2. 内蒙古自治区环境监测总站呼和浩特分站, 呼和浩特 010030
2. Hohhot Branch Station of Inner Mongolia Environmental Monitoring Center, Hohhot 010030, China
灰尘是大气污染物的重要载体[1 ~ 3]. 灰尘在一定作用力下可再悬浮进入大气, 从而危害人体健康[4]. 灰尘中金属元素可通过经口摄入、呼吸吸入和皮肤接触这3种途径进入人体[5, 6]. 长期暴露于Pb、Cr、Mn、Cu和Cd等有毒金属元素可导致呼吸系统、神经系统和心血管等疾病[7 ~ 9]. 由于人群在室内居留时间更长, 所以室内灰尘中污染物的暴露风险不可忽视[10, 11].
近年来, 对灰尘中金属元素的污染特征、来源和健康风险的研究已较多[12], 但主要以道路扬尘和大气降尘研究为主, 关于室内灰尘的研究较少, 因此缺乏对室内灰尘潜在健康风险的认识. 室内灰尘中的Pb是许多国家儿童血Pb的主要来源[13, 14]. Doyi等[10]对悉尼室内灰尘的研究结果表明, Pb和Cr存在较高健康风险. Ivaneev等[15]的研究结果表明, 莫斯科41%的城市灰尘存在中度生态风险, 土壤侵蚀和交通源是莫斯科灰尘中有毒金属元素的主要来源. Wang等[16]的研究结果表明, 中国南方城市重金属污染明显高于北方城市, Pb和As的非致癌风险较高, Cr、Ni和As的致癌风险较高. Cao等[9]的结果表明, 云南会泽室内灰尘中金属污染主要与金属冶炼活动有关, 对儿童有潜在健康风险. Meng等[17]的研究表明, 沙尘暴等自然源对健康风险也有较高贡献. 综上所述, 由于不同城市的自然环境、产业布局和能源结构的不同, 室内灰尘中金属元素组成和特征存在较大差异[11, 18]. 包头市位于半干旱区, 是我国重要工业城市, 受人为源和自然源的共同影响, 大气污染问题十分突出. 目前, 关于室内灰尘中金属元素的研究十分有限. 本文选取重工业城市包头为研究区, 分析室内灰尘中金属元素的污染特征、来源和健康风险, 以期为重工业城市大气重金属污染及其健康风险防控提供科学依据.
1 材料与方法 1.1 样品采集采样点位置如图 1所示, 在包头的昆都仑区、青山区、东河区和九原区这4个主城区46个居民区中, 使用排刷采集二楼以上窗台上的灰尘, 将每个居民区的子样品混合成一个样品, 共获得46个室内灰尘混合样品. 去除石头、烟头、塑料和树叶等杂质, 过2 mm尼龙筛, 储存于密封的聚乙烯自封袋, 过150目的尼龙筛[19, 20], 待分析.
![]() |
图 1 采样点位示意 Fig. 1 Locations of the sampling sites |
取0.1g的灰尘样品, 加10 mL HCl、5 mL HNO3、5 mL HF和3 mL HClO4在电热板上进行消解. 消解后, 将消解液冷却, 使用0.45 μm滤膜过滤, 滤液用超纯水稀释至50 mL. 使用电感耦合等离子体质谱仪(7500a, 安捷伦公司, 美国)分析13种金属元素(Ti、Al、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Cd和Pb)的含量. 13种金属元素的方法检出限为0.5~0.6 mg·kg-1. 每10个样品做一组空白样品和平行样品. 空白样品含量均小于方法检出限, 平行样品相对偏差小于10%. 使用GSS系列标准物质进行质量控制, 13种金属元素的回收率为94.0%~114.0%.
1.3 污染评价方法使用富集因子(enrichment factor, EF)和地累积指数(geo-accumulation index, Igeo)对室内灰尘中金属元素污染程度进行评价, 污染等级评价见表 1 [21 ~ 23], 计算公式如下[24, 25]:
![]() |
(1) |
![]() |
(2) |
![]() |
表 1 金属元素污染等级分类 Table 1 Classification of pollution levels of metal elements |
式中, EFi和Igeo分别为灰尘中测量的金属元素i的富集因子和地累积指数, Ci和Bi分别为样品和背景土壤中金属元素i的含量, Cr和Br分别为样品和背景土壤中参考元素r的含量. 考虑到包头市燃煤和钢铁冶炼对Al和Fe的影响, 本文采用Ti作为参考元素, 以内蒙古表层土壤中金属元素含量[26]作为金属元素背景值.
1.4 健康风险评价方法 1.4.1 非致癌风险评价方法基于美国环保总署健康风险评价模型计算包头市室内灰尘中金属元素的经口摄入、呼吸吸入和皮肤接触这3种途径的日均暴露量(average daily dose, ADD), 计算V、Cr、Mn、Pb、Co、Ni、Cu、Zn、As和Cd元素的非致癌风险商(hazard quotients, HQ)和非致癌总风险(hazard index, HI), 计算如公式(3)~(8)所示[11]. 当HQ或HI < 1, 认为无非致癌风险, 当HQ或HI > 1, 表明存在非致癌风险[27].
![]() |
(3) |
![]() |
(4) |
![]() |
(5) |
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
式中, Ci为灰尘中金属元素i的含量, mg·kg-1;ADDing、ADDinh和ADDder分别为经口摄入、呼吸吸入和皮肤接触这3种途径的日均暴露量, mg·(kg·d)-1;HQing、HQinh和HQder分别为经口摄入、呼吸吸入和皮肤接触这3种途径的非致癌风险商;HI为非致癌总风险;其余参数含义和取值见表 2和表 3.
![]() |
表 2 金属元素暴露量参数 Table 2 Exposure parameters of metal elements |
![]() |
表 3 金属元素的参考计量和致癌斜率因子 Table 3 Reference doses and slope factors of metal elements |
1.4.2 致癌风险评价方法
基于美国环保总署健康风险评价模型, 计算Cr、Ni、As和Cd元素的经口摄入、呼吸吸入和皮肤接触这3种途径的终生日均暴露量(lifetime average daily dose, LADD)、致癌风险(carcinogenic risk, CR)和致癌总风险(total carcinogenic risk, TCR), 计算如公式(9)~(14)所示[28], 相关参数见表 2 [29]和表 3 [30 ~ 32]. 当CR或TCR < 1×10-6时, 认为致癌风险可忽略;当1×10-6 < CR或TCR < 1×10-4时, 认为存在一定致癌风险;当CR或TCR > 1×10-4时, 认为存在高致癌风险[11, 33, 34].
![]() |
(9) |
![]() |
(10) |
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
![]() |
(14) |
式中, LADDing、LADDinh和LADDder分别为经口摄入、呼吸吸入和皮肤接触这3种途径的终生日均暴露量, mg·(kg·d)-1;CRing、CRinh和CRder分别为经口摄入、呼吸吸入和皮肤接触这3种途径的致癌风险;TCR为致癌总风险;其余参数同非致癌风险.
2 结果与讨论 2.1 金属元素的污染水平 2.1.1 金属元素含量包头市室内灰尘中金属元素含量平均值如表 4所示, 13种金属元素含量平均值大小依次为:Fe > Al > Ti > Mn > Zn > Cr > Pb > V > Ni > Cu > As > Co > Cd. ω(Fe)介于46 007~100 856 mg·kg-1, 平均值为(69 000±16 063)mg·kg-1, 占金属元素总量的56.9%. ω(Al)介于37 148~77 612 mg·kg-1, 平均值为(48 978±6 757)mg·kg-1, 占金属元素总量的40.4%. 除了Fe和Al元素外, ω(Ti)平均值[(2 134±265.4)mg·kg-1]也明显高于其他元素, 这主要与其地壳中丰富的含量有关. Fe、Mn、Cr和V的含量平均值空间分布均呈现:昆都仑区 > 青山区 > 九原区 > 东河区, 这些元素的含量与距钢铁冶炼企业距离呈现反距离关系, 这与昆都仑区的大型钢铁冶炼企业有关(图 2).
![]() |
表 4 包头市室内灰尘中金属元素含量/mg·kg-1 Table 4 Concentration of metal elements in house dust in Baotou/mg·kg-1 |
![]() |
图 2 金属元素含量与距钢铁冶炼企业距离散点图 Fig. 2 Scatter plots of metal concentrations with distance from iron smelting enterprise |
包头市室内灰尘中金属元素EF平均值如图 3所示, 大小依次为:Pb > As > Cu > Cd > Fe > Ni > Cr > Zn > Mn > V > Al > Co. Pb、As和Cu这3种元素平均含量均较低, 但是其平均EF分别达到8.4、5.5和5.0, 达到了显著富集程度, 表明人为污染源是这些元素的主要来源. Cd、Fe、Cr、Zn和Ni的EF平均值在2~5之间, 达到中度富集, 表明人为源对以上金属元素有较大影响. Mn、V和Al的EF平均值在1~2之间, 存在轻度富集, 表明这些元素同时受人为来源和自然来源的共同影响. Co元素的EF平均值小于1, 无富集现象. 金属元素EF平均值显示出明显的空间差异性, Fe、Mn、Cr和V元素的EF平均值呈现:昆都仑区 > 青山区 > 九原区 > 东河区, Cu和Pb元素的EF平均值呈现:青山区 > 昆都仑区 > 九原区 > 东河区, 而Zn元素的EF平均值呈现:青山区 > 昆都仑区 > 东河区 > 九原区.
![]() |
图 3 室内灰尘中金属元素富集因子 Fig. 3 Enrichment factors of metals in residential house dust |
包头市室内灰尘中金属元素的Igeo如图 4所示, 平均值由高到低依次为:Pb > As > Cu > Fe > Cd > Cr > Ni > Zn > Co > Mn > V. Pb(1.59±0.82)、As(1.28±0.15)和Cu(1.08±0.39)的Igeo平均值在1~2之间, 达到中度污染. Fe(0.96±0.33)、Cd(0.95±0.66)、Cr(0.79±0.33)、Ni(0.78±0.61)和Zn(0.72±0.34)的Igeo平均值在0~1之间, 为轻度污染. Co、Mn和V的Igeo平均值均小于0, 处于无污染状态. 各元素Igeo空间分布规律与富集因子空间分布规律一致.
![]() |
图 4 室内灰尘中金属元素地累积指数 Fig. 4 Accumulation index of metals in residential house dust |
包头室内灰尘中金属元素的Pearson相关性如图 5所示, V、Cr、Mn和Fe元素两两之间显著相关(P < 0.001), 相关系数较高(0.77~0.88), 表明这4种金属元素可能有相似来源. 结合前面分析结果, Fe、Mn、Cr和V的含量与距钢铁冶炼企业的距离呈现负相关关系, 表明这些元素主要来源于钢铁冶炼. Al和Ti之间显著相关(P < 0.001), 相关系数为0.54, 表明这2种金属元素的来源相似. Mn与Cu(P < 0.01)和Zn(P < 0.001)之间存在显著相关性, 相关性系数分别为0.40和0.55. Pb和Cu显著相关(P < 0.05), 相关性系数为0.35. As与Fe、Mn、Cr、V、Ti、Al和Co等元素均存在一定相关性, 这可能与As元素的来源广泛有关.
![]() |
*为P < 0.05, **为P < 0.01, ***为P < 0.001 图 5 金属元素的Pearson相关系数 Fig. 5 Pearson correlation coefficient of metal elements |
包头市室内灰尘中金属元素的主成分分析(principal component analysis, PCA)结果如表 5所示, 共识别出5个主成分, 对总方差的累计贡献率为78.1%. 因子1中V、Cr、Mn和Fe载荷较高, 可解释总方差的31.0%. Fe、Mn和Cr元素都是钢铁冶炼工业排放的特征元素[35, 36], 且包头市有大型钢铁冶炼企业. 结合相关性分析结果, 可判断因子1为钢铁冶炼源. 因子2中Ti和Al元素的载荷较高, 可解释总方差的14.6%. 这2种元素是典型的自然源标志元素[37]. 因此, 可以判断因子2为自然源. 因子3中Co和Ni元素载荷较高, 方差贡献率为11.5%. 已有研究表明这2种元素都主要来自金属冶炼行业[38, 39], 结合包头市产业结构, 可推测因子3为有色金属冶炼源. 因子4以Cu、Pb和Zn高载荷为主, 可解释总方差的11.5%. Cu主要来自机动车的刹车片磨损[40], Zn元素是车胎硬化剂材料, 高温下橡胶轮胎的磨损与老化可能使其进入灰尘[41, 42], Pb元素主要来源于汽油添加剂[43]. 虽然现在已经禁用含Pb汽油, 但是之前所残留的Pb依旧存在于与机动车尾气相关的扬尘中[44, 45]. 因此, 可推测因子4为交通源. 有研究表明燃煤飞灰中含大量Cd元素[46], 包头作为北方重工业城市, 能源消费结构以煤炭为主, 因此可推测因子5为燃煤源.
![]() |
表 5 室内灰尘中金属元素的主成分分析1) Table 5 Principal component analysis of metal elements in house dust |
2.3 金属元素健康风险评价 2.3.1 非致癌风险评价
包头市室内灰尘中金属元素对儿童和成人的经口摄入、呼吸吸入和皮肤接触这3种途径的非致癌风险如图 6所示, Cr、As、V、Pb和Mn元素对儿童的HQ值较高, 分别为0.46、0.42、0.17、0.12、0.11, 其余金属元素HQ值小于0.1. 所有元素对儿童的HQ值均低于1, 但是各元素对儿童的HI大于1. 表明虽然单个金属元素无非致癌风险, 但是所有元素的综合作用对儿童存在一定的非致癌风险. 所有金属元素对成人的HQ值均低于0.1, 且成人的HI也低于1, 表明包头市室内灰尘中金属元素对成人无非致癌风险. 包头市室内灰尘中金属元素对儿童和成人的非致癌风险值均低于厦门[34]、莫斯科[15]、尼泊尔[47]和悉尼[10], 高于伊朗的阿瓦兹和扎博尔[48]. 包头市的非致癌风险主要是由Cr和As造成的, 而非致癌风险更高的厦门和莫斯科的非致癌风险主要由于Pb、Co和Fe等元素造成. 包头市室内灰尘中金属元素HQing、HQinh和HQder对儿童HI的贡献率分别为53.0%、0.5%和46.5%, 对成人HI的贡献率分别为48.0%、2.1%和49.9%, 表明经口摄入和皮肤接触是室内灰尘中金属元素健康风险的主要暴露途径, 呼吸吸入途径的非致癌风险较低, 可以忽略不计. 经口摄入途径是As和Pb元素非致癌风险的主要途径, 分别占成人HQ的67.3%和69.3%, 分别占儿童HQ的70.9%和72.8%. 皮肤接触是V和Cr的非致癌风险的主要途径, 分别占成人HQ的86.9%和76.4%, 分别占儿童HQ的84.8%和73.6%. 儿童的HI均大于成人, 是成人的6.9倍, 这主要与儿童频繁的手口活动、不发达的神经系统和较低的耐受性有关[9, 13, 49], 所以预防室内灰尘中金属元素对儿童的影响至关重要. 各元素对成人和儿童的HQ空间分布均呈现:昆都仑区 > 青山区 > 九原区 > 东河区, 这与钢铁冶炼相关元素(Cr、V和Mn)空间分布规律一致, 表明钢铁冶炼对包头市居民非致癌风险存在较大影响.
![]() |
图 6 室内灰尘中金属元素的非致癌风险和致癌风险 Fig. 6 Non-carcinogenic and carcinogenic risk of metal elements in house dust |
如图 6所示, Ni、As和Cr的CR值分别为8.07×10-5、3.33×10-5和2.67×10-5, 均高于1×10-6, 表明包头市室内灰尘中金属元素对居民存在一定致癌风险. 包头市室内灰尘中金属元素的致癌风险值低于厦门[34]、莫斯科[15]和科威特[33], 高于西安[50]、南京[39]、昭通[30]、阿瓦兹和扎博尔[48]. 上述致癌风险较高的地区, 其致癌风险主要是由Cr元素的高贡献造成的. 包头市室内灰尘中金属元素CRing、CRinh和CRder对成人和儿童TCR的贡献分别为53.4%、0.2%和46.4%. 金属元素通过呼吸吸入途径的致癌风险明显低于其余2种途径, 与非致癌风险结果一致. 皮肤接触和经口摄入途径是包头市室内灰尘中金属元素致癌风险的主要暴露途径. Cr的CR依次为:昆都仑区 > 青山区 > 九原区 > 东河区, Ni和As的CR依次为:青山区 > 东河区 > 九原区 > 昆都仑区. TCR空间分布呈现:青山区 > 东河区 > 九原区 > 昆都仑区, 与非致癌风险空间分布存在明显差异, 这主要是与主导非致癌和致癌风险的元素不同有关.
3 结论(1)Pb、As和Cu表现为高度富集, Cd、Fe、Cr、Zn和Ni表现为中度富集. Fe、Mn、Cr和V的富集因子平均值大小为:昆都仑区 > 青山区 > 九原区 > 东河区, 且与钢铁冶炼企业的直线距离存在反距离权重关系, 表明钢铁冶炼对包头市室内灰尘中金属元素含量有明显贡献.
(2)Pearson相关性分析和主成分分析结果表明, 包头市室内灰尘中金属元素来源有钢铁冶炼源、自然源、有色金属冶炼源、交通源和燃煤源, 其中钢铁冶炼源和自然源是包头市室内灰尘中金属元素的主要来源.
(3)健康风险评价结果表明, 经口摄入和皮肤接触是包头市室内灰尘中金属元素健康风险的主要暴露途径. 所有单个金属元素对成人和儿童均无非致癌风险, 但是所有元素的综合作用对儿童存在一定的非致癌风险. Ni、As和Cr对成人和儿童均存在一定致癌风险.
[1] | Cao Z G, Wang M M, Chen Q Y, et al. Spatial, seasonal and particle size dependent variations of PAH contamination in indoor dust and the corresponding human health risk[J]. Science of the Total Environment, 2019, 653: 423-430. DOI:10.1016/j.scitotenv.2018.10.413 |
[2] | Gillings M M, Fry K L, Morrison A L, et al. Spatial distribution and composition of mine dispersed trace metals in residential soil and house dust: implications for exposure assessment and human health[J]. Environmental Pollution, 2022, 293. DOI:10.1016/j.envpol.2021.118462 |
[3] | Wang H Z, Cai L M, Wang S, et al. A comprehensive exploration on pollution characteristics and health risks of potentially toxic elements in indoor dust from a large Cu smelting area, Central China[J]. Environmental Science and Pollution Research, 2021, 28(41): 57569-57581. DOI:10.1007/s11356-021-14724-6 |
[4] |
李晓燕, 汪浪, 张舒婷. 城市室内灰尘重金属水平、影响因素及健康风险: 以贵阳市为例[J]. 环境科学, 2016, 37(8): 2889-2896. Li X Y, Wang L, Zhang S T. Level and the courses of heavy metals and its risk assessment in indoor dust of city: take Guiyang as a case[J]. Environmental Science, 2016, 37(8): 2889-2896. |
[5] | Hahn D, Vogel N, Höra C, et al. The role of dietary factors on blood lead concentration in children and adolescents -Results from the nationally representative German Environmental Survey 2014-2017 (GerES V)[J]. Environmental Pollution, 2022, 299. DOI:10.1016/j.envpol.2021.118699 |
[6] | Al Hejami A, Davis M, Prete D, et al. Heavy metals in indoor settled dusts in Toronto, Canada[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.134895 |
[7] | Trujillo-González J M, Torres-Mora M A, Keesstra S, et al. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses[J]. Science of the Total Environment, 2016, 553: 636-642. DOI:10.1016/j.scitotenv.2016.02.101 |
[8] | Zhou Q H, Zheng N, Liu J S, et al. Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China[J]. Environmental Geochemistry and Health, 2015, 37(2): 207-220. DOI:10.1007/s10653-014-9640-5 |
[9] | Cao S Z, Chen X, Zhang L L, et al. Quantificational exposure, sources, and health risks posed by heavy metals in indoor and outdoor household dust in a typical smelting area in China[J]. Indoor Air, 2020, 30(5): 872-884. DOI:10.1111/ina.12683 |
[10] | Doyi I N Y, Isley C F, Soltani N S, et al. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes[J]. Environment International, 2019, 133. DOI:10.1016/j.envint.2019.105125 |
[11] | Cao S Z, Wen D S, Chen X, et al. Source identification of pollution and health risks to metals in household indoor and outdoor dust: a cross-sectional study in a typical mining town, China[J]. Environmental Pollution, 2022, 293. DOI:10.1016/j.envpol.2021.118551 |
[12] | Gorka R, Kumar R, Yadav S, et al. Health implications, distribution and source apportionment of heavy metals in road deposited dust of Jammu City in northern India[J]. Chemosphere, 2022, 308. DOI:10.1016/j.chemosphere.2022.136475 |
[13] | Shi T R, Wang Y H. Heavy metals in indoor dust: spatial distribution, influencing factors, and potential health risks[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142367 |
[14] | Yoshinaga J, Yamasaki K, Yonemura A, et al. Lead and other elements in house dust of Japanese residences-Source of lead and health risks due to metal exposure[J]. Environmental Pollution, 2014, 189: 223-228. DOI:10.1016/j.envpol.2014.03.003 |
[15] | Ivaneev A I, Brzhezinskiy A S, Karandashev V K, et al. Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia[J]. Chemosphere, 2023, 321. DOI:10.1016/j.chemosphere.2023.13814 |
[16] | Wang M M, Lv Y Y, Lv X Y, et al. Distribution, sources and health risks of heavy metals in indoor dust across China[J]. Chemosphere, 2023, 313. DOI:10.1016/j.chemosphere.2022.137595 |
[17] | Meng Q P, Yan C Q, Li R Y, et al. Variations of PM2.5-bound elements and their associated effects during long-distance transport of dust storms: insights from multi-sites observations[J]. Science of the Total Environment, 2023, 889. DOI:10.1016/j.scitotenv.2023.164062 |
[18] | Li Y B, Fang F M, Lin Y S, et al. Heavy metal contamination and health risks of indoor dust around Xinqiao Mining Area, Tongling, China[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(1): 46-56. DOI:10.1080/10807039.2018.1503930 |
[19] | Zhao L S, Hu G R, Yan Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201: 201-211. DOI:10.1016/j.atmosenv.2018.12.050 |
[20] | Zheng N, Liu J S, Wang Q C, et al. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China[J]. Science of the Total Environment, 2010, 408(4): 726-733. DOI:10.1016/j.scitotenv.2009.10.075 |
[21] |
胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险[J]. 环境科学, 2019, 40(9): 3924-3934. Hu Y Q, Guo J H, Zhang C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing[J]. Environmental Science, 2019, 40(9): 3924-3934. |
[22] |
李军, 李开明, 王晓槐, 等. 兰州市黄河风情线地表积尘及周边绿地土壤重金属污染特征及风险评价[J]. 环境科学, 2023, 44(6): 3475-3487. Li J, Li K M, Wang X H, et al. Pollution characteristics and risk assessment of heavy metals in surface dusts and surrounding green land soils from yellow river custom tourist line in Lanzhou[J]. Environmental Science, 2023, 44(6): 3475-3487. |
[23] |
冯于耀, 史建武, 钟曜谦, 等. 有色冶炼园区道路扬尘中重金属污染特征及健康风险评价[J]. 环境科学, 2020, 41(8): 3547-3555. Feng Y Y, Shi J W, Zhong Y Q, et al. Pollution characteristics and health risk assessment of heavy metals in road dust from non-ferrous smelting Parks[J]. Environmental Science, 2020, 41(8): 3547-3555. |
[24] | Liu C H, Liu J J, Wang J P, et al. Geochemical characteristics of rare earth elements and their implications for the Huachanggou gold deposit in Shaanxi Province, China[J]. Journal of Rare Earths, 2013, 31(2): 215-226. DOI:10.1016/S1002-0721(12)60261-0 |
[25] | Cheng H G, Hao F H, Ouyang W, et al. Vertical distribution of rare earth elements in a wetland soil core from the Sanjiang Plain in China[J]. Journal of Rare Earths, 2012, 30(7): 731-738. DOI:10.1016/S1002-0721(12)60120-3 |
[26] | 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. |
[27] |
杨春, 塔西甫拉提·特依拜, 侯艳军, 等. 新疆准东煤田降尘重金属污染及健康风险评价[J]. 环境科学, 2016, 37(7): 2453-2461. Yang C, Tashpolat T, Hou Y J, et al. Assessment of heavy metals pollution and its health risk of atmospheric dust fall from east part of Junggar basin in Xinjiang[J]. Environmental Science, 2016, 37(7): 2453-2461. |
[28] | Cheng Z, Chen L J, Li H H, et al. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China[J]. Science of the Total Environment, 2018, 619-620: 621-629. |
[29] | Mohmand J, Eqani S A M A S, Fasola M, et al. Human exposure to toxic metals via contaminated dust: bio-accumulation trends and their potential risk estimation[J]. Chemosphere, 2015, 132: 142-151. |
[30] |
庞晓晨, 韩新宇, 史建武, 等. 昭通市周边扬尘重金属污染特征及健康风险[J]. 环境科学, 2022, 43(1): 180-188. Pang X C, Han X Y, Shi J W, et al. Pollution characteristics and health risk of heavy metals in fugitive dust around Zhaotong city[J]. Environmental Science, 2022, 43(1): 180-188. |
[31] | Sabouhi M, Ali-Taleshi M S, Bourliva A, et al. Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran[J]. Science of the Total Environment, 2020, 744. DOI:10.1016/j.scitotenv.2020.140762 |
[32] | Luo H P, Wang Q Z, Guan Q Y, et al. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China[J]. Journal of Hazardous Materials, 2022, 422. DOI:10.1016/j.jhazmat.2021.126878 |
[33] | Al-Harbi M, Alhajri I, Whalen J K. Characteristics and health risk assessment of heavy metal contamination from dust collected on household HVAC air filters[J]. Chemosphere, 2021, 277. DOI:10.1016/j.chemosphere.2021.130276 |
[34] | Ma J J, Yan Y, Chen X J, et al. Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen, China[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.112985 |
[35] | 贺克斌, 杨复沫, 段凤魁, 等. 大气颗粒物与区域复合污染[M]. 北京: 科学出版社, 2011. |
[36] | Li X, Yan C Q, Wang C Y, et al. PM2.5-bound elements in Hebei Province, China: pollution levels, source apportionment and health risks[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150440 |
[37] | Sulaymon I D, Mei X D, Yang S J, et al. PM2.5 in Abuja, Nigeria: chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment[J]. Atmospheric Research, 2020, 237. DOI:10.1016/j.atmosres.2019.104833 |
[38] | Liu B S, Song N, Dai Q L, et al. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China[J]. Atmospheric Research, 2016, 170: 23-33. |
[39] | Wang J F, Yu J, Gong Y, et al. Pollution characteristics, sources and health risk of metals in urban dust from different functional areas in Nanjing, China[J]. Environmental Research, 2021, 201. DOI:10.1016/j.envres.2021.111607 |
[40] | Deng W B, Hao G L, Liu W J. Source-specific risks apportionment and critical sources identification of potentially harmful elements in urban road dust combining positive matrix factorization model with multiple attribute decision making method[J]. Ecological Indicators, 2022, 144. DOI:10.1016/j.ecolind.2022.109449 |
[41] |
黄哲, 曲世华, 白岚, 等. 包头城区土壤重金属空间分布特征及污染评价[J]. 环境工程, 2017, 35(5): 149-153. Huang Z, Qu S H, Bai L, et al. Spatial distribution characteristics and pollution assessment of heavy metal soils in urban areas of Baotou[J]. Environmental Engineering, 2017, 35(5): 149-153. |
[42] |
武媛媛, 李如梅, 彭林, 等. 运城市道路扬尘化学组成特征及来源分析[J]. 环境科学, 2017, 38(5): 1799-1806. Wu Y Y, Li R M, Peng L, et al. Chemical compositions and source apportionment of road dust in Yuncheng[J]. Environmental Science, 2017, 38(5): 1799-1806. |
[43] |
赵宙. 石家庄市街道积尘重金属污染研究[D]. 石家庄: 河北师范大学, 2009. Zhao Z. Research on heavy metal pollution in the of street dusts in Shijiazhuang city[D]. Shijiazhuang: Hebei Normal University, 2009. |
[44] | Wang X P, Wang L Q, Zhang Q, et al. Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk[J]. Environmental Pollution, 2022, 299. DOI:10.1016/j.envpol.2022.118911 |
[45] | Yıldırım G, Tokalıoğlu Ş. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis[J]. Ecotoxicology and Environmental Safety, 2016, 124: 369-376. |
[46] | Deng S, Shi Y J, Liu Y, et al. Emission characteristics of Cd, Pb and Mn from coal combustion: field study at coal-fired power plants in China[J]. Fuel Processing Technology, 2014, 126: 469-475. |
[47] | Yadav I C, Devi N L, Singh V K, et al. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal[J]. Chemosphere, 2019, 218: 1100-1113. |
[48] | Asvad S R, Esmaili-Sari A, Bahramifar N, et al. Heavy metals contamination status and health risk assessment of indoor and outdoor dust in Ahvaz and Zabol cities, Iran[J]. Atmospheric Pollution Research, 2023, 14(4). DOI:10.1016/j.apr.2023.101727 |
[49] | Dong T, Zhang Y D, Jia S L, et al. Human Indoor Exposome of chemicals in dust and risk prioritization using EPA's ToxCast Database[J]. Environmental Science & Technology, 2019, 53(12): 7045-7054. |
[50] | Fan X Y, Lu X W, Yu B, et al. Risk and sources of heavy metals and metalloids in dust from university campuses: a case study of Xi'an, China[J]. Environmental Research, 2021, 202. DOI:10.1016/j.envres.2021.111703 |