4185.
Li J J, Yan J X, Li H J. Effects of different reclaimed measures on soil carbon mineralization and enzyme actives in mining areas[J]. Acta Ecologica Sinica, 2015, 35(12): 4178-4185.
[24] 李俊超, 党廷辉, 薛江, 等. 植被重建下露天煤矿排土场边坡土壤碳储量变化[J]. 土壤学报, 2015, 52(2): 453-460.
Li J C, Dang T H, Xue J, et al. Variability of soil organic carbon storage in dump slope of opencast coal mine under revegetation[J]. Acta Pedologica Sinica, 2015, 52(2): 453-460.
[25] 唐骏, 党廷辉, 李俊超, 等. 黄土区煤矿排土场重建草地土壤剖面有机碳变化特征[J]. 草地学报, 2015, 23(4): 718-725.
Tang J, Dang T H, Li J C, et al. Soil organic carbon profile distribution of rehabilitated grasslands on the opencast coal mine dump of loess area[J]. Acta Agrestia Sinica, 2015, 23(4): 718-725.
[26] 方瑛, 马任甜, 安韶山, 等. 黑岱沟露天煤矿排土场不同植被复垦土壤酶活性及理化性质研究[J]. 环境科学, 2016, 37(3): 1121-1127.
Fang Y, Ma R T, An S S, et al. Heidaigou opencast coal mine: soil enzyme activities and soil physical and chemical properties under different vegetation restoration[J]. Environmental Science, 2016, 37(3): 1121-1127. DOI:10.13227/j.hjkx.2016.03.043
[27] 高艺宁, 许丽, 林凤友, 等. 矿区复垦地土壤有机碳分布及与土壤化学特性的关系[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(1): 54-60.
Gao Y N, Xu L, Lin F Y, et al. Relationship between soil organic carbon distribution and soil chemical properties in mining area[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, 37(1): 54-60.
[28] 唐骏, 党廷辉, 薛江, 等. 植被恢复对黄土区煤矿排土场土壤团聚体特征的影响[J]. 生态学报, 2016, 36(16): 5067-5077.
Tang J, Dang T H, Xue J, et al. Effects of vegetation restoration on soil aggregate characteristics of an opencast coal mine dump in the loess area[J]. Acta Ecologica Sinica, 2016, 36(16): 5067-5077.
[29] 王晓琳, 王丽梅, 张晓媛, 等. 不同植被对晋陕蒙矿区排土场土壤养分16a恢复程度的影响[J]. 农业工程学报, 2016, 32(9): 198-203.
Wang X L, Wang L M, Zhang X Y, et al. Effects of different vegetation on soil nutrients remediation degree in earth disposal site after 16 a in mining area of Shanxi-Shaanxi-Inner Monglia adjacent region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 198-203.
[30] 肖礼, 赵俊峰, 黄懿梅, 等. 永利露天煤矿排土场不同植被类型下土壤理化性质和酶活性研究[J]. 水土保持研究, 2016, 23(4): 89-93.
Xiao L, ZHAO J F, Huang Y M, et al. Study on soil enzyme activities and physical and chemical properties under different vegetation types in Yongli opencast coal mine[J]. Research of Soil and Water Conservation, 2016, 23(4): 89-93.
[31] Zhang J B, Yan M F. Reproduction and community dynamics of staghorn sumac (Rhus typhina) in a coal-gangue area[J]. Acta Ecologica Sinica, 2016, 36(3): 195-199. DOI:10.1016/j.chnaes.2016.04.006
[32] 李俊超, 党廷辉. 植被重建下排土场扰动及小流域自然土体土壤有机碳储量比较[J]. 西部大开发(土地开发工程研究), 2017, 2(8): 40-46.
[33] 辛芝红, 李君剑, 赵小娜, 等. 煤矿区不同复垦年限的土壤有机碳矿化和酶活性特征[J]. 环境科学研究, 2017, 30(10): 1580-1586.
Xin Z H, Li J J, Zhao X N, et al. Characteristics of soil organic carbon mineralization and enzyme activities in coal mining area after different reclamation times[J]. Research of Environmental Sciences, 2017, 30(10): 1580-1586.
[34] 孟红旗, 熊仁鹏, 王崇, 等. 采煤沉陷区不同土地利用类型土壤水分、有机质和质地的空间变异性[J]. 土壤学报, 2018, 55(4): 911-922.
Meng H Q, Xiong R P, Wang C, et al. Spatial variability of soil moisture, organic matter content and soil texture in coal mining subsidence area as affected by land use[J]. Acta Pedologica Sinica, 2018, 55(4): 911-922.
[35] 王丽丽, 甄庆, 王颖, 等. 晋陕蒙矿区排土场不同改良模式下土壤养分效应研究[J]. 土壤学报, 2018, 55(6): 1525-1533.
Wang L L, Zhen Q, Wang Y, et al. Effect of soil amelioration on soil nutrients at mining dumps in the Shanxi-Shaanxi-Inner Mongolia region[J]. Acta Pedologica Sinica, 2018, 55(6): 1525-1533.
[36] 杨鑫光, 李希来, 金立群, 等. 短期恢复下高寒矿区煤矸石山土壤变化特征研究[J]. 草业学报, 2018, 27(8): 30-38.
Yang X G, Li X L, Jin L Q, et al. Changes in soil properties of coal mine spoils in an alpine coal mining area after short-term restoration[J]. Acta Prataculturae Sinica, 2018, 27(8): 30-38.
[37] 于亚军, 王继萍. 不同复垦年限煤矸山土壤微生物群落和酶活性及其影响因子[J]. 生态学杂志, 2018, 37(4): 1120-1126.
Yu Y J, Wang J P. Soil microbial communities, enzyme activities and the affecting factors in coal waste piles with different reclamation durations[J]. Chinese Journal of Ecology, 2018, 37(4): 1120-1126.
[38] 张菁, 江山, 王改玲. 安太堡露天矿不同复垦年限苜蓿地土壤养分和酶活性剖面特征[J]. 灌溉排水学报, 2018, 37(1): 42-48.
Zhang J, Jiang S, Wang G L. Soil profile characteristics of soil nutrients and enzyme activity after reclaiming Alfafa in Antaibao opencast coal mine[J]. Journal of Irrigation and Drainage, 2018, 37(1): 42-48.
[39] 金立群, 李希来, 孙华方, 等. 不同恢复年限对高寒露天煤矿区渣山植被和土壤特性的影响[J]. 生态学杂志, 2019, 38(1): 121-128.
Jin L Q, Li X L, Sun H F, et al. Effects of different years of recovery on vegetation and soil characteristics of open-pit coal mine dumps in alpine region[J]. Chinese Journal of Ecology, 2019, 38(1): 121-128.
[40] 孙梦媛, 刘景辉, 米俊珍, 等. 植被复垦对露天煤矿排土场土壤化学及生物学特性的影响[J]. 水土保持学报, 2019, 33(4): 206-212.
Sun M Y, Liu J H, Mi J Z, et al. Effect of vegetation restoration on soil chemical biological properties in the opencast coal mine[J]. Journal of Soil and Water Conservation, 2019, 33(4): 206-212.
[41] 杨鑫光, 李希来, 金立群, 等. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2019, 28(3): 1-11.
Yang X G, Li X L, Jin L Q, et al. Effectiveness of different artificial restoration measures for soil and vegetation recovery on coal mine tailings in an alpine area[J]. Acta Prataculturae Sinica, 2019, 28(3): 1-11.
[42] 金立群, 李希来, 孙华方, 等. 高寒矿区排土场不同坡向植被和土壤特征研究[J]. 土壤, 2020, 52(4): 831-839.
Jin L Q, Li X L, Sun H F, et al. Characteristics of Vegetations and soils under different aspects of slag mountain in alpine mining area[J]. Soils, 2020, 52(4): 831-839.
[43] 李玉婷, 曹银贵, 王舒菲, 等. 黄土露天矿区排土场重构土壤典型物理性质空间差异分析[J]. 生态环境学报, 2020, 29(3): 615-623.
Li Y T, Cao Y G, Wang S F, et al. Changes of typical physical properties of reclaimed mine soil in the dump site of loess open mining area[J]. Ecology and Environmental Sciences, 2020, 29(3): 615-623.
[44] 刘阳, 闫美芳, 王璐, 等. 山西西山煤矿矿区不同类型植被修复土壤的生态化学计量特征[J]. 土壤通报, 2020, 51(3): 634-640.
Liu Y, Yan M F, Wang L, et al. Soil stoichiometry characteristics in different vegetation restoration patterns in Xishan post-mining area in Shanxi Province[J]. Chinese Journal of Soil Science, 2020, 51(3): 634-640.
[45] 张浩, 张宇婕, 于亚军. 煤矸山复垦林地、草地土壤生态肥力差异分析[J]. 土壤通报, 2020, 51(3): 545-551.
Zhang H, Zhang Y J, Yu Y J. Difference in soil ecological fertility between reclaimed woodland and grassland in a coal waste pile[J]. Chinese Journal of Soil Science, 2020, 51(3): 545-551.
[46] 张振佳, 曹银贵, 耿冰瑾, 等. 黄土露天矿区不同复垦年限重构土壤微生物数量差异及其影响因素分析[J]. 中国土地科学, 2020, 34(11): 103-112.
Zhang Z J, Cao Y G, Geng B J, et al. Analysis on quantitative difference and influencing factors of reconstructed soil microorganisms in loess opencast mining area with different reclamation years[J]. China Land Science, 2020, 34(11): 103-112.
[47] Yan M F, Fan L N, Wang L. Restoration of soil carbon with different tree species in a post-mining land in eastern Loess Plateau, China[J]. Ecological Engineering, 2020, 158. DOI:10.1016/j.ecoleng.2020.106025
[48] 李瑶, 冯昶瑞, 周膂卓, 等. 阳泉矿区煤矸石山复垦地不同植被根际土壤酶活性季节变化[J]. 应用与环境生物学报, 2021, 27(2): 416-423.
Li Y, Feng C R, Zhou L Z, et al. Seasonal changes in rhizosphere soil enzyme activity under different revegetation types on a reclaimed coal gob pile in the Yangquan mining area, Shanxi, China[J]. Chinese Journal of Applied & Environmental Biology, 2021, 27(2): 416-423.
[49] 杨鑫光, 李希来, 马盼盼, 等. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究[J]. 草业学报, 2021, 30(8): 98-108.
Yang X G, Li X L, Ma P P, et al. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area[J]. Acta Prataculturae Sinica, 2021, 30(8): 98-108.
[50] 张振佳, 曹银贵, 王舒菲, 等. 平朔黄土露天矿区复垦地表层土壤微生物与酶活性分析[J]. 生态学报, 2021, 41(1): 110-123.
Zhang Z Z, Cao Y G, Wang S F, et al. Characteristics and differences of surface soil microbial population and enzyme activities in opencast mining area of Pingshuo[J]. Acta Ecologica Sinica, 2021, 41(1): 110-123.
[51] 宁岳伟, 刘勇, 张红, 等. 煤矿矿区复垦植被类型对土壤微生物功能基因和酶活的影响[J]. 环境科学, 2022, 43(9): 4647-4654.
Ning Y W, Liu Y, Zhang H, et al. Effects of different vegetation types on soil microbial functional genes and enzyme activities in reclaimed coal mine[J]. Environmental Science, 2022, 43(9): 4647-4654. DOI:10.13227/j.hjkx.202111139
[52] 乔欧盟, 陈璋. 矿区不同类型生态护坡工程植物多样性对环境因子的响应[J]. 应用生态学报, 2022, 33(3): 742-748.
Qiao O M, Chen Z. Plant diversity on different types of slope ecological engineering and its responses to environmental factors in mining areas[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 742-748.
[53] 王子寅, 唐万鹏, 刘秉儒, 等. 植被毯覆盖对旱区露天煤矿土壤生态化学计量及酶活性的影响[J]. 农业工程学报, 2022, 38(15): 124-132.
Wang Z Y, Tang W P, Liu B R, et al. Effects of vegetation blanket cover on the ecological stoichiometry and enzymatic activity of opencast coal mine soils in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 124-132.
[54] 张俊娇, 胡杨, 史常青, 等. 不同修复模式下排土场植被与土壤水热肥变化[J]. 中国水土保持科学, 2022, 20(3): 88-93.
Zhang J Q, Hu Y, Shi C Q, et al. Changes of vegetation and soil water, temperature and nutrient under different remediation modes in a dump[J]. Science of Soil and Water Conservation, 2022, 20(3): 88-93.
[55] Zhang N N, Huang S H, Lei H, et al. Changes in soil quality over time focusing on organic acid content in restoration areas following coal mining[J]. CATENA, 2022, 218. DOI:10.1016/j.catena.2022.106567
[56] Mueller L, Schindler U, Mirschel W, et al. Assessing the productivity function of soils. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 601-614.
[57] Husain H, Keitel C, Dijkstra F A. Fungi are more important than bacteria for soil carbon loss through priming effects and carbon protection through aggregation[J]. Applied Soil Ecology, 2024, 195. DOI:10.1016/j.apsoil.2023.105245
[58] Zhang H, Liu G H, Wu J J. The effect of land degradation and restoration on particulate and mineral-associated organic carbon[J]. Applied Soil Ecology, 2024, 196. DOI:10.1016/j.apsoil.2024.105322
[59] 林伟山, 德科加, 张琳, 等. 氮、磷添加对青藏高寒草甸土壤碳氮磷化学计量特征影响的Meta分析[J]. 草地学报, 2022, 30(12): 3345-3354.
Lin W S, De K J, Zhang L, et al. Meta-analysis of the effects of nitrogen and phosphorus addition on the stoichiometric characteristics of soils carbon, nitrogen and phosphorus in Tibetan alpine meadow[J]. Acta Agrestia Sinica, 2022, 30(12): 3345-3354.
[60] Singh A N, Zeng D H. Effects of indigenous woody plantations on total nutrients of mine spoil in Singrauli Coalfield, India[J]. Journal of Forestry Research, 2008, 19(3): 199-203.
[61] Sokol N W, Bradford M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature Geoscience, 2019, 12(1): 46-53.
[62] Jackson R B, Lajtha K, Crow S E, et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 419-445.
[63] Villarino S H, Pinto P, Jackson R B, et al. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions[J]. Science Advances, 2021, 7(16). DOI:10.1126/sciadv.abd3176
[64] Tang B, Rocci K S, Lehmann A, et al. Nitrogen increases soil organic carbon accrual and alters its functionality[J]. Global Change Biology, 2023, 29(7): 1971-1983.
[65] Cleveland C C, Liptzin D. C: N: P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252.
[66] Rutigliano F A, D'Ascoli R, De Santo A V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J]. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729.
[67] Dobson M C, Crispo M, Blevins R S, et al. An assessment of urban horticultural soil quality in the United Kingdom and its contribution to carbon storage[J]. Science of the Total Environment, 2021, 777. DOI:10.1016/j.scitotenv.2021.146199
[68] Pandey B, Mukherjee A, Agrawal M, et al. Assessment of seasonal and site-specific variations in soil physical, chemical and biological properties around opencast coal mines[J]. Pedosphere, 2019, 29(5): 642-655.
[69] 申楷慧, 魏识广, 李林, 等. 漓江流域喀斯特森林土壤有机碳空间分布格局及其驱动因子[J]. 环境科学, 2024, 45(1): 323-334.
Shen K H, Wei S G, Li L, et al. Spatial distribution patterns of soil organic carbon in karst forests of the Lijiang river basin and its driving factors[J]. Environmental Science, 2024, 45(1): 323-334. DOI:10.13227/j.hjkx.202211142
[70] Poeplau C, Don A, Vesterdal L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone⁃carbon response functions as a model approach[J]. Global Change Biology, 2011, 17(7): 2415-2427.
[71] Wei X R, Shao M G, Gale W, et al. Global pattern of soil carbon losses due to the conversion of forests to agricultural land[J]. Scientific Reports, 2014, 4(1). DOI:10.1038/srep04062
[72] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377.
[73] Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research, 2000, 53(3-4): 215-230.
[74] Smith J O, Smith P, Wattenbach M, et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080[J]. Global Change Biology, 2005, 11(12): 2141-2152.
[75] 丁越岿, 杨劼, 宋炳煜, 等. 不同植被类型对毛乌素沙地土壤有机碳的影响[J]. 草业学报, 2012, 21(2): 18-25.
Ding Y K, Yang J, Song B Y, et al. Effect of different vegetation types on soil organic carbon in Mu Us desert[J]. Acta Prataculturae Sinica, 2012, 21(2): 18-25.
[76] Yan M F, Cui F F, Liu Y, et al. Vegetation type and plant diversity affected soil carbon accumulation in a postmining area in Shanxi Province, China[J]. Land Degradation & Development, 2020, 31(2): 181-189.
[77] Yuan Y, Zhao Z Q, Zhang P F, et al. Soil organic carbon and nitrogen pools in reclaimed mine soils under forest and cropland ecosystems in the Loess Plateau, China[J]. Ecological Engineering, 2017, 102: 137-144.
[78] Yuan Y, Zhao Z Q, Bai Z K, et al. Reclamation patterns vary carbon sequestration by trees and soils in an opencast coal mine, China[J]. CATENA, 2016, 147: 404-410.
[79] 李媛媛, 周运超, 邹军, 等. 黔中石灰岩地区不同植被类型根际土壤酶研究[J]. 安徽农业科学, 2007, 35(30): 9607-9609.
Li Y Y, Zhou Y C, Zou J, et al. Study on Rhizosphere soil enzyme activities of different vegetation types in the limestone area of Guizhou province[J]. Journal of Anhui Agricultural Sciences, 2007, 35(30): 9607-9609.
[80] 兰雪, 戴全厚, 喻理飞, 等. 喀斯特退化森林不同恢复阶段土壤酶活性研究[J]. 农业现代化研究, 2009, 30(5): 620-624.
Lan X, Dai Q H, Yu L F, et al. Soil enzyme activity of different restoration stages in karst degenerative forest[J]. Research of Agricultural Modernization, 2009, 30(5): 620-624.
[81] Yan M F, Li T H, Li X R, et al. Microbial biomass and activity restrict soil function recovery of a post-mining land in eastern Loess Plateau[J]. CATENA, 2021, 199. DOI:10.1016/j.catena.2020.105107
[82] Silva D F, Araujo A S F, Lima A Y V, et al. Enzymatic stoichiometry in degraded soils after two decades of restoration in a Brazilian semiarid region[J]. CATENA, 2024, 236. DOI:10.1016/j.catena.2023.107768
[83] 王译庆, 袁朝祥, 岳楷, 等. 植被恢复对矿区土壤微生物群落结构影响的整合分析[J]. 应用生态学报, 2024, 35(4): 1141-1149.
Wang Y Q, Yuan C X, Yue K, et al. Meta-analysis of plant restoration impacts on soil microbial community structure in mining areas[J]. Chinese Journal of Applied Ecology, 2024, 35(4): 1141-1149.
[84] 安韶山, 黄懿梅, 郑粉莉. 黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J]. 草地学报, 2005, 15(3): 233-237.
An S S, Huang Y M, Zheng F L. Urease activity in the loess hilly grassland soil and its relationship to soil property[J]. Acta Agrestia Sinica, 2005, 15(3): 233-237.
[85] Wu H W, Cui H L, Fu C X, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: a review[J]. Science of the Total Environment, 2024, 909. DOI:10.1016/j.scitotenv.2023.168627
[86] Chaddad F, Mello F A O, Tayebi M, et al. Impact of mining-induced deforestation on soil surface temperature and carbon stocks: a case study using remote sensing in the Amazon rainforest[J]. Journal of South American Earth Sciences, 2022, 119. DOI:10.1016/j.jsames.2022.103983
[87] Prieto I, Almagro M, Bastida F, et al. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition[J]. Journal of Ecology, 2019, 107(5): 2364-2382.
[88] Sanaullah M, Rumpel C, Charrier X, et al. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem?[J]. Plant and Soil, 2012, 352(1-2): 277-288.
[89] Zhou S X, Huang C D, Xiang Y B, et al. Effects of reduced precipitation on litter decomposition in an evergreen broad-leaved forest in western China[J]. Forest Ecology and Management, 2018, 430: 219-227.
[90] Wiesmeier M, Urbanski L, Hobley E, et al. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162.
[91] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165-173.
[92] Von Lützow M, Kögel-Knabner I. Temperature sensitivity of soil organic matter decomposition—What do we know?[J]. Biology and Fertility of Soils, 2009, 46(1): 1-15.
[93] Conant R T, Ryan M G, Ågren G I, et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17(11): 3392-3404.
[94] 谢恩怡, 姚东恒, 廖宇波, 等. 粮食主产区耕地土壤有机碳空间分异特征及其影响因素: 以河北省为例[J]. 环境科学, 2024, 45(10): 6002-6011.
Xie E Y, Yao D H, Liao Y B, et al. Spatial differentiation characteristics of soil organic carbon and its influencing factors in cultivated land in major grain-producing areas: a case study of Hebei Province[J]. Environmental Science, 2024, 45(10): 6002-6011.
[95] 李一凡, 毋亭, 姚园, 等. 气候变化与作物物候响应对福建省耕地土壤有机碳的影响[J]. 环境科学, 2024, 45(10): 6012-6027.
Li Y F, Wu T, Yao Y, et al. Effect of climate changes and crop phenological responses on soil organic carbon of cultivated land in Fujian province[J]. Environmental Science, 2024, 45(10): 6012-6027.
[96] Mayes M, Marin-Spiotta E, Szymanski L, et al. Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey[J]. Geoderma, 2014, 232⁃234: 517-527.
[97] Wiesmeier M, Lützow M V, Spörlein P, et al. Land use effects on organic carbon storage in soils of Bavaria: the importance of soil types[J]. Soil and Tillage Research, 2015, 146: 296-302.
[98] Wang J, Zhao W W, Wang G, et al. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China)[J]. Science of the Total Environment, 2021, 770. DOI:10.1016/j.scitotenv.2020.144833
[99] Guo S J, Han X H, Li H, et al. Evaluation of soil quality along two revegetation chronosequences on the Loess hilly region of China[J]. Science of the Total Environment, 2018, 633: 808-815.
[100] 闫宇鹏, 张博涵, 周志东, 等. 氮添加对我国喀斯特农田和森林生态系统土壤有机碳及其组分影响的Meta分析[J]. 环境科学, 2024, 45(9): 5406-5415.
Yan Y P, Zhang B H, Zhou Z D, et al. Effects of nitrogen addition on soil organic carbon and its fractions in karst farmland and forest ecosystems of China based on Meta-analysis[J]. Environmental Science, 2024, 45(9): 5406-5415.
[101] 闫成龙, 薛悦, 王艺菲, 等. 秦岭中段不同恢复阶段弃耕农田植物多样性变化及其驱动因素[J]. 环境科学, 2024, 45(2): 992-1003.
Yan C L, Xue Y, Wang Y F, et al. Plant diversity changes and its driving factors of abandoned land at different restoration stages in the middle of the Qinling mountains[J]. Environmental Science, 2024, 45(2): 992-1003.
[102] 吴宇萍, 丁明军, 张华, 等. 高寒草甸重度退化阶段土壤碳氮磷生态化学计量特征及驱动因素[J]. 环境科学, 2024, 45(10).
Wu Y P, Ding M J, Zhang H, et al. Characteristics and drivers of soil carbon, nitrogen, and phosphorus ecological stoichiometry in the heavy degradation stage of the alpine meadow[J]. Environmental Science, 2024, 45(10). DOI:10.13227/j.hjkx.202310130
[103] Cline L C, Zak D R. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession[J]. Ecology, 2015, 96(12): 3374-3385.
[104] Deng Q, Cheng X L, Hui D F, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment, 2016, 541: 230-237.
[105] 冯继广, 张秋芳, 袁霞, 等. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870.
Feng J G, Zhang Q F, Yuan X, et al. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects[J]. Chinese Journal of Plant Ecology, 2022, 46(8): 855-870.