2. 中国人民解放军96911部队, 北京 100011
2. Chinese People's Liberation Army Unit 96911, Beijing 100011, China
塑料因其化学性质稳定、延展性好和加工成本低等特性被大量应用在生活和生产领域中, 20世纪50年代以来, 全球已经累计生产了83亿t塑料[1]. 废弃塑料回收率较低, 更多塑料使用后会堆积在自然环境中, 并在机械作用或生化作用下破碎成尺寸小于5 mm的微塑料(microplastics, MPs).
水环境是MPs的主要赋存区域, 天然水体中的MPs主要来源于城市污水处理厂尾水[2]、地表径流[3]、农业种植、渔业活动和大气沉降[4]. 其中污水处理厂(wastewater treatment plants, WWTPs)出水是水环境中MPs的主要来源[5]. 在不同WWTPs的出水水质调查中, MPs日排放量呈现不同水平, 且在水体中的丰度具有地域差异性, 与城市化水平和人口密度有关. 在我国的水环境中(图 1), 丹江口水库、太湖、桑沟湾、鄱阳湖和合肥市大方营水库等人口密集区水体MPs丰度较大, 青藏高原、南渡江等人类活动较少的地区水体MPs丰度较小. MPs丰度与采样点距市中心的距离呈负相关, 靠近市中心的湖泊中, MPs丰度较高, 表明人为因素在MPs污染和分布中起着重要作用[6]. 此外, MPs丰度与海拔高度呈负相关, 高海拔地区的人类活动(尤其是农业活动)较少, 并且紫外线辐射会显著加速塑料的老化和降解[7]. 水体MPs的丰度也受大气沉降过程的影响, 以纤维类和小于0.5 mm的颗粒为主的MPs会通过沉降由滨海城市大气环境中进入陆海环境, 沉降通量为1.46×105个·(m2·a)-1[8].
![]() |
(a)分布, (b)丰度范围;地图基于自然资源部标准地图服务网站GS(2019)1697标准地图制作, 底图无修改;数据来自文献[6, 7, 9~45];1.白洋淀, 2.府河, 3.孝义河, 4.天津近岸海区, 5.丹江口水库, 6.乌梁素海, 7.太湖, 8.洞庭湖, 9.洪湖, 10.三峡水库, 11.长江流域, 12.渭河, 13.淀山湖, 14.滇池近岸水体, 15.海南养殖区水体, 16.汉江, 17.莱州湾, 18.南渡江, 19.桑沟湾, 20.沱江, 21.武汉市地表水, 22.南海渚碧礁, 23.鄱阳湖, 24.青藏高原, 25.西藏拉鲁湿地, 26.合肥市大方营水库, 27.珠江, 28.松花江, 29.珠江(西江), 30.北部湾钦江, 31.赤水河 图 1 MPs在我国水环境的分布和丰度范围 Fig. 1 Distribution and abundance range of MPs in China's water ecosystems |
水体中的MPs不具有成本效益, 且对水生生物和人体会产生较强的毒害效应[46], 存在一定的生态风险. MPs可以为较小的微藻提供栖息地, 促进有害微藻的扩散, 导致水体富营养化程度增加[47]. 粒径较小的MPs还会通过食物、饮用水和呼吸途径进入人体, 并分布在生物组织器官中. Huang等[48]在患呼吸系统疾病的患者痰液中检测到了21种MPs. 同时还有研究表明[49], 人类粪便样本中的MPs丰度与瓶装水和饮料的摄入量有一定的相关性(r = 0.445, P= 0.029). 瓶装水和饮料中的MPs固然与塑料包装材料的磨损有关, 但玻璃瓶装水中也检测出MPs的存在[50], 实际上, 饮用水厂(drinking water treatment plants, DWTPs)出口处就存在MPs, 丰度从0~(1 401 ± 86)个·L-1不等[51, 52].
本次综述重点关注DWTPs和WWTPs中不同工艺单元对MPs去除作用, 并阐述了MPs的颜色、尺寸、形状和成分与去除率的关系, 以期为后续改进水厂工艺提供可参考的依据.
1 MPs在水体中的丰度分布特征水体中的MPs具有不同的颜色、形状、尺寸和成分特征, 不同性质的MPs在水体中的丰度也不同. 了解MPs的性质与数量关系, 有助于优化构建水处理工艺以控制水中MPs的含量.
1.1 MPs颜色MPs的颜色主要包括透明色、白色、黑色和彩色(红色、蓝色、绿色和黄色). 在我国水环境中[图 2(a)], MPs透明色、白色和黑色的占比最大, 一方面是因为尼龙网、塑料袋和塑料薄膜等透明色或白色塑料制品消费较多, 另一方面是因为彩色MPs进入水体后经过光、热、水力和生物作用亦会风化褪色形成透明、白色或黑色[12]. 彩色MPs来源广泛, 主要是较大的彩色塑料制品碎片, 可能携带更多有害物质如重金属和有机污染物[53], 其中蓝色和红色较为常见, 绿色和黄色MPs与水体中的浮游生物相似, 水生环境中的视觉捕食者会以这部分MPs为食, 这可能是这部分MPs含量较少的一个原因[54].
![]() |
(a)我国水环境, (b)国内外WWTPs;数据来自文献[6, 7, 9~18, 36, 38~40, 53, 55, 59~63] 图 2 不同颜色MPs在我国水环境和WWTPs中的占比 Fig. 2 Proportion of MPs with different colors in China's water ecosystems and WWTPs |
图 2(b)统计了国内外WWTPs中不同颜色MPs的占比, 与我国水环境中的分布类似, 同样以透明色、白色和黑色为主, 但在Van Do等[55]报道的3个水厂中, 黄色MPs占比较高, 分别为29.54%、32.99%和26.13%. 少数研究对比了WWTPs进出水中不同颜色MPs的占比[53, 55, 56], 二者差别较小, 证明颜色与MPs的去除率无关. 关于不同颜色MPs在DWTPs中的占比研究较少, 在已有的报道中[57, 58], 同样以透明色、白色和黑色为主, 彩色MPs则以蓝色和红色占比最大, 与我国水环境和WWTPs中的规律相同.
1.2 MPs尺寸MPs的尺寸上限被定义为5 mm, 尺寸下限则随收集和检测手段不同而不同, MPs的尺寸下限越小, 纳入研究的尺寸范围越广, MPs的总数越多. 由于绝大部分定量结果都以单位体积中MPs的个数, 即丰度(个·L-1或个·m-3)为单位, 因此在WWTPs和DWTPs中都呈现出尺寸下限越小, MPs丰度越高的规律(图 3), 同时还发现, DWTPs中MPs丰度显著高于WWTPs. 除此之外, MPs具有脆性, 处理或采样过程中容易受机械作用破碎, 导致MPs丰度提高, 高估MPs的含量会导致对污染程度或水厂处理效果估计的偏差[64]. 因此, 丰度不足以代表水体受MPs的污染程度, 在最新的研究中[65~67], 均同时采用了丰度和浓度评价水中MPs的含量.
![]() |
(a)WWTPs, (b)DWTPs;数据来自文献[4, 53, 54, 56, 58, 60~66, 68~115] 图 3 WWTPs和DWTPs中MPs尺寸下限和进水丰度的关系 Fig. 3 Relationship between the minimum size of MPs and influent abundance in WWTPs and DWTPs |
在WWTPs和DWTPs的有关报道中, 不同研究对MPs尺寸范围的划分有所不同. 大体来看, 中等尺寸(大约在50~500 μm的范围内)的MPs在进水中占比最多, 大尺寸MPs(> 500 μm)在进水中较少, 且在出水中的比例进一步减小, 去除率最高;而小尺寸占比在出水中显著高于进水. 在Uddin等[60]的研究中, < 63 μm的MPs占比从WWTP进水 < 10%增加到出水80%以上, 而大尺寸MPs在出水中几乎完全消失. Van Do等[55]的研究中, 1.6~100 μm的MPs占比从WWTP进水约50%增加到约70%, 而 > 500 μm的MPs占比则从进水约20%减少到0. Dronjak等[76]调查的DWTP中, 20~50 μm的MPs占比从进水8%增加到出水15%, 而500~2 000 μm的大尺寸MPs从进水19%下降到出水 < 1%. 上述规律证实, 现有水厂处理工艺对大尺寸MPs(> 500 μm)的去除效果更好, 其中部分大尺寸MPs在处理过程中亦被破碎成了小尺寸.
除此之外, Kooi等[113]提出环境中的MPs尺寸分步符合幂律, 即MPs尺寸大小与丰度是某一常数次幂的反比关系(y=ax-k). Cheng等[114]在调查某一WWTPs时也发现, 进水MPs(20~3 384 μm)的尺寸分布符合幂律(y=-1.795 6x+6.612), 说明大部分小尺寸的MPs是由大尺寸塑料分解而来;但也有学者提出100 μm以下的MPs尺寸分布不符合幂律[103], 并猜测原因可能是化学和生物反应速率随MPs比表面积的增加而增大, 从而加速了小尺寸MPs的降解.
1.3 MPs形状MPs的形状主要包括:纤维状(fiber)、碎片状(fragment)、薄膜状(film)、泡沫状(foam)和颗粒状(granule). 如图 4(a)所示, 在我国大部分水体中, 纤维状占比最大, 达50%. 纤维状MPs外观修长纤细, 水产养殖场的废弃渔网鱼线[10]和服装洗涤污水等均是水体中纤维状MPs的主要来源. Browne等[115]的研究表明, 使用家用洗衣机洗涤一件衣服会产生超过1 900根纤维, 并通过城市污水管道进入河流等天然水体. 其次是碎片/薄膜, 在我国水环境中, 碎片状MPs占比超过30%, 是由包装材料、塑料容器、化妆品和清洁介质等大型塑料制品分解成的一小片或一部分[12]. 薄膜状MPs薄且脆弱, 边缘无固定形状, 可由农业薄膜、塑料袋和不透水塑料薄膜等日常使用的塑料产品降解形成[35]. 而在国内外WWTPs中, 碎片/薄膜也在不同报道中占2%~76%不等.
![]() |
(a)我国水环境, (b)国内外WWTPs, (c)国内外DWTPs;数据来自文献[6, 7, 9, 10, 12, 13, 15~18, 35, 36, 38~40, 52, 53, 58, 60~63, 66, 68~72, 74~76, 78~81, 83, 87~89, 91, 93, 94, 97, 101, 105, 107~109, 112, 116~118] 图 4 不同形状MPs在我国水环境、WWTPs和DWTPs中的占比 Fig. 4 Proportion of MPs with different shapes in China's water ecosystems, WWTPs and DWTPs |
与我国水环境中MPs的分布结果类似, 在国内外WWTPs中[图 4(b)], 进水MPs也以纤维状为主, 占总MPs个数的1/3以上, 最高可达98%[61], 且纤维的成分以PET为主, 可能来源于洗衣废水. 同时还发现, 已有报道的出水中, 纤维状比例进一步增加, 说明现有水处理工艺对纤维状MPs的去除效果较差. 其次是碎片/薄膜, 在WWTPs的进出水中都占有较大比例, 因此, 对于纤维状和碎片状MPs的有效控制, 尤其是洗衣废水中的涤纶纤维, 将有助于显著缓解水环境中MPs的产生. 颗粒状MPs占比较少, 最多仅占35%, 在多篇文献中甚至没有观察到颗粒状MPs的存在[60, 66, 88], 这与不少国家塑料微珠生产禁令有很大关系.
在DWTPs中, 不同形状MPs的分布规律与WWTPs类似, 但在已有报道中[52, 74, 76], DWTPs出水中碎片/薄膜占比高于纤维状, 即纤维状去除率高于碎片/薄膜. 原因可能是纤维状MPs通常是较重的聚合物, 如聚酰胺(PA)或尼龙(密度为1.15 g·cm-3)、聚酯(PES, 密度为1.38 g·cm-3)和醋酸纤维素(CA, 密度为1.30 g·cm-3), 在絮凝-沉淀过程中更容易形成絮体.此外, 其化学结构也更容易附着在混凝剂上, 如PES或PET的羰基(C=O)化学基团, PA纤维也可以通过电离与混凝剂或絮凝剂相互作用[76].
1.4 MPs成分从材料种类来看, MPs种类较多, 主要包括:聚丙烯(polypropylene, PP)、聚乙烯(polyethylene, PE)、聚苯乙烯(polystyrene, PS)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)、聚酰胺(polyamide, PA)、聚氯乙烯(polyvinyl chloride, PVC)和聚碳酸酯(polycarbonate, PC)等. 其中, PP用于制造塑料容器、食品包装和管道[119], 在水环境中很容易被氧化和紫外线辐射分解成小颗粒[36]. PE是世界上产量最高的塑料[120], 广泛用于制造农业薄膜、食品包装膜、塑料瓶和最常见的塑料袋. PP和PE具有良好的绝缘性能、稳定性和耐热性[121], 密度低(< 1 g·cm-3), 容易通过河流运输[10]. PS无毒无味, 具有良好的绝缘性, 耐久性, 易着色, 可与橡胶材料共聚生产其他产品[121], 用量较大. PET作为涤纶纤维在服装中广泛使用, 继而随洗衣废水大量进入水环境中. 因此, 在我国水环境中[图 5(a)], 以PP、PE、PS和PET占比最大. 此外, 水环境中MPs的多样性可能与水域的水动力学条件和废弃塑料输入来源有关[117], 丹江口水库[13]、沱江流域[12]、三峡水库[9]和黄河下游[116]中的MPs成分相对简单, 只包含PP、PE和PS这3种, 而在珠江[38]、南海渚碧礁[36]、鄱阳湖[14]和青藏高原淡水[7]中发现的MPs成分更多样化.
![]() |
(a)我国水环境, (b)国内外WWTPs, (c)国内外DWTPs;数据来自文献[6, 7, 9~18, 36, 38, 40, 52, 53, 55, 58, 62, 66, 68~72, 74~79, 81, 85~89, 97, 98, 105~107, 109, 111, 112, 117, 118, 122] 图 5 不同成分MPs在我国水环境、WWTPs和DWTPs中的占比 Fig. 5 Proportion of MPs with different compositions in China's water ecosystems, WWTPs and DWTPs |
在WWTPs[图 5(b)]和DWTPs中[图 5(c)], PET、PE和PP也是丰度占比最高的3种MPs, 其中, WWTPs出水中PET的占比明显高于进水, 但在DWTPs中, 进出水PET占比接近, 原因可能是PET大部分由涤纶纤维组成, 而纤维状MPs在WWTPs中的去除率较低, 在DWTPs中去除率较高[图 5(c)]. 因为不同成分的MPs密度不同, 不同成分占比与选择的含量表示方式也有关系. 在Simon等[67]的统计中, 用丰度表示时, 进水中占比最多的5种塑料分别为丙烯酸酯(27%)、涤纶(14%)、PE-PP共聚物(13%)、PP(12%)和PE(10%);而用浓度表示时, 这5种塑料的占比有很大不同(丙烯酸酯为12%、涤纶为8%、PE-PP共聚物为7%、PP为39%和PE为7%), PVC占比从2%增加到11%, 出水也有类似规律.
2 MPs在WWTPs中的去除表 1总结了我国和世界范围不同WWTPs进出水丰度和总体去除率, 主要的工艺处理单元和流程为预处理(格栅和除砂/除油)、一级处理(沉砂和混凝)、二级处理(活性污泥法、A2/O、序批式反应器和氧化沟)和三级处理(膜生物反应器、紫外线消毒和膜过滤等). 总体来看, 进水MPs丰度从0.28 ~1 567个·L-1不等, 出水丰度范围在0.05 ~310个·L-1之间, 去除率在21.8%~99.8%. 其中有研究报道了MPs浓度, Simon等[67]统计了丹麦的10座WWTPs, 发现进水MPs浓度在1.27~1 189 μg·L-1范围内, 出水MPs浓度在0.31~11.9 μg·L-1的范围内, 平均去除率为98.3%, 稍低于按丰度计算的去除率99.3%. 但在Lv等[66]的报道中, 2个水厂的进水MPs浓度为(0.56 ± 0.09)mg·L-1, 出水MPs浓度分别为(0.168 ± 0.02)mg·L-1和(0.028 ± 0.01)mg·L-1, 按丰度计算的去除率分别为53.6%和82.1%, 而按质量计算去除率达到97%和99.5%, 高于前者, 从而说明了处理过程中存在MPs破裂的情况, 并提出同时用浓度和丰度代表污染程度更合理.
![]() |
表 1 国内外部分WWTPs中MPs丰度1) Table 1 Microplastic abundance in some domestic and foreign wastewater treatment plants |
尽管现有水厂处理工艺可以去除水中大部分MPs, 出水MPs丰度较低, 但由于水厂处理量大, 每天仍会向水体中释放大量MPs, 根据处理量不同, 日排放量在2 100~1.35×1011个·d-1. 在WWTPs处理过程中, 大量MPs会保留在污泥中, 干污泥MPs丰度在1.14~10 380个·g-1, 如果将以上污泥直接填埋, 其中的MPs会随之进入土壤, 造成新的污染.
从已有研究来看, WWTPs预处理和一级处理对MPs的去除率贡献最大, 占总去除率的35.6%~92.9%, 单独的二级处理工艺对MPs的去除率从3.1%~41%不等, 低于一级处理;三级处理贡献最小, 平均去除率为15%. 对比二级水厂与三级水厂的去除率(图 6), 发现二者区别较小, 这也间接说明了三级处理中的消毒、砂滤和膜过滤工艺单元对MPs的去除贡献不大.
![]() |
数据来自文献[4, 53, 55, 56, 59~63, 65~67, 79~112, 118, 123~125] 图 6 国内外WWTPs各工艺单元对MPs的去除率 Fig. 6 Removal rates of MPs in different process units of domestic and foreign WWTPs |
不同特征的MPs在各处理单元的去除率也具有差异, 但只有部分研究报道了不同尺寸、形状和材料的MPs在不同阶段的丰度变化, 下面将结合这部分研究, 总结各单元工艺对不同形态MPs的去除效果.
2.1 预处理和一级处理预处理和一级处理对MPs的去除率从35.6%到92.9%不等, 这与研究所分析的MPs大小、水厂所用的格栅尺寸和沉砂池类型有关. 预处理采用格栅或除砂/除油手段, 主要用于去除尺寸较大的颗粒污染物. 不同WWTPs采用的筛网尺寸不同, 尺寸越大, 预处理的去除率越低, Blair等[82]调查的WWTPs采用了12 mm的粗筛网, MPs去除率仅有6%;Ziajahromi等[112]的研究中采用了5~6 mm的筛网, 去除率可达69.0%~78.7%. 大部分WWTPs使用的格栅尺寸都 > 5 mm, 不能直接去除MPs, 而是去除附着在其他大颗粒物上的MPs. 格栅处理去除尺寸较大的MPs[126]. 部分小尺寸、轻质MPs则可以在除油过程中被去除, 如Murphy等[63]研究中, 大部分洗面奶的PE微珠在除油预处理中被去除. 除砂过程中, 沉砂池类型也会影响MPs的去除率, 在Lv等[66]的实验中, 曝气沉砂池去除了21.4%的MPs, 而旋转沉砂池则提高了MPs丰度, 可能是由于前者产生的螺旋水流可以使颗粒碰撞内壁而被抛出沉降, 后者产生的涡流则会使MPs破碎成更小的颗粒, 总体丰度增加[127].
一级处理通常采用初沉池, 主要靠重力实现, 因此MPs的成分与形状会显著影响沉降效果. Murphy等[63]的研究表明, 所有PS和大部分PVC在一级处理中被去除, 而密度较小的PE仍有14.7%的残留;但密度大于水的PA和PES在一级出水中仍大量存在, 这可能与MPs的形状有关. 从图 6可以看出, 经过预处理和一级处理后, 纤维状MPs平均占比从56.83%减小到了32.13%, 而碎片/薄膜和颗粒状MPs占比均增加, 说明纤维状MPs在一级处理中的去除效果较好, 碎片/薄膜和颗粒状相对较差. MPs的尺寸对去除效果影响不大, 在Lares等[93]的研究中, 一级处理去除了近99%的MPs, 且在每个尺寸范围(1~5、0.5~1、0.25~0.5和 < 0.25 mm)的去除率都达到98%.
添加混凝剂可以有效提高一级处理的去除率, Talvitie等[108]在一级处理的过程中添加了硫酸亚铁强化沉淀, 去除率达到了97%;Ruan等[128]发现, 加氯化铁絮凝沉淀可以去除78.2%的MPs, 而未加混凝剂的一级处理去除率只有41.7%. 沉淀池的设计也会影响MPs的去除率, 但目前还缺少相关研究.
2.2 二级处理二级处理通常采用各种生物处理工艺并伴随沉淀或过滤工艺, 如活性污泥、A2/O工艺、生物滤池和膜生物反应器(membrane bio-reactor, MBR)等, 其中, 活性污泥法最为常用. 在统计的60个水厂中, 有20个采用了活性污泥法作为二级处理工艺, 对MPs的去除率在3.2%~41%范围内. 但由于相关研究较少, MPs与微生物之间的相互作用尚不明确, Cheng等[127]提出, 在生物处理过程中, 微生物可以附着在MPs表面形成生物膜, 并沉淀在二沉池中. 但同时, MPs渗出的添加剂或从废水中吸附的有机污染物和重金属也可能破坏或抑制微生物生长.
二级处理的目的是去除污水中的有机物, 对MPs的去除率从-23.1%~65%不等, 主要依靠微生物降解和二沉池的沉降作用, 且前者去除效果远不如后者. 在微生物降解MPs的过程中, 以及曝气过程中的机械作用会促进一些大尺寸MPs被破碎成小尺寸, 因此这一过程对MPs的去除率不大, 甚至有可能增加MPs的丰度. 二沉池的去除效果远高于生物处理过程, 一些难以去除的轻质或纤维状塑料, 会随着微生物形成的絮凝物沉入污泥. 在Tadsuwan等[107]的研究中, 曝气过程使MPs数量增加了25.55%, 而之后的二沉池处理则减少了86.14%;Parashar等[53]研究中发现同样的规律, 曝气过程后MPs增加了32.67%~36.66%, 而沉降过程则减少了37.3%~41.46%的MPs. 除了活性污泥法以外, 其他二级处理工艺如氧化沟(OD)和A2/O也具有同样的规律. Yang等[56]的研究中, 生物选择池与OD使MPs增加了52.6%, 而二沉池去除了81.7%. 在Lv等[66]的研究中, OD去除了15%的MPs, 而之后的二沉池去除率达到了76.5%, 远高于曝气过程. 此前的研究结果报道, 二级处理主要去除 > 20 μm的MPs, 更小的MPs需要三级处理去除[129].
2.3 三级处理三级处理是WWTPs的最后一步处理工艺, 采用溶气浮选和过滤等处理技术, 进一步去除二级出水中的颗粒物和营养物质. 从图 6可以看出, 采用三级处理工艺的水厂和二级处理的水厂最终出水的MPs丰度相差不大, 说明单独的三级处理工艺对MPs的去除贡献不大. 在现有报道中, 单独的三级处理对去除MPs的贡献率在3.5%~34.1%, 其中大多不足10%. Talvitie等[108]以生物活性滤池作为三级处理工艺, 出水MPs丰度与二级出水丰度几乎没有差别.
过滤是最常用的三级处理手段, 主要有砂滤、盘式过滤器、MBR(膜生物反应器)和膜过滤这4种, 其中, MBR对MPs的去除效果最好. Talvitie等[126]对比了二级处理工艺分别与MBR、盘式过滤器、快速砂滤器和溶气气浮联用对 > 20 μm的MPs的去除效果, 结果发现, 联用4种过滤手段对MPs的去除率均高于95%, 其中联用MBR去除率最高, 达99.9%.
用MBR替代二级处理工艺也会提高对MPs的去除, MBR结合了活性污泥法和膜过滤, 利用微滤或超滤膜, 有效截留小粒径物质, 采用MBR系统代替传统活性污泥法, 可以控制污泥膨胀, 同时取消二沉池, 减少占地[130]. MBR对MPs主要基于膜的截留作用和污泥的吸附作用[131]. Lv等[66]报道的水厂用MBR代替二沉池, 对比了OD-二沉池和A2/O-MBR两个平行工艺的去除效果, 结果表明, 使用MBR的工艺去除率达到83.5%, 高于OD-二沉池工艺的76.5%. 这是由于曝气过程将大部分MPs保留在污泥中, 而MBR可以拦截大量污泥, 因此去除率高于二沉池, 而二沉池的污泥回流过程保留了部分MPs, 减少了其有效去除. 在Michielssen等[101]的研究中, 一级出水经活性污泥与砂滤处理后MPs去除率为97.2%, 而单独的厌氧MBR可以去除99.4%的MPs. Bayo等[79]报道仅采用MBR-砂滤两级处理就可以去除75.49%的MPs, 但MBR的反冲洗过程有可能使部分MPs释放并通过三级处理, 因此MBR的去除效果取决于反冲洗频率和膜孔大小[127].
除了MBR外, 有研究报道了其他过滤手段去除MPs[60, 79, 82, 91, 92, 99, 106, 107, 118, 125]. 砂滤介质孔隙较大, MPs可以直接通过, 只能通过黏附去除部分MPs, 去除效果较差;盘式过滤器的去除效果主要取决于膜孔大小. Kim等[91]报道了以砂滤作为三级处理的水厂, 最终去除了99.8%的MPs. 单独的砂滤过程可以去除二级出水中69.3%的MPs, 而10 μm孔径的膜盘式过滤器可以去除二级出水中79.4%的MPs[117]. Simon等[65]报道的水厂采用了18μm的盘式过滤器, 去除了二级出水中89.7%的MPs.
膜过滤也是去除MPs的有效手段, 微滤膜孔径在0.1 ~10 μm, 超滤膜在0.002 ~0.1 μm, 二者都能有效截留MPs. Yahyanezhad等[132]用孔径为0.1 μm的微滤膜去除WWTPs出水的MPs, 结果表明, 增加微滤后, 可使污水MPs去除率达到98%. Luogo等[133]用SiC微滤膜与ZrO2超滤膜处理废水, 二者分别去除了98.55%和99.2%的MPs, 其中, SiC微滤膜渗透率下降了95%, 而ZrO2超滤膜下降了37%. 相比微滤和超滤膜, 动态膜(dynamic membrane, DM)的压力更低, 能耗小, 且易清洗, 能有效去除低密度污染物和不可降解的MPs. Li等[134]使用90 μm支撑网的DM, 在重力模式下去除合成废水中的MPs, 最终去除率达到90%. 反渗透膜过滤在城市和工业水处理系统中被用于去除盐、重金属和其他有机杂质, 不同于微滤和超滤, 反渗透膜作为无孔膜, 主要通过溶解-扩散的方式过滤水, 对MPs也有更好的截留作用. Wang等[110]研究了4个WWTPs处理MPs的情况, 主要技术为澄清、过滤和反渗透, 最终去除了63.5%~95.4%的MPs. 科威特某个采用超滤-反渗透作为三级处理的水厂, MPs的去除率在夏季和冬季都达到了98%以上[60].
此外, 粉末活性炭(PAC)作为一种非过滤手段, 也可以去除高达80%的MPs[135].
综上, WWTPs预处理和一级处理对MPs的去除率贡献最大, 二级处理中二沉池的去除效果远好于生物处理过程, 而曝气过程有可能增加MPs的数量, 以膜为核心的三级处理对MPs的终端控制效果显著.
3 MPs在DWTPs中的去除表 2总结了已经报道的DWTPs去除MPs的相关研究, 进水丰度从0.007 ~6 614个·L-1不等, 出水丰度从0.002~1 042个·L-1不等. 由表 2可以看出, 最小尺寸为5 μm的研究中, 进水丰度均在1 000个·L-1以上, 出水丰度大部分在300个·L-1以上;而最小尺寸大于10 μm的研究中, 进水丰度大部分少于10个·L-1, 出水丰度均在1个·L-1以下.
![]() |
表 2 国内外部分DWTPs中MPs丰度1) Table 2 Microplastic abundance in some domestic and foreign drinking water plants |
DWTPs对MPs的去除率-12.7%~99.94%范围内, 从图 7可以看出, 混凝-沉淀工艺去除率最高, 大部分在30%以上;其次是过滤, 去除率在20%左右;消毒去除效果最差, 在10%左右;预处理和后处理步骤对MPs的去除率差别较大, 从6%~54%不等, 取决于所采用的工艺.
![]() |
数据来自文献[51, 52, 57, 58, 68~78, 136] 图 7 国内外DWTPs各工艺单元对MPs的去除率 Fig. 7 Removal rates of MPs in different process units of domestic and foreign DWTPs |
混/絮凝去除MPs有3种机制[137]:电中和、吸附架桥和网捕作用.
电中和基于扩散双层模型和DLVO理论. 水中悬浮的MPs在近中性的条件下表面带有负电荷, 因静电排斥作用而在水中保持稳定. 加入的混凝剂在水中可以水解成各种阳离子, 增加介质的离子强度和扩散双电层中抗衡离子的浓度, MPs表面电性被中和, Zeta电位降低, 静电排斥作用减小, 粒子碰撞几率增加, 导致分散的MPs失稳, 聚集在一起, 形成大尺寸絮凝物. 但加入过多时, 也会导致MPs带正电而重新稳定分散.
相对分子质量高(Mr > 106)的絮凝剂存在“架桥效应”[138]. 由于静电作用、范德华力和化学键作用, 大分子混凝剂上的活性位点与未完全失稳的MPs连接, 发挥架桥作用, 如硅烷类混凝剂. 混凝剂链越长, 网状结构越大, 范德华力越强, MPs越容易吸附聚集. 当混凝剂用量足够大时, 金属盐混凝剂超过溶度积产生大量絮状氢氧化物沉淀, 该絮状氢氧化物具有巨大的网状表面结构和一定的静电附着能力, 因此在生成沉淀的过程中, MPs颗粒可以同时在沉淀中形成网状物被去除.
混/絮凝-沉淀(coagulation-flocculation-sedimentation, CFS)是DWTPs去除MPs的关键工艺, Wu等[77]测出某一浙江水厂CFS工艺的去除率达42.5%, Babel等[74]对2个柬埔寨水厂测试, 二者CFS工艺的去除率分别是30.03%和32.5%, 都达到了总去除率的一半以上. Pivokonsk等[78]在调查捷克水厂时发现, CFS工艺去除MPs高达61.65%. 在Wang等[70]调查的水厂中, CFS工艺去除了40.5%~54.5%的MPs. 然而Radityaningrum等[57]在调查2个印度尼西亚水厂时, 发现CFS工艺导致MPs含量上升, 这可能是由于该过程水力作用使大直径MPs破碎成更多小MPs, 使整体MPs丰度增加. 但总体来说, CFS对MPs有很好的去除效果.
CFS的去除率与MPs粒径大小有关. 大尺寸MPs更易沉降, 且一部分会被分解成小尺寸MPs, 所以在混/絮凝-沉淀的工艺中, 大尺寸去除率更高. 且CFS对MPs的去除率随尺寸增大而增加, > 100 μm的MPs几乎被全部去除, 而1~5 μm的MPs仅去除了30%[70]. 但也有研究者认为[139], Fe和Al形成的絮凝物尺寸只有几百μm, 难以捕获mm级的大尺寸MPs.
MPs的形状也会影响CFS去除效果, 多个研究表明, 纤维状去除效果更好, 很可能是因为纤维状比表面积更大, 更容易与絮凝剂结合. 同时, 表面粗糙的MPs更不对称, 吸附力更强, 也更容易被CFS去除[137]. 此外, Zhou等[140]认为, 不同塑料种类的密度不同, 会影响CFS对MPs的去除效果;但Nakazawa等[141]认为, 水体中还有其他颗粒物如黏土和活性炭等, 所以不同种类MPs对沉降速度的影响不大, 更可能是不同表面电荷及官能团影响CFS效果.
除了沉淀以外, 混凝后也可以通过气浮去除MPs絮体. 从Pivokonsky等[69]的研究中可以看出, 采用气浮的水厂去除率稍高于采用沉淀的水厂, 但总体差别不大. 从原理上讲, 未被絮凝的MPs无法通过沉淀去除, 但可以被气浮去除, 所以一般认为气浮的去除率高于沉淀. Kankanige等[75]认为, 气浮对小尺寸MPs的去除率高于大尺寸, 原因是气浮过程中, 小尺寸MPs布朗运动更显著, 更容易去除.
MPs与其他有机污染物的相互作用也会影响混凝过程, Zhang等[142]发现腐植酸(humic acid, HA)和酸性橙7(acid orange 7, AO7)会提高MPs的去除率, 原因可能是以上有机物吸附在MPs表面一起被混凝剂包裹, 增加了絮凝物的质量, 更容易被沉降去除. 但有机污染物也可能改变MPs表面官能团和疏水性, 降低混凝对MPs的去除率. Zhang等[143]发现, HA与絮体存在对MPs的竞争吸附作用, 会导致混凝去除聚苯乙烯NPs的效率降低. Li等[144]报道了吸附在聚苯乙烯MPs上的HA会影响颗粒之间的空间位阻和静电力排斥, 进而影响混凝效果. 此外, 多种有机污染物之间的相互作用(高岭石与藻类有机物、蓝藻细胞与藻类有机物、腐殖质和藻类有机物)还会影响混凝条件(pH值和离子浓度等)[145], 进而影响去除效果.
3.2 过滤混凝处理后过滤工艺一般采用砂滤, MPs会被夹在砂粒之间或黏附在砂粒表面, 过滤对去除大尺寸的MPs更有效. Na等[146]的实验研究认为砂滤只能去除 > 20 μm的MPs, 对于≤ 20 μm的MPs, 需要额外的工艺去除, 如UV/H2O2. Pivokonsk等[78]在检测中发现, 过滤去除了35%的大尺寸(≥ 50 μm)MPs, 而小尺寸(1~50 μm)MPs的去除率约20%. Wang等[70]的检测结果表明, 砂滤去除了29.0%~44.4%的MPs, 不同尺寸的去除率差别不明显. Babel等[74]检测的2个水厂的去除率分别为21.01%和20.13%, 同时认为去除率随MPs尺寸的增加而增加.
除砂滤外, 也有少数水厂采用砂-无烟煤双介质过滤[52, 76]. 实验室规模采用膜过滤、微滤膜和超滤膜都能有效截留MPs. 膜过滤不受聚合物形状或材料限制, 只与粒径大小有关, 如Ma等[147, 148]采用孔径为30 nm的超滤膜代替砂滤, 几乎截留了所有MPs. 但传统的膜技术不是专门设计用于去除MPs的, MPs固有的物理化学性质, 如疏水性、表面电荷和粗糙度等, 会导致其与膜表面相互作用, 从而造成膜表面和孔内结垢, 影响过滤性能, 导致能源和维护成本高、运行时间降低[149]. 因此, 传统膜过滤一般用于深度处理工艺中, 而不用于代替常规工艺中的砂滤.
3.3 消毒DWTPs中的消毒常用氯化、紫外线和臭氧这3种方法. Wang等[70]认为消毒会使大颗粒破碎成小颗粒, 增加MPs总丰度. Liu等[150]也表示臭氧氧化会导致1~5 μm的MPs增加2.8%~16.0%, 但臭氧氧化与GAC的组合工艺可以提高MPs的去除率;该研究还发现消毒对MPs的影响与剂量有很大关系, 高浓度臭氧能引起MPs的变化, 但实际臭氧浓度下对MPs几乎没有影响.
Li等[151]探究了臭氧氧化与氯化对聚苯乙烯(PS)纳米塑料(nanoplastics, NPs)的影响, 二者均在一定程度上减少了NPs的数量, 且臭氧氧化去除的NPs更多, 原因可能是臭氧氧化的氧化还原电位高于氯化. 同时还发现, 由于臭氧氧化会攻击不饱和键与饱和键, 还可以破坏环氧树脂、橡胶、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰胺等的材料结构. 臭氧氧化亦会引入新的含氧基团, 以上官能团会增加其亲水性, 使其得以进一步降解. 此外, 苯环也容易受到臭氧/氧气的攻击而开环, 生成酮类和醛类. 但氯化对PS几乎没有作用.
3.4 预处理与深度处理由于近年来, 关于各种新污染物和微生物的研究越来越多, 除了常规工艺以外, 大部分水厂都增加了进一步的深度处理工艺. 常见的深度处理主要有臭氧-活性炭(granular activated carbon, GAC)、膜处理和高级氧化(advanced oxidation process, AOPs). GAC吸附MPs主要依靠静电作用, 即MPs的正电荷与GAC上的负电荷之间的相互作用. 而水中DOM和二价阳离子物质会改变MPs表面电荷, 形成较大的杂聚体, 从而提高GAC吸附对MPs的去除率[152]. Pivokonsk等在2020年[78]调查的2个水厂中有1个设置了GAC以及UV消毒, 去除了6%的MPs. Wang等[70]检测的水厂中, 臭氧-GAC去除了17.2%~22.2%的MPs. 采用GAC-UV消毒的水厂, 最终≥ 25 μm的去除率达到99%以上[73].
膜处理作为一种深度处理工艺, 也可以有效地去除MPs. Dalmau-Soler等[72]调查的水厂使用了臭氧-GAC工艺, 同时平行设置了UF-RO工艺, 可以明显看出RO膜的去除率远高于GAC. 但膜处理存在膜污染问题, 需要开发新型膜材料以获得更高的MPs去除经济性与稳定性. Yang等[153]制备了基于多孔还原氧化石墨烯(h-rGO)纳米片的膜, 孔径27.3 nm, 成功去除了99.9%以上的荧光PS微珠. Fryczkowska等[154]用氧化石墨烯和聚丙烯腈的复合膜(rGO/PAN)去除MPs, 发现向PAN基体中加入更多rGO(0.11%~0.83%)可以产生更多150 nm左右的孔, 从而截留82%的胶体, 同时, rGO/PAN抗污染性能好, 滤饼层易清洁, 可以作为单膜工艺取代MPs去除的多级工艺. Nkosi等[155]在PVDF膜上涂覆了碳纳米洋葱, 得到孔隙率41%、孔径0.218 2 μm的复合膜, 成功过滤了自来水、废水进/出水和湖水中的MPs. Bai等[156]用1, 4-苯基二硫醇和1, 3, 5-三乙酰苯构造了多孔有机聚合物膜, 用于过滤直径0.1 μm的聚苯乙烯MPs, 最终效率达90.92%. Gnanasekaran等[157]将金属有机骨架MIL-100(Fe)纳米离子掺入聚砜膜中, 制备出新型PSF/MIL-100(Fe)膜, 用于去除纺织废水中的染料和MPs, 结果表明该复合膜可以截留99%的亚甲基蓝, 并对MPs有优异的抗污染性能. Yang等[158]蚀刻Ti3C2Tx纳米片中的Co3O4, 得到Ti3C2Tx多孔膜, 用于分离荧光PS微球, 达到99.3%的去除率与196.7 L·(h·m2·kPa)-1的水通量. Enfrin等[159]用亲水性丙烯酸和环丙胺等离子涂层改性聚砜膜, 使得吸附在膜上的MPs减少60%, 提高了膜对MPs的抗污染性能.
高级氧化工艺主要有光催化和芬顿氧化, 但以上工艺暂时大都停留在实验室阶段或在废水处理厂中使用. 光催化降解[160]是一种氧化还原过程, 其中半导体光催化剂吸收合适波长(可见光/紫外线)的光子, 价带中的电子(e-)被激发到导带, 留下空穴(h+). e-和h+与吸附的水和氧发生反应, 产生自由基, 例如超氧自由基(O2·)和羟基自由基(·OH). 以上活性物质进一步与MPs发生反应, 使其分解, 导致聚合物链断裂, 甚至完全矿化. TiO2、ZnO、ZnS、WO3、ZrO2和g-C3N4等半导体已被用于光催化废水处理. 芬顿氧化即在Fe2+存在的情况下, H2O2在水中转化为·OH和其他氧化物质, 加速MPs降解. 但Liu等[161]发现, 芬顿处理会改变MPs表面形态、尺寸分布和化学特性, 增强MPs吸附其他污染物的能力.
部分DWTPs在常规工艺之前增加了预处理, 如预氧化和预氯化. Radityaningrum等[57]调查的2个水厂均设置了曝气与预沉淀阶段, 且两个阶段对MPs的去除率高达66%, 起到了主要去除作用. Wu等[77]调查的长沙水厂中设置了生物预处理, 但生物预处理导致MPs破碎成小尺寸, 整体丰度上升, 该水厂后续还设置了BAC深度处理工艺, 在一定程度上减少了生物预氧化与臭氧氧化的不良影响. Jung等[51]调查的韩国水厂设置了预臭氧工艺, 预臭氧与CFS对MPs的去除率最高可达84%.
4 展望(1)目前, 水体中MPs的分布和处理情况已有大量研究, 但由于分离和定量方法缺乏标准, 不同研究结果之间很难对比得出有用的结论. 采样深度、采样工具和鉴定方法都对研究结果有一定的影响, 粒径范围划分, 形状与颜色分类的不统一影响对比分析. 确定标准的调查与分析方法对不同水体中MPs分布的识别和量化具有重要意义. 对于MPs的鉴别, 部分研究还停留在目视法, 受实验人员的主观影响较大, 很容易将天然纤维等非塑料的微垃圾纳入研究中, 导致对MPs的定量结果不准确, 将机器学习应用于MPs的视觉识别和光谱分析有利于提高结果的准确性. 此外, 针对尺寸小于1 μm的纳米塑料研究甚少, 但根据已有研究来看, 尺寸越小的塑料丰度往往越高, 这意味着纳米塑料在水厂中的丰度很可能更甚于MPs.
(2)现有水厂工艺对MPs的去除存在小尺寸处理效果较差和污泥难以处理等问题, 虽然已经发展出多种先进工艺, 如开发新型膜材料缓解膜污染、利用微生物降解将MPs转化为水溶性碳氢化合物或燃料、利用生物分泌的粘液强化砂滤过程和利用生物酶进行好氧堆肥催化MPs的降解等. 但以上技术大都有能耗高和成本高等问题, 大部分仍停留在实验室尺度, 有待进一步发展. 此外, 水环境中的MPs的分布与人类活动密切相关, 研发并推广生态友好的可生物降解产品有利于从源头控制MPs污染.
5 结论(1)水环境中的MPs丰度具有地域差异性, 与城市化水平和人口密度有关.
(2)在我国水环境、国内外WWTPs和DWTPs中, MPs主要来源可能是洗衣废水中的涤纶纤维和各类包装, 其颜色以透明(白)色为主, 尺寸以中等尺寸(50~500 μm)为主, 形状以纤维状为主, 成分以PP、PE和PS为主.
(3)MPs的丰度与观察到的MPs尺寸下限有关, 最小尺寸越小, MPs丰度越高. 由于MPs在水处理过程中, 会被机械作用和降解作用破碎成小尺寸, 导致丰度增加, 因此用丰度表示水体受MPs的污染程度并不完善, 还应同时提供浓度.
(4)已报道的WWTPs中, 预处理和一级处理工艺对MPs的去除效果最好, 去除率在35.6%~92.9%, 由于二者主要依赖格栅和沉淀, 对大尺寸、高密度的MPs有更好的去除效果. 二级处理的去除率在3.2%~41%, 主要依靠微生物降解和二沉池的沉降作用, 后者贡献更大. 三级处理的去除率在3.5%~34.1%, 但大部分不足10%, 在所有三级处理手段中, MBR去除效果最好.
(5)已报道的DWTPs中, 混凝去除效果最好, 去除率在30%以上, 其次是过滤, 约20%, 消毒的去除效果最差, 约10%.
[1] |
杨博, 熊健, 李伟, 等. 土壤中微塑料来源、检测及风险评价研究进展[J]. 应用化工, 2023, 52(10): 2929-2933, 2939. Yang B, Xiong J, Li W, et al. Research progress on microplastic sources, detection and risk assessment in soil[J]. Applied Chemical Industry, 2023, 52(10): 2929-2933, 2939. DOI:10.3969/j.issn.1671-3206.2023.10.039 |
[2] | Mason S A, Garneau D, Sutton R, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218: 1045-1054. DOI:10.1016/j.envpol.2016.08.056 |
[3] | Fischer E K, Paglialonga L, Czech E, et al. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy)[J]. Environmental Pollution, 2016, 213: 648-657. DOI:10.1016/j.envpol.2016.03.012 |
[4] | Dris R, Gasperi J, Rocher V, et al. Microplastic contamination in an urban area: a case study in Greater Paris[J]. Environmental Chemistry, 2015, 12(5): 592-599. DOI:10.1071/EN14167 |
[5] | Estahbanati S, Fahrenfeld N L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water[J]. Chemosphere, 2016, 162: 277-284. DOI:10.1016/j.chemosphere.2016.07.083 |
[6] | Wang W F, Ndungu A W, Li Z, et al. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374. DOI:10.1016/j.scitotenv.2016.09.213 |
[7] | Feng S S, Lu H W, Yao T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 417. DOI:10.1016/j.jhazmat.2021.126034 |
[8] |
周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异[J]. 科学通报, 2017, 62(33): 3902-3909. Zhou Q, Tian C G, Luo Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere[J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909. |
[9] | Di M X, Wang J. Microplastics in surface waters and sediments of the three gorges reservoir, China[J]. Science of the Total Environment, 2018, 616-617: 1620-1627. DOI:10.1016/j.scitotenv.2017.10.150 |
[10] | Wang W F, Yuan W K, Chen Y L, et al. Microplastics in surface waters of Dongting lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. DOI:10.1016/j.scitotenv.2018.03.211 |
[11] | Xia B, Sui Q, Sun X M, et al. Microplastic pollution in surface seawater of Sanggou Bay, China: occurrence, source and inventory[J]. Marine Pollution Bulletin, 2021, 162. DOI:10.1016/j.marpolbul.2020.111899 |
[12] | Zhou G Y, Wang Q G, Zhang J, et al. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China[J]. Environmental Research, 2020, 189. DOI:10.1016/j.envres.2020.109893 |
[13] | Di M X, Liu X N, Wang W F, et al. Manuscript prepared for submission to environmental toxicology and pharmacology pollution in drinking water source areas: microplastics in the Danjiangkou reservoir, China[J]. Environmental Toxicology and Pharmacology, 2019, 65: 82-89. DOI:10.1016/j.etap.2018.12.009 |
[14] | Yuan W K, Liu X N, Wang W F, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170: 180-187. DOI:10.1016/j.ecoenv.2018.11.126 |
[15] | Mai Y Z, Peng S Y, Lai Z N, et al. Measurement, quantification, and potential risk of microplastics in the mainstream of the Pearl River (Xijiang River) and its estuary, Southern China[J]. Environmental Science and Pollution Research, 2021, 28(38): 53127-53140. DOI:10.1007/s11356-021-14395-3 |
[16] | Zhang L S, Xie Y S, Zhong S, et al. Microplastics in freshwater and wild fishes from Lijiang River in Guangxi, Southwest China[J]. Science of the Total Environment, 2021, 755. DOI:10.1016/j.scitotenv.2020.142428 |
[17] | Jiang C B, Yin L S, Li Z W, et al. Microplastic pollution in the rivers of the Tibet Plateau[J]. Environmental Pollution, 2019, 249: 91-98. DOI:10.1016/j.envpol.2019.03.022 |
[18] | Li J L, Ouyang Z Z, Liu P, et al. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China[J]. Science of the Total Environment, 2021, 773. DOI:10.1016/j.scitotenv.2021.145591 |
[19] |
秦一鸣. 乌梁素海微塑料污染特征及风险评价[D]. 包头: 内蒙古科技大学, 2020. Qin Y M. Pollution characteristics and risk assessment of microplastics in lake Ulansuhai[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. |
[20] |
白璐, 刘宪华, 陈燕珍, 等. 天津近岸海域微塑料污染现状分析[J]. 环境化学, 2020, 39(5): 1161-1168. Bai L, Liu X H, Chen Y Z, et al. Current status of microplastics pollution in Tianjin coastal waters[J]. Environmental Chemistry, 2020, 39(5): 1161-1168. |
[21] | 顾铭. 京杭运河常州段水体中微塑料的赋存特征[D]. 常州: 江苏理工学院, 2019. |
[22] |
单世伟. 白洋淀及上游河流水环境和鱼类体内微塑料分布研究[D]. 保定: 河北大学, 2021. Shan S W. Distribution of microplastics in aquatic environment and fish body of the Baiyang Lake and its upstream rivers[D]. Baoding: Hebei University, 2021. |
[23] |
袁海英, 侯磊, 梁启斌, 等. 滇池近岸水体微塑料污染与富营养化的相关性[J]. 环境科学, 2021, 42(7): 3166-3175. Yuan H Y, Hou L, Liang Q B, et al. Correlation between microplastics pollution and eutrophication in the near shore waters of Dianchi Lake[J]. Environmental Science, 2021, 42(7): 3166-3175. |
[24] |
李高俊, 熊雄, 詹晨熙, 等. 南渡江水体微塑料污染现状研究[J]. 环境科学学报, 2022, 42(2): 205-212. Li G J, Xiong X, Zhan C X, et al. Occurrence of microplastics in the water of the Nandu Jiang river[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 205-212. |
[25] |
周刚, 徐晨烨, 沈忱思, 等. 微塑料在淀山湖水环境的污染分布、组成特征和生态风险[J]. 环境科学学报, 2022, 42(4): 214-224. Zhou G, Xu C Y, Shen C S, et al. Distribution, composition and ecological risks of microplastics in surface water of the Dianshan Lake[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 214-224. |
[26] |
门聪, 李頔, 左剑恶, 等. 北京市通州区河流中微塑料组成的空间分布及潜在来源解析[J]. 环境科学, 2022, 43(7): 3656-3663. Men C, Li D, Zuo J E, et al. Spatial variation and potential sources of microplastics in rivers in Tongzhou District, Beijing[J]. Environmental Science, 2022, 43(7): 3656-3663. |
[27] | Wong G, Löwemark L, Kunz A. Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: spatial heterogeneity and correlation with precipitation[J]. Environmental Pollution, 2020, 260. DOI:10.1016/j.envpol.2020.113935 |
[28] |
陈馨, 张仲伟, 刘运钊, 等. 巢湖水体中微塑料组成及分布特征[J]. 环境科学研究, 2022, 35(12): 2716-2721. Chen X, Zhang Z W, Liu Y Z, et al. Compositional and distributional characteristics of microplastics in water samples of Chaohu Lake[J]. Research of Environmental Sciences, 2022, 35(12): 2716-2721. |
[29] |
张成前, 时鹏, 张妍, 等. 渭河流域关中段河水和沉积物中微塑料的污染特征对比研究[J]. 环境科学学报, 2023, 43(2): 241-253. Zhang C Q, Shi P, Zhang Y, et al. Comparison of microplastics pollution in water and sediments in Guanzhong section of the Weihe River basin[J]. Acta Scientiae Circumstantiae, 2023, 43(2): 241-253. |
[30] |
赵世烨. 中国部分河口微塑料的赋存特征及海洋雪中微塑料分析方法研究[D]. 上海: 华东师范大学, 2017. Zhao S Y. Microplastic contamination of some key estuaries in China and the approach for analyzing Microplastic in marine snow[D]. Shanghai: East China Normal University, 2017. |
[31] |
吕岳骏, 李亚芸, 王舒淇, 等. 山西黄河上游枯水期微塑料分布及附着微生物研究[J]. 中北大学学报(自然科学版), 2023, 44(1): 65-71. Lv Y J, Li Y Y, Wang S Q, et al. Reasearch on microplastices distribution and attached microorganism in the upstream of the Yellow River in Shanxi during dry season[J]. Journal of North University of China (Natural Science Edition), 2023, 44(1): 65-71. DOI:10.3969/j.issn.1673-3193.2023.01.009 |
[32] |
李昀东. 哈尔滨城市内河中微塑料赋存特征、源解析及环境影响因素[D]. 哈尔滨: 哈尔滨师范大学, 2022. Li Y D. Occurrence characteristics, source apportionment and environmental influencing factors of microplastics in the urban rivers of Harbin[D]. Harbin: Harbin Normal University, 2022. |
[33] |
唐抒圆. 松花江微塑料污染特征及其混凝-吸附去除效能研究[D]. 长春: 吉林大学, 2023. Tang S Y. The pollution characteristics of microplastics in Songhua river and its removal efficiency by coagulation-adsorption[D]. Changchun: Jilin University, 2023. |
[34] |
王高亮. 玛纳斯河流域微塑料污染特征研究与生态风险评估[D]. 石河子: 石河子大学, 2020. Wang G L. Study on microplastic pollution characteristics and ecological risk assessment in Manas river basin[D]. Shihezi: Shihezi University, 2020. |
[35] | Ding L, Mao R F, Guo X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China[J]. Science of the Total Environment, 2019, 667: 427-434. DOI:10.1016/j.scitotenv.2019.02.332 |
[36] | Huang Y J, Yan M T, Xu K H, et al. Distribution characteristics of microplastics in Zhubi Reef from South China Sea[J]. Environmental Pollution, 2019, 255. DOI:10.1016/j.envpol.2019.113133 |
[37] | Liu Q, Hu H J, Xiong X, et al. Urban natural wetland as a sink for microplastics: a case from Lalu Wetland in Tibet, China[J]. Science of the Total Environment, 2022, 828. DOI:10.1016/j.scitotenv.2022.154399 |
[38] | Yan M T, Nie H Y, Xu K H, et al. Microplastic abundance, distribution and composition in the Pearl River along Guangzhou city and Pearl River estuary, China[J]. Chemosphere, 2019, 217: 879-886. DOI:10.1016/j.chemosphere.2018.11.093 |
[39] | Ma M, Liu S B, Su M, et al. Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118384 |
[40] | Zhang L S, Liu J Y, Xie Y S, et al. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China[J]. Science of the Total Environment, 2020, 708. DOI:10.1016/j.scitotenv.2019.135176 |
[41] |
李思琼, 王华, 储林佑, 等. 长江流域微塑料污染特征及生态风险评价[J]. 环境科学, 2024, 45(3): 1439-1447. Li S Q, Wang H, Chu L Y, et al. Pollution characteristics and ecological risk assessment of microplastics in the Yangtze River basin[J]. Environmental Science, 2024, 45(3): 1439-1447. |
[42] | Su L, Xue Y G, Li L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. DOI:10.1016/j.envpol.2016.06.036 |
[43] |
张钦洲, 刁晓平, 谢嘉, 等. 海南东部海水养殖区水体、沉积物中微塑料的分布特征[J]. 海南大学学报(自然科学版), 2020, 38(2): 159-165. Zhang Q Z, Diao X P, Xie J, et al. Distribution characteristics of microplastics in water and sediment of mariculture area in eastern Hainan[J]. Natural Science Journal of Hainan University, 2020, 38(2): 159-165. |
[44] |
张胜, 林莉, 潘雄, 等. 汉江(丹江口坝下-兴隆段)水体中微塑料的赋存特征[J]. 环境科学研究, 2022, 35(5): 1203-1210. Zhang S, Lin L, Pan X, et al. Characteristics of microplastics in water of the Hanjiang river (below the Danjiangkou dam-Xinglong Section)[J]. Research of Environmental Sciences, 2022, 35(5): 1203-1210. |
[45] |
杨泽川, 胡泓, 王秀海, 等. 莱州湾入海河流的微塑料输入特征研究[J]. 海洋湖沼通报, 2021, 43(5): 73-81. Yang Z C, Hu H, Wang X H, et al. Studies on the input characteristics of microplastics of rivers entering the Laizhou Bay[J]. Transactions of Oceanology and Limnology, 2021, 43(5): 73-81. |
[46] |
林伟雄, 武纯. 城市污泥中微塑料的研究现状[J]. 广东化工, 2023, 50(18): 59-61, 3. Lin W X, Wu C. Research progress on microplastics in municipal sludge[J]. Guangdong Chemical Industry, 2023, 50(18): 59-61, 3. DOI:10.3969/j.issn.1007-1865.2023.18.018 |
[47] | Wang K, Lin H, Wang S M, et al. Species diversity and community structure of microalgae living on microplastics in Luoyuan Bay, China[J]. Marine Pollution Bulletin, 2022, 180. DOI:10.1016/j.marpolbul.2022.113809 |
[48] | Huang S M, Huang X X, Bi R, et al. Detection and analysis of microplastics in human sputum[J]. Environmental Science & Technology, 2022, 56(4): 2476-2486. |
[49] | Zhang N, Li Y B, He H R, et al. You are what you eat: Microplastics in the feces of young men living in Beijing[J]. Science of the Total Environment, 2021, 767. DOI:10.1016/j.scitotenv.2020.144345 |
[50] | Akhbarizadeh R, Dobaradaran S, Schmidt T C, et al. Worldwide bottled water occurrence of emerging contaminants: a review of the recent scientific literature[J]. Journal of Hazardous Materials, 2020, 392. DOI:10.1016/j.jhazmat.2020.122271 |
[51] | Jung J W, Kim S, Kim Y S, et al. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea[J]. Science of the Total Environment, 2022, 825. DOI:10.1016/j.scitotenv.2022.154015 |
[52] | Adib D, Mafigholami R, Tabeshkia H. Identification of microplastics in conventional drinking water treatment plants in Tehran, Iran[J]. Journal of Environmental Health Science and Engineering, 2021, 19(2): 1817-1826. DOI:10.1007/s40201-021-00737-3 |
[53] | Parashar N, Hait S. Occurrence and removal of microplastics in a hybrid growth sewage treatment plant from Bihar, India: a preliminary study[J]. Journal of Cleaner Production, 2022, 376. DOI:10.1016/j.jclepro.2022.134295 |
[54] | Oßmann B E, Sarau G, Holtmannspötter H, et al. Small-sized microplastics and pigmented particles in bottled mineral water[J]. Water Research, 2018, 141: 307-316. DOI:10.1016/j.watres.2018.05.027 |
[55] | Van Do M, Le T X T, Vu N D, et al. Distribution and occurrence of microplastics in wastewater treatment plants[J]. Environmental Technology & Innovation, 2022, 26. DOI:10.1016/j.eti.2022.102286 |
[56] | Yang Z Y, Li S X, Ma S R, et al. Characteristics and removal efficiency of microplastics in sewage treatment plant of Xi'an City, northwest China[J]. Science of the Total Environment, 2021, 771. DOI:10.1016/j.scitotenv.2021.145377 |
[57] | Radityaningrum A D, Trihadiningrum Y, Mar'atusholihah N, et al. Microplastic contamination in water supply and the removal efficiencies of the treatment plants: a case of Surabaya City, Indonesia[J]. Journal of Water Process Engineering, 2021, 43. DOI:10.1016/j.jwpe.2021.102195 |
[58] | Chanpiwat P, Damrongsiri S. Abundance and characteristics of microplastics in freshwater and treated tap water in Bangkok, Thailand[J]. Environmental Monitoring and Assessment, 2021, 193(5). DOI:10.1007/s10661-021-09012-2 |
[59] | Üstün G E, Bozdaş K, Can T. Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey[J]. Environmental Pollution, 2022, 310. DOI:10.1016/j.envpol.2022.119890 |
[60] | Uddin S, Behbehani M, Habibi N, et al. Microplastics in Kuwait's wastewater streams[J]. Sustainability, 2022, 14(23). DOI:10.3390/su142315817 |
[61] | Oveisy N, Rafiee M, Rahmatpour A, et al. Occurrence, identification, and discharge of microplastics from effluent and sludge of the largest WWTP in Iran-South of Tehran[J]. Water Environment Research, 2022, 94(8). DOI:10.1002/wer.10765 |
[62] | Jiang J H, Wang X W, Ren H Y, et al. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China[J]. Science of the Total Environment, 2020, 746. DOI:10.1016/j.scitotenv.2020.141378 |
[63] | Murphy F, Ewins C, Carbonnier F, et al. Wastewater treatment works (WWTW) as a source of microplastics in the aquatic Environment[J]. Environmental Science & Technology, 2016, 50(11): 5800-5808. |
[64] | Gao Z Q, Chen L G, Cizdziel J, et al. Research progress on microplastics in wastewater treatment plants: a holistic review[J]. Journal of Environmental Management, 2023, 325. DOI:10.1016/j.jenvman.2022.116411 |
[65] | Simon M, Vianello A, Vollertsen J. Removal of > 10 μm microplastic particles from treated wastewater by a disc filter[J]. Water, 2019, 11(9). DOI:10.3390/w11091935 |
[66] | Lv X M, Dong Q, Zuo Z Q, et al. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies[J]. Journal of Cleaner Production, 2019, 225: 579-586. DOI:10.1016/j.jclepro.2019.03.321 |
[67] | Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging[J]. Water Research, 2018, 142: 1-9. DOI:10.1016/j.watres.2018.05.019 |
[68] | Shen M C, Zeng Z T, Wen X F, et al. Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha, China[J]. Environmental Science and Pollution Research, 2021, 28(31): 42313-42324. DOI:10.1007/s11356-021-13769-x |
[69] | Pivokonsky M, Cermakova L, Novotna K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018, 643: 1644-1651. DOI:10.1016/j.scitotenv.2018.08.102 |
[70] | Wang Z F, Lin T, Chen W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700. DOI:10.1016/j.scitotenv.2019.134520 |
[71] | Sarkar D J, Das Sarkar S D, Das B K, et al. Microplastics removal efficiency of drinking water treatment plant with pulse clarifier[J]. Journal of Hazardous Materials, 2021, 413. DOI:10.1016/j.jhazmat.2021.125347 |
[72] | Dalmau-Soler J, Ballesteros-Cano R, Boleda M R, et al. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain)[J]. Environmental Science and Pollution Research, 2021, 28(42): 59462-59472. DOI:10.1007/s11356-021-13220-1 |
[73] | Barbier J S, Dris R, Lecarpentier C, et al. Microplastic occurrence after conventional and nanofiltration processes at drinking water treatment plants: preliminary results[J]. Frontiers in Water, 2022, 4. DOI:10.3389/frwa.2022.886703 |
[74] | Babel S, Dork H. Identification of micro-plastic contamination in drinking water treatment plants in Phnom Penh, Cambodia[J]. Journal of Engineering and Technological Sciences, 2021, 53(3). DOI:10.5614/j.eng.technol.sci.2021.53.3.7 |
[75] | Kankanige D, Babel S. Contamination by ≥6.5 μm-sized microplastics and their removability in a conventional water treatment plant (WTP) in Thailand[J]. Journal of Water Process Engineering, 2021, 40. DOI:10.1016/j.jwpe.2020.101765 |
[76] | Dronjak L, Exposito N, Rovira J, et al. Screening of microplastics in water and sludge lines of a drinking water treatment plant in Catalonia, Spain[J]. Water Research, 2022, 225. DOI:10.1016/j.watres.2022.119185 |
[77] | Wu J Y, Zhang Y, Tang Y. Fragmentation of microplastics in the drinking water treatment process-A case study in Yangtze River region, China[J]. Science of the Total Environment, 2022, 806. DOI:10.1016/j.scitotenv.2021.150545 |
[78] | Pivokonský M, Pivokonská L, Novotná K, et al. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment[J]. Science of the Total Environment, 2020, 741. DOI:10.1016/j.scitotenv.2020.140236 |
[79] | Bayo J, López-Castellanos J, Olmos S. Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant[J]. Marine Pollution Bulletin, 2020, 156. DOI:10.1016/j.marpolbul.2020.111211 |
[80] | Bayo J, Olmos S, López-Castellanos J. Microplastics in an urban wastewater treatment plant: the influence of physicochemical parameters and environmental factors[J]. Chemosphere, 2020, 238. DOI:10.1016/j.chemosphere.2019.124593 |
[81] | Bilgin M, Yurtsever M, Karadagli F. Microplastic removal by aerated grit chambers versus settling tanks of a municipal wastewater treatment plant[J]. Journal of Water Process Engineering, 2020, 38. DOI:10.1016/j.jwpe.2020.101604 |
[82] | Blair R M, Waldron S, Gauchotte-Lindsay C. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period[J]. Water Research, 2019, 163. DOI:10.1016/j.watres.2019.114909 |
[83] | Conley K, Clum A, Deepe J, et al. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year[J]. Water Research X, 2019, 3. DOI:10.1016/j.wroa.2019.100030 |
[84] | Dong S, Gao P, Li B H, et al. Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant[J]. Frontiers of Environmental Science & Engineering, 2022, 16(11). DOI:10.1007/s11783-022-1577-9 |
[85] | Franco A A, Arellano J M, Albendín G, et al. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body[J]. Science of the Total Environment, 2021, 776. DOI:10.1016/j.scitotenv.2021.145795 |
[86] | Gao Z Q, Cizdziel J V, Wontor K, et al. Spatiotemporal characteristics of microplastics in a university wastewater treatment plant: Influence of sudden on-campus population swings[J]. Journal of Environmental Chemical Engineering, 2022, 10(6). DOI:10.1016/j.jece.2022.108834 |
[87] | Gies E A, LeNoble J L, Noël M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018, 133: 553-561. DOI:10.1016/j.marpolbul.2018.06.006 |
[88] | Gündoğdu S, Çevik C, Güzel E, et al. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations[J]. Environmental Monitoring and Assessment, 2018, 190(11). DOI:10.1007/s10661-018-7010-y |
[89] | Hongprasith N, Kittimethawong C, Lertluksanaporn R, et al. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants[J]. Environmental Science and Pollution Research, 2020, 27(15): 18557-18564. DOI:10.1007/s11356-020-08265-7 |
[90] | Horton A A, Cross R K, Read D S, et al. Semi-automated analysis of microplastics in complex wastewater samples[J]. Environmental Pollution, 2021, 268. DOI:10.1016/j.envpol.2020.115841 |
[91] | Kim M J, Na S H, Batool R, et al. Seasonal variation and spatial distribution of microplastics in tertiary wastewater treatment plant in South Korea[J]. Journal of Hazardous Materials, 2022, 438. DOI:10.1016/j.jhazmat.2022.129474 |
[92] | Kwon H J, Hidayaturrahman H, Peera S G, et al. Elimination of microplastics at different stages in wastewater treatment plants[J]. Water, 2022, 14(15). DOI:10.3390/w14152404 |
[93] | Lares M, Ncibi M C, Sillanpää M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236-246. DOI:10.1016/j.watres.2018.01.049 |
[94] | Lee H, Kim Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea[J]. Marine Pollution Bulletin, 2018, 137: 1-8. DOI:10.1016/j.marpolbul.2018.09.050 |
[95] | Leslie H A, Brandsma S H, van Velzen M J M, et al. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota[J]. Environment International, 2017, 101: 133-142. DOI:10.1016/j.envint.2017.01.018 |
[96] | Liu F, Nord N B, Bester K, et al. Microplastics removal from treated wastewater by a biofilter[J]. Water, 2020, 12(4). DOI:10.3390/w12041085 |
[97] | Liu X N, Yuan W K, Di M X, et al. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China[J]. Chemical Engineering Journal, 2019, 362: 176-182. DOI:10.1016/j.cej.2019.01.033 |
[98] | Long Y N, Zhou Z Y, Yin L S, et al. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: a different situation from urban WWTPs[J]. Science of the Total Environment, 2022, 811. DOI:10.1016/j.scitotenv.2021.152352 |
[99] | Magni S, Binelli A, Pittura L, et al. The fate of microplastics in an Italian wastewater treatment plant[J]. Science of the Total Environment, 2019, 652: 602-610. DOI:10.1016/j.scitotenv.2018.10.269 |
[100] | Magnusson K, Norén F. Screening of microplastic particles in and down-stream a wastewater treatment plant[R]. Stockholm: IVL Swedish Environmental Research Institute, 2014. 1-22. |
[101] | Michielssen M R, Michielssen E R, Ni J, et al. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 1064-1073. |
[102] | Mintenig S M, Int-Veen I, Löder M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging[J]. Water Research, 2017, 108: 365-372. DOI:10.1016/j.watres.2016.11.015 |
[103] | Park H J, Oh M J, Kim P G, et al. National reconnaissance survey of microplastics in municipal wastewater treatment plants in Korea[J]. Environmental Science & Technology, 2020, 54(3): 1503-1512. |
[104] | Patil S, Kamdi P, Chakraborty S, et al. Characterization and removal of microplastics in a sewage treatment plant from urban Nagpur, India[J]. Environmental Monitoring and Assessment, 2023, 195(1). DOI:10.1007/s10661-022-10680-x |
[105] | Raju S, Carbery M, Kuttykattil A, et al. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant[J]. Water Research, 2020, 173. DOI:10.1016/j.watres.2020.115549 |
[106] | Ren P J, Dou M, Wang C, et al. Abundance and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou[J]. Environmental Science and Pollution Research, 2020, 27(29): 36295-36305. DOI:10.1007/s11356-020-09611-5 |
[107] | Tadsuwan K, Babel S. Microplastic abundance and removal via an ultrafiltration system coupled to a conventional municipal wastewater treatment plant in Thailand[J]. Journal of Environmental Chemical Engineering, 2022, 10(2). DOI:10.1016/j.jece.2022.107142 |
[108] | Talvitie J, Mikola A, Setälä O, et al. How well is microlitter purified from wastewater? -A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant[J]. Water Research, 2017, 109: 164-172. DOI:10.1016/j.watres.2016.11.046 |
[109] | Wan X, Huang H Y, Liao Z C, et al. The distribution and risk of microplastics discharged from sewage treatment plants in terrestrial and aquatic compartment[J]. Journal of Environmental Management, 2022, 314. DOI:10.1016/j.jenvman.2022.115067 |
[110] | Wang Q T, Hernández-Crespo C, Santoni M, et al. Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137785 |
[111] | Yang L B, Li K X, Cui S, et al. Removal of microplastics in municipal sewage from China's largest water reclamation plant[J]. Water Research, 2019, 155: 175-181. DOI:10.1016/j.watres.2019.02.046 |
[112] | Ziajahromi S, Neale P A, Silveira I T, et al. An audit of microplastic abundance throughout three Australian wastewater treatment plants[J]. Chemosphere, 2021, 263. DOI:10.1016/j.chemosphere.2020.128294 |
[113] | Kooi M, Koelmans A A. Simplifying microplastic via continuous probability distributions for size, shape, and density[J]. Environmental Science & Technology Letters, 2019, 6(9): 551-557. |
[114] | Cheng Y L, Zhang R J, Tisinger L, et al. Characterization of microplastics in sediment using stereomicroscopy and laser direct infrared (LDIR) spectroscopy[J]. Gondwana Research, 2022, 108: 22-30. DOI:10.1016/j.gr.2021.10.002 |
[115] | Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21): 9175-9179. |
[116] | Han M, Niu X R, Tang M, et al. Distribution of microplastics in surface water of the lower Yellow River near estuary[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135601 |
[117] | Zhang K, Xiong X, Hu H J, et al. Occurrence and characteristics of microplastic pollution in Xiangxi bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology, 2017, 51(7): 3794-3801. |
[118] | Hidayaturrahman H, Lee T G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process[J]. Marine Pollution Bulletin, 2019, 146: 696-702. DOI:10.1016/j.marpolbul.2019.06.071 |
[119] | Zhu L, Bai H Y, Chen B J, et al. Microplastic pollution in North Yellow Sea, China: observations on occurrence, distribution and identification[J]. Science of the Total Environment, 2018, 636: 20-29. DOI:10.1016/j.scitotenv.2018.04.182 |
[120] | Kang H J, Park H J, Kwon O K, et al. Occurrence of microplastics in municipal sewage treatment plants: a review[J]. Environmental Health and Toxicology, 2018, 33(3). DOI:10.5620/eht.e2018013 |
[121] | Wen X F, Du C Y, Xu P, et al. Microplastic pollution in surface sediments of urban water areas in Changsha, China: abundance, composition, surface textures[J]. Marine Pollution Bulletin, 2018, 136: 414-423. DOI:10.1016/j.marpolbul.2018.09.043 |
[122] | Zhang K, Gong W, Lv J Z, et al. Accumulation of floating microplastics behind the Three Gorges Dam[J]. Environmental Pollution, 2015, 204: 117-123. DOI:10.1016/j.envpol.2015.04.023 |
[123] | Edo C, González-Pleiter M, Leganés F, et al. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge[J]. Environmental Pollution, 2020, 259. DOI:10.1016/j.envpol.2019.113837 |
[124] | Ding N, An D, Yin X F, et al. Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples[J]. Environmental Science and Pollution Research, 2020, 27(13): 15878-15887. DOI:10.1007/s11356-020-08127-2 |
[125] | Ziajahromi S, Neale P A, Rintoul L, et al. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics[J]. Water Research, 2017, 112: 93-99. DOI:10.1016/j.watres.2017.01.042 |
[126] | Talvitie J, Mikola A, Koistinen A, et al. Solutions to microplastic pollution – Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies[J]. Water Research, 2017, 123: 401-407. DOI:10.1016/j.watres.2017.07.005 |
[127] | Cheng Y L, Kim J G, Kim H B, et al. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: a review[J]. Chemical Engineering Journal, 2021, 410. DOI:10.1016/j.cej.2020.128381 |
[128] | Ruan Y F, Zhang K, Wu C X, et al. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants[J]. Science of the Total Environment, 2019, 674: 171-178. DOI:10.1016/j.scitotenv.2019.04.007 |
[129] | Estahbanati M R K, Kiendrebeogo M, Mostafazadeh A K, et al. Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review[J]. Marine Pollution Bulletin, 2021, 168. DOI:10.1016/j.marpolbul.2021.112374 |
[130] |
高宇轩. 城市污水处理过程中微塑料污染及去除研究[D]. 太原: 山西大学, 2021. Gao Y X. Study on microplastics pollution and removal in municipal wastewater treatment[D]. Taiyuan: Shanxi University, 2021. |
[131] | Reddy A S, Nair A T. The fate of microplastics in wastewater treatment plants: an overview of source and remediation technologies[J]. Environmental Technology & Innovation, 2022, 28. DOI:10.1016/j.eti.2022.102815 |
[132] | Yahyanezhad N, Bardi M J, Aminirad H. An evaluation of microplastics fate in the wastewater treatment plants: frequency and removal of microplastics by microfiltration membrane[J]. Water Practice and Technology, 2021, 16(3): 782-792. DOI:10.2166/wpt.2021.036 |
[133] | Luogo B D P, Salim T, Zhang W J, et al. Reuse of water in laundry applications with micro- and ultrafiltration ceramic membrane[J]. Membranes, 2022, 12(2). DOI:10.3390/membranes12020223 |
[134] | Li L C, Xu G R, Yu H R. Dynamic membrane filtration: formation, filtration, cleaning, and applications[J]. Chemical Engineering & Technology, 2018, 41(1): 7-18. DOI:10.3969/j.issn.1005-9954.2018.01.002 |
[135] | Yaseen A, Assad I, Sofi M S, et al. A global review of microplastics in wastewater treatment plants: Understanding their occurrence, fate and impact[J]. Environmental Research, 2022, 212. DOI:10.1016/j.envres.2022.113258 |
[136] | Mintenig S M, Löder M G J, Primpke S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635. DOI:10.1016/j.scitotenv.2018.08.178 |
[137] | Tang W H, Li H, Fei L Y, et al. The removal of microplastics from water by coagulation: a comprehensive review[J]. Science of the Total Environment, 2022, 851. DOI:10.1016/j.scitotenv.2022.158224 |
[138] | Yang R, Li H J, Huang M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. DOI:10.1016/j.watres.2016.02.068 |
[139] | Li Y, Li W Y, Jarvis P, et al. Occurrence, removal and potential threats associated with microplastics in drinking water sources[J]. Journal of Environmental Chemical Engineering, 2020, 8(6). DOI:10.1016/j.jece.2020.104527 |
[140] | Zhou G Y, Wang Q G, Li J, et al. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism[J]. Science of the Total Environment, 2021, 752. DOI:10.1016/j.scitotenv.2020.141837 |
[141] | Nakazawa Y, Abe T, Matsui Y, et al. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment[J]. Water Research, 2021, 203. DOI:10.1016/j.watres.2021.117550 |
[142] | Zhang Y J, Zhou G Y, Yue J P, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids[J]. Science of the Total Environment, 2021, 800. DOI:10.1016/j.scitotenv.2021.149589 |
[143] | Zhang Y H, Wang X J, Li Y, et al. Improving nanoplastic removal by coagulation: Impact mechanism of particle size and water chemical conditions[J]. Journal of Hazardous Materials, 2022, 425. DOI:10.1016/j.jhazmat.2021.127962 |
[144] | Li S C, Liu H, Gao R, et al. Aggregation kinetics of microplastics in aquatic environment: complex roles of electrolytes, pH, and natural organic matter[J]. Environmental Pollution, 2018, 237: 126-132. DOI:10.1016/j.envpol.2018.02.042 |
[145] | Novotna K, Cermakova L, Pivokonska L, et al. Microplastics in drinking water treatment - Current knowledge and research needs[J]. Science of the Total Environment, 2019, 667: 730-740. DOI:10.1016/j.scitotenv.2019.02.431 |
[146] | Na S H, Kim M J, Kim J T, et al. Microplastic removal in conventional drinking water treatment processes: performance, mechanism, and potential risk[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117417 |
[147] | Ma B W, Xue W J, Ding Y Y, et al. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment[J]. Journal of Environmental Sciences, 2019, 78: 267-275. DOI:10.1016/j.jes.2018.10.006 |
[148] | Ma B W, Xue W J, Hu C Z, et al. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment[J]. Chemical Engineering Journal, 2019, 359: 159-167. DOI:10.1016/j.cej.2018.11.155 |
[149] | Bodzek M, Pohl A. Removal of microplastics in unit processes used in water and wastewater treatment: a review[J]. Archives of Environmental Protection, 2022, 48(4): 102-128. |
[150] | Liu R J, Tan Z Y, Wu X N, et al. Modifications of microplastics in urban environmental management systems: a review[J]. Water Research, 2022, 222. DOI:10.1016/j.watres.2022.118843 |
[151] | Li Y, Li J, Ding J, et al. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes[J]. Chemical Engineering Journal, 2022, 427. DOI:10.1016/j.cej.2021.131690 |
[152] | Arenas L R, Gentile S R, Zimmermann S, et al. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process[J]. Science of the Total Environment, 2021, 791. DOI:10.1016/j.scitotenv.2021.148175 |
[153] | Yang L J, Ye X Y, Cao X Y, et al. Deploying holey rGO-based membranes for MPs removal[J]. Journal of Water Process Engineering, 2022, 48. DOI:10.1016/j.jwpe.2022.102875 |
[154] | Fryczkowska B, Przywara L. Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application[J]. Desalination and Water Treatment, 2021, 214: 252-262. DOI:10.5004/dwt.2021.26665 |
[155] | Nkosi S D, Malinga S P, Mabuba N. Microplastics and heavy metals removal from fresh water and wastewater systems using a membrane[J]. Separations, 2022, 9(7). DOI:10.3390/separations9070166 |
[156] | Bai W, Wang F, Yan L J, et al. Porous organic polymers (POPs) membrane via thiol-yne click chemistry for efficient particulate matter capture and microplastics separation[J]. Microporous and Mesoporous Materials, 2022, 329. DOI:10.1016/j.micromeso.2021.111509 |
[157] | Gnanasekaran G, Arthanareeswaran G, Mok Y S. A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater[J]. Separation and Purification Technology, 2021, 277. DOI:10.1016/j.seppur.2021.119655 |
[158] | Yang L J, Cao X Y, Cui J, et al. Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water[J]. Journal of Colloid and Interface Science, 2022, 617: 673-682. DOI:10.1016/j.jcis.2022.03.055 |
[159] | Enfrin M, Wang J S, Merenda A, et al. Mitigation of membrane fouling by nano/microplastics via surface chemistry control[J]. Journal of Membrane Science, 2021, 633. DOI:10.1016/j.memsci.2021.119379 |
[160] | Sharma S, Basu S, Shetti N P, et al. Microplastics in the environment: occurrence, perils, and eradication[J]. Chemical Engineering Journal, 2021, 408. DOI:10.1016/j.cej.2020.127317 |
[161] | Liu P, Qian L, Wang H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. |