作为世界上最大的抗生素消耗国, 我国抗生素年消耗量约为1.5×105~2×105 t, 是美国和英国年消耗量的10倍和150倍[1 ~ 3]. 其中, 45.40%的抗生素被用于人类疾病的预防和治疗[4]. 由于摄入抗生素不能被人体完全吸收或代谢, 这导致大部分抗生素会以母体化合物或代谢产物形式排出体外, 进入污水处理厂中[5]. 抗生素会抑制微生物的生长, 因而抗生素的存在会影响污水的处理性能[6]. 可见, 了解污水中抗生素的分布特性对污水处理具有重要意义.
当前, 大多研究主要关注城市污水处理厂中抗生素的污染特性及迁移转化规律[7, 8], 如:易倩文等[9]对贵阳市4座污水处理厂进出水中10种抗生素进行检测, 结果表明, 7种抗生素被检出, 总浓度在569.78~781.63 ng·L-1和14.43~458.78 ng·L-1之间. 李哲等[10]对沈阳市27座污水处理厂出水中16种抗生素进行检测, 结果表明, 在出水中有14种抗生素被检出. 其中, 诺氟沙星检出浓度最高(65.50 ng·L-1). 抗生素进入环境后会对微生物施加选择性压力, 导致微生物DNA发生突变, 诱导抗生素抗性基因(antibiotics resistance genes, ARGs)的形成[11, 12]. 同时, 抗生素还能促进微生物间发生水平基因传播的能力, 进而促进ARGs在环境中传播[12].
本研究对四川省宜宾市15座乡镇污水处理厂进出水中15种典型抗生素进行检测, 揭示乡镇污水处理厂中抗生素的分布特性及去除效能, 并对其产生的生态风险和人体健康风险进行评估, 以期为乡镇污水工艺的升级改造及地区水环境中抗生素的削减提供理论支撑.
1 材料与方法 1.1 实验仪器与试剂本实验使用仪器与耗材见表 1. 抗生素标准品包括6种SAs:磺胺嘧啶(sulfadiazine, SDZ)、磺胺甲噁唑(sulfamethoxazole, SMX)、磺胺吡啶(sulfapyridine, SPD)、磺胺对甲氧嘧啶(sulfametoxydiazine, SMD)、磺胺间甲氧嘧啶(sulfamonomethoxine, SMM)和甲氧苄啶(trimethoprim, TMP);4种TCs:TC、OTC、强力霉素(doxycycline, DOX)和金霉素(chlorotetracycline, CTC);3种FQs:氧氟沙星(ofloxacin, OFL)、诺氟沙星(norfloxacin, NOF)和环丙沙星(ciprofloxacin, CIP);2种大环内酯类(macrolides, MLs):红霉素(erythrocin, ERY)和克拉霉素(clarithromycin, CTM)均购置阿拉丁生化科技公司, 纯度大于99%. 甲醇(色谱纯, Fisher, 美国)、甲酸(色谱纯)和乙二胺四乙酸二钠(色谱纯)购自北京百灵威科技有限公司;本实验用水为超纯水, 液相流动相用水为屈臣氏.
![]() |
表 1 实验仪器与耗材 Table 1 Experimental instruments and consumables |
1.2 样品采集与预处理
2023年7月对四川省宜宾市15座乡镇污水处理厂进出水水样进行采集, 15座污水处理厂总处理规模为2.258×105 m3·d-1(表 2). 采集1.5 L水样置于聚乙烯瓶中, 加入2 mL甲醇抑制微生物活性, 避光保存. 运回实验室后使用0.45 μm玻璃纤维滤膜对水样进行过滤去除水中颗粒杂质, 随后加入适量磷酸水溶液(体积分数为50%)将水样pH调至3.0. 向每200 mL水样中加入1 mL乙二胺四乙酸二钠溶液(100 g·L-1), 以充分螯合水中的重金属. 水样完成前处理后, 采用固相萃取对水样中抗生素进行富集. 向HLB小柱中依次加入6 mL甲醇和6 mL超纯水(pH=3.0)活化小柱, 流速调为6 mL·min-1(3滴·s-1). 活化后以相同流速对水样进行富集, 结束后使用超纯水淋洗水样瓶确保水样完全富集, 随后抽真空60 min. 然后使用10 mL体积分数为80%的甲醇溶液进行洗脱, 洗脱速度控制在1 mL·min-1, 用15 mL玻璃试管收集洗脱液, 在45~50 ℃下氮吹至近干. 最后使用甲醇复溶, 经0.22 μm有机针头过滤器过滤后移入棕色进样小瓶中定容至1 mL, 涡旋振荡1 min.
![]() |
表 2 污水处理厂相关信息 Table 2 Descriptive data of the four investigated WWTPs |
1.3 样品检测
采用UPLC-MS/MS对样品中抗生素进行定量分析, 液相检测条件:进样量3 μL;柱温40 ℃;流动相为0.1%甲酸水(A)和甲醇(B);梯度洗脱分离步骤见表 3. 质谱检测条件:采用多反应监测(multiple reaction monitoring, MRM)与电喷雾正离子源(ESI+)模式, 氮气作为脱溶剂气和雾化气体, 毛细管电压为0.5~1 kV, 离子源温度为150 ℃, 脱溶剂气温度为400~500 ℃, 脱溶剂气流速为800~1 000 L·h-1.
![]() |
表 3 梯度洗脱分离步骤 Table 3 Gradient elution separation step |
1.4 质量控制
为确保数据准确可靠, 本实验严格遵守美国环保署(EPA)要求进行质量控制与保证. 本研究采用外标法对本次样品进行定量分析, 使用100 mL超纯水做空白对照实验, 加入质量浓度为100 μg·L-1的抗生素标准混合液作空白加标回收实验, 每个样品设3个平行. 使用甲醇配制抗生素混标, 逐级稀释配为0、10、20、50、100、200和500 μg·L-1的7个质量浓度的系列标准溶液. 目标抗生素检出限、定量限和标准曲线相关系数(R2)及回收率见表 4.
![]() |
表 4 抗生素检出限、定量限和标准曲线范围 Table 4 LODs, LOQs, and range of calibration curve of antibiotics |
1.5 抗生素风险评估 1.5.1 生态风险评估
本研究采用风险商值法(risk quotient, RQ)对污水处理厂中抗生素的生态风险进行评估, 生态风险商值(RQE)计算公式如下所示:
![]() |
式中, MEC(measured environmental concentration)为抗生素测量浓度, PNEC(predicted no effect concentration)为预测无效浓度, PNEC值是慢性毒性或急性毒性数据与评估因子的比值. 一般情况下认为急性评估因子和慢性评估因子为1 000和100. 本研究所用PNEC值见表 5. RQE < 0.1为低风险, 0.1≤ RQE < 1为中风险, RQE≥1为高风险, RQE越大风险越高.
![]() |
表 5 用于水体抗生素风险评估预测无效应浓度 Table 5 Predicted non-effective concentrations for antibiotics risk assessment in water |
1.5.2 人体健康风险评估
根据人体对抗生素的日均可接受量(ADI), 计算抗生素对人体健康的风险商值(RQH). 计算公式如下:
![]() |
式中, RQH为抗生素的健康风险商, MEC为抗生素的测量浓度(μg·L-1), DWEL为饮用水当量值(μg·L-1), 计算公式为ADI × BW × HQ/(DWI × AB × FOE). ADI是日均可接受量;BW是人均体重(kg), HQ为最高风险, 按1计算, DWI是每日饮水量, AB是肠胃吸收率, 也按1计算, FOE是暴露频率(350 d·a-1), 按0.96计算. 不同年龄段的人均体重及每日饮水量见表 6. RQH < 0.01表明抗生素对人体健康造成的风险水平可忽略不计;0.01≤RQH < 0.1为低风险水平;0.1≤RQH < 1为中风险水平;RQH≥1为高风险水平.
![]() |
表 6 成人及儿童平均体重以及每日饮水量 Table 6 Average body weights (BW) and drinking water in takes (DWI) of children and adults |
2 结果与讨论 2.1 污水处理厂中抗生素浓度分布
各乡镇污水处理厂进出水中抗生素检出浓度如图 1所示. 15种抗生素在进出水中均有检出, SDZ、SMX、SMM、OFL、TC和OTC检出率为100%, NOF和DOX检出率为86.67%, CIP、CTC和TMR检出率分别为80%、40%和33.33%, SPD和SMD检出率为20%, ERY检出率为13.33%(仅LH和TP中检出), CTM检出率最低, 为6.67%(仅在FR中检出). 进、出水中抗生素总浓度分别在(745.48±7.58)~(9 229.20±6.40)ng·L-1和(78.27±0.01)~(2 044.32±52.75)ng·L-1. TCs是进、出水中检出浓度最高的抗生素, 最高检出浓度可达(6 318.35±14.13)ng·L-1和(1 756.48±56.36)ng·L-1. 作为我国用量最大的抗生素, TCs被广泛用于人类及动物疾病的预防和治疗, 因而在水体中常检出高浓度的TCs [21, 22]. 在检出的TCs中, TC和OTC检出浓度最高, 浓度平均值高达1 272.48 ng·L-1和1 168.57 ng·L-1. 其中, JP和QP进水中TC检出浓度高达(4 769.91±47.87)ng·L-1和(4 943.69±4.31)ng·L-1. 与TC不同, 高浓度OTC主要在XF[(2 260.25±42.41)ng·L-1]、XS[(1 158.72±1.99)ng·L-1]、PB[(1 852.35±63.16)ng·L-1]、DC[(2 208.25±13.18)ng·L-1]、XA[(3 907.81±52.04)ng·L-1]、PS[(2 296.90±12.55)ng·L-1]和QP[(1 015.28±9.92)ng·L-1]进水中检出.
![]() |
图 1 各污水处理厂进出水中抗生素的浓度 Fig. 1 Concentration of antibiotics in and out of water from each sewage treatment plant |
进出水中同样检出高浓度的FQs, 浓度平均值高达943.29 ng·L-1和255.67 ng·L-1. 其中, OFL是检出浓度最高的FQs, 检出浓度高达(2 243.46±10.52)ng·L-1 (JP)和(293.54±5.05)ng·L-1(TP), 这与卢亚楠等[23]研究结果相似. 有研究表明, OFL是世界上使用最广泛的FQs[9]. 因此, 在河流、沉积物和土壤等环境中常检出高浓度的OFL[21, 24]. SMX和SMM不仅是两种检出率最高的SAs, 也是进出水中检出浓度较高的SAs. 在JP进水中, SMX最高检出浓度可达(404.02±0.47)ng·L-1. 而在LX进水中, SMX和SMM的检出浓度高达(271.01±1.22)ng·L-1和(150.79±2.16)ng·L-1. 与其它抗生素不同, ERY和CTM仅在部分污水处理厂中检出. 显然, 不同地区抗生素的使用习惯存在较大差异[25].
2.2 不同地区污水处理厂中抗生素的浓度比对为了解各乡镇污水处理厂出水中抗生素的污染水平, 本研究将15座污水处理厂出水中抗生素浓度与国内其它地区进行对比, 结果如表 7所示. 作为3种检出率最高的SAs, 该地区出水中ρ(SDZ)在2.75~11.23 ng·L-1之间, 低于兰州、安徽、深圳、重庆、北京和西安. 与其它地区相比, 该地区出水中SMX、SMM、SMD和TMR浓度偏低. 然而, 该地区出水中ρ(SPD)远高于贵阳, 达到20.93 ng·L-1. 与其它地区相比, 该地区出水中OFL浓度较低, 但NOF和CIP浓度较高, 特别是CIP. 可见, 该地区污水处理厂对OFL具有良好的去除能力. CIP是一种对水生生物构成高生态风险的抗生素[27]. 因此, 该地区急需强化对CIP的去除. 此外, 该地区污水处理厂也急需强化对TCs的去除. 与其它城市相比, 出水中TCs浓度较高, 特别是TC, 出水浓度最高可达1 507.93 ng·L-1. 然而, 与上述3类抗生素不同, 出水中ERY和CTM浓度远低于国内其它地区, 这可能与该地区ERY和CTM使用频率较低有关. 综上所述, 在15座乡镇污水处理厂出水中, SAs和MLs浓度整体低于国内其它地区, 而FQs和TCs浓度高于国内其它地区;这与不同区域抗生素的使用情况和污水处理工艺差异等因素密切相关.
![]() |
表 7 目标抗生素与其它城市污水处理厂出水中的浓度对比1) Table 7 Comparison of the concentrations of target antibiotics in effluents from wastewater treatment plants in other cities |
2.3 不同处理工艺对抗生素的去除特性分析
污水处理厂设计建造时并未考虑抗生素的去除, 为了解乡镇污水处理厂中抗生素的去除特性, 本研究分析了不同处理工艺对4类抗生素的去除性能, 结果如表 8所示. MBR、A/O和A2/O工艺是该地区乡镇污水处理厂的主要处理工艺(表 2). 由表 8可见, MBR工艺去除SAs时出现了负去除现象, 如:SDZ、SPD和SMM. 一方面, 这是因为SAs会发生共轭代谢物聚合现象, 造成负去除现象[27, 42]. 另一方面, SAs在生物处理过程中会转化为其母体化合物, 从而导致负去除现象[43]. 与SAs相似, MBR工艺在去除FQs时也出现了负去除现象. 该结果与以往的研究相似, 即污水处理中FQs极易出现负去除现象[44].
![]() |
表 8 不同工艺对抗生素的平均去除能力/% Table 8 Average removal capacity of different processes for antibiotics/% |
与MBR工艺不同, 除SDZ和SMM外, A/O工艺对其余抗生素均呈正去除现象. A/O工艺对SMX的去除率在91.30%~100%之间, 与MBR工艺相比, 平均去除率增加了28.84%. 这反硝化段的应用有关, 因为反硝化过程中形成的中间产物(如:NO和NO2-)能促进SMX的降解[46]. 此外, A/O工艺对FQs的去除能力也显著强于MBR工艺, 去除率在14.90%~92.87%之间, 平均去除率增加了141.76%~225.14%. 这与卢亚楠等[23]研究的结果一致, A/O工艺对FQs具有较强的去除能力[23]. 与上述两种工艺不同, A2/O工艺对4类抗生素均呈正去除现象. 其中, A2/O工艺对SAs、FQs和TCs的去除能力较强, 这与以往的研究结果相似[7, 47, 48]. A2/O工艺对MLs去除能力较弱的原因可能与二沉池污泥的回流有关, 有研究发现, 污泥的回流会导致部分包裹着MLs的聚合物被微生物降解, 使得MLs释放到水体中, 从而导致MLs浓度增加[48, 49]. 整体而言, A2/O工艺对抗生素的去除能力也优于MBR工艺. 这是因为A2/O工艺中含有的硝化菌、聚磷菌等微生物可与抗生素发生共代谢反应, 进而促进抗生素的降解[50, 51]. 综上所述, A/O和A2/O工艺对抗生素的去除能力强于MBR工艺.
2.4 抗生素生态风险评估抗生素会伴随出水进入环境中, 从而对生态环境产生潜在危害. 因此, 对水环境中抗生素的生态风险进行评估至关重要. 本研究对15座乡镇污水处理厂中的抗生素进行生态风险评估, 最敏感物种毒性数据见表 5, 生态风险值见图 2. 从中可知, 各污水处理厂中生态风险最高的抗生素均为FQs和TCs, 而SAs的RQE值均低于0.1, 该结果表明SAs为低风险污染物. 根据本研究结果, 该地区污水处理厂水体中生态风险商的主要贡献者是FQs和TCs, 后续需加强监测, 关注其在出水中的生态风险. 同时, 也可考虑将其作为污水排放的重要检测指标, 从而减少它们对水生生态环境的影响.
![]() |
图 2 各污水处理厂受纳水体中抗生素的生态风险商值 Fig. 2 Risk quotient(RQ)contributed by antibiotics in receiving waters |
由于该地区乡镇污水处理厂排水口位于岷江与金沙江支流, 旱季为满足地区居民用水会向岷江和金沙江中抽取部分水源作为居民用水. 为了解出水中抗生素对人体健康可能构成的潜在风险, 根据不同年龄层次人群通过饮用水摄入抗生素当量, 评价出水中抗生素对人体的健康风险. 由图 3可见, 该地区出水中不同抗生素的RQH值均低于0.01, 这表明出水中的抗生素对人体健康构成的风险可忽略不计.
![]() |
图 3 以检出浓度最大值计算得到的人体健康商值 Fig. 3 Human health risk quotient of five detected antibiotics based on the maximum concentration |
(1)15种抗生素在各乡镇污水处理厂进出水中均有检出, 进出水抗生素总浓度分别为(745.48±7.58)~(9 229.20±6.40)ng·L-1和(78.27±0.01)~(2 044.32±52.75)ng·L-1. 其中, TC和OTC是检出浓度最高的抗生素, 最高检出浓度可达(4 943.69±4.31)ng·L-1和(3 907.81±52.04)ng·L-1.
(2)MBR工艺对TCs和MLs具有较强的去除能力, 但对SAs和FQs的去除能力较弱. 然而, A/O和A2/O工艺对目标抗生素均具有较强的去除能力.
(3)根据风险商评价标准, FQs和TCs具有较高的风险商值, 表明其会对水生生物存在一定的中高风险, 但其对人体健康构成的风险可忽略不计.
[1] | Yadav V, Kumar T S. Present scenario of antibiotic use in veterinary practice: importance of wastewater microbiology[A]. In: Tyagi R D, Sellamuthu B, Tiwari B, et al (Eds. ). Current Developments in Biotechnology and Bioengineering[C]. Amsterdam: Elsevier, 2020. 279-325. |
[2] |
赵晓帅, 郑其冰, 马瑞, 等. 北京市城市河流中抗生素的污染特征及多层次生态风险评估[J]. 环境科学, 2024, 45(6): 3165-3175. Zhao X S, Zheng Q B, Ma R, et al. Pollution characteristics and multilevel risk assessments of antibiotics in the urban rivers of Beijing, China[J]. Environmental Science, 2024, 45(6): 3165-3175. |
[3] |
蒋宝, 隋珊珊, 孙成一, 等. 北京市北运河水体中抗生素污染特征及风险评估[J]. 环境科学, 2023, 44(6): 3198-3205. Jiang B, Sui S S, Sun C Y, et al. Pollution characteristics and risk assessment of antibiotics in Beiyun river basin in Beijing[J]. Environmental Science, 2023, 44(6): 3198-3205. |
[4] | Zhang M, Liu Y S, Zhao J L, et al. Occurrence, fate and mass loadings of antibiotics in two swine wastewater treatment systems[J]. Science of the Total Environment, 2018, 639: 1421-1431. DOI:10.1016/j.scitotenv.2018.05.230 |
[5] |
李柏林, 张贺, 王俊, 等. 长江武汉段水源地典型抗生素及抗性基因污染特征与生态风险评价[J]. 环境科学, 2023, 44(4): 2032-2039. Li B L, Zhang H, Wang J, et al. Pollution characteristics and risk assessment of antibiotics and resistance genes in different water sources in the Wuhan section of the Yangtze River[J]. Environmental Science, 2023, 44(4): 2032-2039. |
[6] | Michael I, Rizzo L, Mcardell C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review[J]. Water Research, 2013, 47(3): 957-995. DOI:10.1016/j.watres.2012.11.027 |
[7] |
杨钊, 李江, 张圣虎, 等. 贵阳市污水处理厂中典型抗生素的污染水平及生态风险[J]. 环境科学, 2019, 40(7): 3249-3256. Yang Z, Li J, Zhang S H, et al. Pollution level and ecological risk of typical antibiotics in Guiyang wastewater treatment plants[J]. Environmental Science, 2019, 40(7): 3249-3256. |
[8] |
王龙, 朱丹, 曹云霄, 等. 北京市污水处理厂出水中药物和个人护理品的季节变化及其生态风险评价[J]. 环境科学学报, 2021, 41(7): 2922-2932. Wang L, Zhu D, Cao Y X, et al. Seasonal changes and ecological risk assessment of pharmaceutical and personal care products in the effluents of wastewater treatment plants in Beijing[J]. Acta Scientiae Circumstantiae, 2021, 41(7): 2922-2932. |
[9] |
易倩文, 肖芳, 李江, 等. 贵阳市典型污水处理厂新污染物的赋存、去除及归趋[J]. 环境科学学报, 2023, 43(8): 141-152. Yi Q W, Xiao F, Li J, et al. Occurrence, removal and fate of emerging pollutants in typical wastewater treatment plants in Guiyang[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 141-152. |
[10] |
李哲, 徐洪波, 曲健, 等. 沈阳市污水处理厂出水中典型抗生素污染特征及生态风险评估[J]. 科学技术创新, 2023(25): 87-91. Li Z, Xu H B, Qu J, et al. Pollution characteristics and ecological risk assessment of the effluents of waste water treatment plants in Shenyang area[J]. Scientific and Technological Innovation, 2023(25): 87-91. |
[11] |
徐秋鸿, 刘曙光, 娄厦, 等. 长江口近岸地区抗生素抗性基因与微生物群落分布特征[J]. 环境科学, 2023, 44(1): 158-168. Xu Q H, Liu S G, Lou S, et al. Distributions of antibiotic resistance genes and microbial communities in the nearshore area of the Yangtze River Estuary[J]. Environmental Science, 2023, 44(1): 158-168. |
[12] | Zhao Q, Guo W Q, Luo H C, et al. Deciphering the transfers of antibiotic resistance genes under antibiotic exposure conditions: driven by functional modules and bacterial community[J]. Water Research, 2021, 205. DOI:10.1016/j.watres.2021.117672 |
[13] |
李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073. Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River Basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8): 4064-4073. |
[14] | Jurado A, Margareto A, Pujades E, et al. Fate and risk assessment of sulfonamides and metabolites in urban groundwater[J]. Environmental Pollution, 2020, 267. DOI:10.1016/j.envpol.2020.115480 |
[15] |
樊月婷, 昌盛, 张坤锋, 等. 疫情背景下长江中游地区典型饮用水源中PPCPs分布特征与风险评估[J]. 环境科学, 2022, 43(12): 5522-5533. Fan Y T, Chang S, Zhang K F, et al. Pollution characteristics and risk assessment of PPCPs in typical drinking water sources in the middle reaches of the Yangtze River during the COVID-19 pandemic[J]. Environmental Science, 2022, 43(12): 5522-5533. |
[16] | Ma Y P, Li M, Wu M M, et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 2015, 518-519: 498-506. DOI:10.1016/j.scitotenv.2015.02.100 |
[17] |
董堃, 唐宇坤, 周欣雨, 等. 桂林市青狮潭水库沉积物抗生素污染特征及风险评估[J]. 农业环境科学学报, 2024, 43(1): 143-151. Dong K, Tang Y K, Zhou X Y, et al. Characterization and risk assessment of antibiotic contamination in sediments of Qingshitan Reservoir, Guilin city, China[J]. Journal of Agro-Environment Science, 2024, 43(1): 143-151. |
[18] |
吴天宇, 李江, 杨爱江, 等. 赤水河流域水体抗生素污染特征及风险评价[J]. 环境科学, 2022, 43(1): 210-219. Wu T Y, Li J, Yang A J, et al. Characteristics and risk assessment of antibiotic contamination in Chishui river basin, Guizhou Province, China[J]. Environmental Science, 2022, 43(1): 210-219. |
[19] | Isidori M, Lavorgna M, Nardelli A, et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms[J]. Science of the Total Environment, 2005, 346(1-3): 87-98. DOI:10.1016/j.scitotenv.2004.11.017 |
[20] |
韩迁, 张玉娇, 赖承钺, 等. 成都市典型流域抗生素分布特征及生态风险评价[J]. 生态毒理学报, 2023, 18(2): 395-409. Han Q, Zhang Y J, Lai C Y, et al. Distribution characteristics and ecological risk assessment of antibiotics in typical river basins of Chengdu[J]. Asian Journal of Ecotoxicology, 2023, 18(2): 395-409. |
[21] | Kovalakova P, Cizmas L, McDonald T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere, 2020, 251. DOI:10.1016/j.chemosphere.2020.126351 |
[22] | Shen Q B, Wang Z Y, Yu Q, et al. Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues[J]. Environmental Research, 2020, 183. DOI:10.1016/j.envres.2020.109195 |
[23] |
卢亚楠, 郭雅妮, 王坤, 等. 村镇生活污水处理设施抗生素浓度分布规律[J]. 环境科学, 2020, 41(11): 5008-5015. Lu Y N, Guo Y N, Wang K, et al. Distribution of antibiotic concentration in domestic wastewater treatment facilities in villages and towns[J]. Environmental Science, 2020, 41(11): 5008-5015. |
[24] | Han B H, Ma L, Yu Q L, et al. The source, fate and prospect of antibiotic resistance genes in soil: a review[J]. Frontiers in Microbiology, 2022, 13. DOI:10.3389/fmicb.2022.976657 |
[25] | Praveenkumarreddy Y, Akiba M, Guruge K S, et al. Occurrence of antimicrobial-resistant Escherichia coli in sewage treatment plants of South India[J]. Journal of Water, Sanitation and Hygiene for Development, 2020, 10(1): 48-55. DOI:10.2166/washdev.2020.051 |
[26] | Zhang R J, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge[J]. Ecotoxicology and Environmental Safety, 2012, 80: 208-215. DOI:10.1016/j.ecoenv.2012.03.002 |
[27] |
高俊红, 王兆炜, 张涵瑜, 等. 兰州市污水处理厂中典型抗生素的污染特征研究[J]. 环境科学学报, 2016, 36(10): 3765-3773. Gao J H, Wang Z W, Zhang H Y, et al. Occurrence and the fate of typical antibiotics in sewage treatment plants in Lanzhou[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3765-3773. |
[28] | Ashfaq M, Li Y, Wang Y W, et al. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China[J]. Water Research, 2017, 123: 655-667. |
[29] | Wu M H, Que C J, Xu G, et al. Occurrence, fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water[J]. Ecotoxicology and Environmental Safety, 2016, 132: 132-139. |
[30] |
王莹. 安徽部分饮用水源及污水中9种抗生素的污染分布特征[D]. 合肥: 安徽农业大学, 2012. Wang Y. Pollution distribution characteristics of 9 antibiotics in the source of drinking water and sewage for parts of Anhui area[D]. Hefei: Anhui Agricultural University, 2012. |
[31] |
张金, 宗栋良, 常爱敏, 等. 水环境中典型抗生素SPE-UPLC-MS/MS检测方法的建立[J]. 环境化学, 2015, 34(8): 1446-1452. Zhang J, Zong D L, Chang A M, et al. Determination of common antibiotics in aquatic environment by solid-phase extraction and ultra pressure liquid chromatographytandem mass spectrometry (UPLC-MS/MS)[J]. Environmental Chemistry, 2015, 34(8): 1446-1452. |
[32] | Yang Y, Ok Y S, Kim K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review[J]. Science of the Total Environment, 2017, 596-597: 303-320. |
[33] | Ben W, Zhu B, Yuan X J, et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: comparison of wastewater treatment processes[J]. Water Research, 2018, 130: 38-46. |
[34] |
牟霄, 张崇淼, 李永强, 等. 典型抗生素在城市污水处理厂各单元出水中的分布及受纳水体生态风险[J]. 生态毒理学报, 2023, 18(3): 366-375. Mou X, Zhang C M, Li Y Q, et al. Distribution of typical antibiotics in effluent from different units of municipal wastewater treatment plants and ecological risks in receiving waters[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 366-375. |
[35] |
赖后伟, 骆其金, 朱群华, 等. 磺胺类抗生素在华南地区不同污水处理工艺中的去除及风险评估[J]. 环境科学与技术, 2017, 40(8): 171-176. Lai H W, Luo Q J, Zhu Q H, et al. Sulfonamides antibiotics removals in WWTPs of south China and environmental risk assessment related to some different treatment processes[J]. Environmental Science & Technology, 2017, 40(8): 171-176. |
[36] |
肖芳. 贵阳城市污水处理厂微量有机污染物去除效果及风险评价[D]. 贵阳: 贵州大学, 2020. Xiao F. Removal characteristics and risk assessment of typical trace organic pollutants in Guiyang municipal sewage treatment system[D]. Guiyang: Guizhou University, 2020. |
[37] |
陈涛, 李彦文, 莫测辉, 等. 广州污水厂磺胺和喹诺酮抗生素污染特征研究[J]. 环境科学与技术, 2010, 33(6): 144-147, 180. Chen T, Li Y W, Mo C H, et al. Screening of sulfonamide and fluroquinolone antibiotics in wastewater of sewage treatment plants in Guangzhou, South China[J]. Environmental Science & Technology, 2010, 33(6): 144-147, 180. |
[38] |
殷哲云, 闵露娟, 金立涛, 等. HPLC-MS/MS测定3类污水处理厂污泥及污水中的8种药物[J]. 环境化学, 2018, 37(8): 1720-1727. Yin Z Y, Min L J, Jin L T, et al. HPLC-MS/MS determination of eight PPCPs in sewage and sludge from three types of sewage treatment plants[J]. Environmental Chemistry, 2018, 37(8): 1720-1727. |
[39] | Wang Y W, Li Y, Hu A Y, et al. Monitoring, mass balance and fate of pharmaceuticals and personal care products in seven wastewater treatment plants in Xiamen City, China[J]. Journal of Hazardous Materials, 2018, 354: 81-90. |
[40] |
乐霁颃, 王文龙, 吴乾元, 等. 泸州中心城区污水处理厂尾水水质与风险特征[J]. 环境工程, 2023. Le J H, Wang W L, Wu Q Y, et al. Quality and risk characteristics of Effluent from Wastewater treatment plant in central area of Luzhou[J]. Environmental Engineering, 2023. DOI:10.13205/j.hjgc.20231208 |
[41] | Ding G Y, Chen G L, Liu Y D, et al. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways[J]. Science of the Total Environment, 2020, 738. DOI:10.1016/j.scitotenv.2020.139802 |
[42] | Baker D R, Kasprzyk-Hordern B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments[J]. Science of the Total Environment, 2013, 454-455: 442-456. |
[43] | Göbel A, Thomsen A, McArdell C S, et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology, 2005, 39(11): 3981-3989. |
[44] | Luo Y L, Guo W S, Ngo H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[J]. Science of the Total Environment, 2014, 473-474: 619-641. |
[45] |
齐亚兵, 张思敬, 孟晓荣, 等. 抗生素废水处理技术现状及研究进展[J]. 应用化工, 2021, 50(9): 2587-2593, 2597. Qi Y B, Zhang S J, Meng X R, et al. The present situation and research progress of antibiotic wastewater treatment technology[J]. Applied Chemical Industry, 2021, 50(9): 2587-2593, 2597. |
[46] | Nödler K, Licha T, Barbieri M, et al. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification[J]. Water Research, 2012, 46(7): 2131-2139. |
[47] |
沙雪妮. A2/O工艺中抗生素和环境激素的去除效能及其对活性污泥性能的抑制作用[D]. 武汉: 武汉理工大学, 2022. Sha X N. Removal efficiency of antibiotics and environmental hormones and their inhibition on the performance of activated sludge in A2/O process[D]. Wuhan: Wuhan University of Technology, 2022. |
[48] |
李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29. Li S J, Xie W M. Research advances in antibiotics removal in wastewater treatment plants: a review[J]. Environmental Science & Technology, 2019, 42(3): 17-29. |
[49] | Jelic A, Gros M, Ginebreda A, et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment[J]. Water Research, 2011, 45(3): 1165-1176. |
[50] | Dan A, Zhang X M, Dai Y N, et al. Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands[J]. Journal of Cleaner Production, 2020, 252. DOI:10.1016/j.jclepro.2019.119677 |
[51] | Han Y F, Yang L Y, Chen X M, et al. Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation[J]. Science of the Total Environment, 2020, 709. DOI:10.1016/j.scitotenv.2019.136094 |