环境科学  2024, Vol. 45 Issue (5): 2926-2938   PDF    
城市土壤和地表灰尘重金属污染研究进展与展望
王晓雨, 刘恩峰, 杨祥梦, 王碧莲, 林锦阔, 颜梦霞, 毕世杰     
山东师范大学地理与环境学院, 济南 250358
摘要: 随着城市化和工业化的不断推进, 城市土壤和地表灰尘重金属污染日趋严重, 对城市环境和人类健康构成威胁, 已成为国内外城市环境研究的热点问题. 从重金属污染水平及其时空特征、污染源解析方法、生态和健康风险这3个主要方面, 对国内外城市土壤和地表灰尘重金属研究成果进行了梳理和归纳. 分析了当前研究存在的不足, 并对未来研究进行了展望, 即研究土壤和地表灰尘重金属在不同条件下的相互影响机制, 通过丰富验证方法加强重金属来源解析模型结果的可靠性研究, 加强来源驱动下重金属化学形态差异和地表灰尘短期累积污染过程的研究, 完善暴露参数并深入探究重金属的化学形态对其生态和健康风险的影响, 以提高风险预测水平.
关键词: 城市土壤和地表灰尘      重金属      时空变异      来源分析      风险评价     
Critical Review on Heavy Metal Contamination in Urban Soil and Surface Dust
WANG Xiao-yu , LIU En-feng , YANG Xiang-meng , WANG Bi-lian , LIN Jin-kuo , YAN Meng-xia , BI Shi-jie     
College of Geography and Environment, Shandong Normal University, Jinan 250358, China
Abstract: With the rapid urbanization and industrialization, heavy metal contamination in urban soil and surface dust has received particular attention due to its negative effects on the eco-environment and human health. Contamination and spatio-temporal characteristics, contamination sources, and source apportionment methods, as well as the ecological and health risks of heavy metals in urban soil and surface dust were reviewed. The knowledge gaps in current research and prospects of future works were proposed. Four key points were presented, including improving the research on the interaction mechanism of heavy metals in urban soil and surface dust under complex conditions, enriching verification methods to improve the source apportionment reliability of anthropogenic metals by receptor models, strengthening the research on chemical forms of heavy metals from different sources and their short-term accumulation processes in surface dust, and raising the credibility of ecological and health risk forecast of heavy metals by integrating the improved exposure parameters and chemical forms.
Key words: urban soil and surface dust      heavy metals      spatial and temporal variations      sources apportionment      risk assessment     

随着城市化和工业化的不断推进, 城市成为资源消耗和污染物排放的集中地[1, 2]. 城市土壤和地表灰尘(亦称为积尘、街尘)作为各类污染物的“源”和“汇”[3], 是城市环境质量的良好“指示剂”[4]. 受工业生产、交通运输、建筑施工和居民生活等不同类型人类活动的强烈影响, 城市土壤和地表灰尘所吸持的污染物呈现出高变异性特征[5, 6]. 城市土壤和地表灰尘中的重金属可通过手-口等途径进入人体, 并因其毒性、持久性、隐匿性和不可逆性, 对人类健康具有较大威胁[7], 重金属污染、来源和生态健康风险是近些年来国内外学者和公众关注的热点[8, 9].

城市土壤环境容量较小, 土壤中污染物的代谢和降解效率低[10]. 蓄积在土壤中的污染物可成为城市环境重要的二次污染源, 进一步增加生态和健康风险. 一项针对中国城市表层土壤重金属(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)的研究表明, 超过60%的城市土壤重金属已达到重度污染水平, 其中Cd和Hg是需要优先控制的污染物[11], 城市土壤重金属污染已成为中国重要的环境问题. 城市地表灰尘粒径较小, 重金属等污染物含量普遍高于土壤[2]. Wang等[12]通过对中国58个城市的分析, 发现Cr、Cu和Pb在东南沿海城市, Cd和Zn在京津冀等北方城市地表灰尘中富集程度高. 城市地表灰尘中重金属往往具有更高的生物可给性[13], 这增加了地表灰尘对于居民的暴露风险[14].

城市土壤和地表灰尘可在外力作用下, 通过沉降和悬浮等过程进行物质交换[14], 其赋存的重金属等污染物可互为源汇. 本文主要从城市土壤和地表灰尘中重金属污染水平及其时空特征、污染源解析方法、生态和健康风险这3个方面, 对国内外城市土壤和地表灰尘重金属研究成果进行了梳理和归纳;分析了当前研究存在的不足, 并对未来研究进行了展望.

1 基于文献计量学的城市土壤和地表灰尘重金属研究热点分析

文献计量法可归纳某一领域的研究现状与热点, 实现学科发展趋势的追踪[15]. 现以Web of Science核心数据库和中国知网数据库为文献数据源, 在Web of Science检索中输入TS =(“heavy metal” or “trace metal”)and TS =(“urban soil” or “urban dust” or“road dust”or“road sediment”), 在中国知网数据库高级检索中输入主题词“重金属”和主题词(“城市土壤”或含“城市灰尘”或含“城市街尘”或含“道路沉积物”), 共检索到发表于2000年至2023年3月的中英文文献共8 033篇;应用Cite Space(5.0.R1)文献计量软件[16], 梳理发现中英文文献中关于城市土壤和灰尘重金属研究的主要侧重点较一致, 主要集中于污染状况评价、空间分布、生态和健康风险及来源解析等方面(图 1).

图 1 城市土壤和灰尘重金属研究关键词共现结果 Fig. 1 Key words co-occurrence network of heavy metals in urban soil and dust

2 城市土壤和地表灰尘重金属污染及其时空特征 2.1 土壤和地表灰尘重金属污染评价方法

目前, 在土壤和地表灰尘重金属污染评价时采用的方法相似[2, 17], 单个金属元素污染评价常用的方法为:地累积指数法(Igeo[18]、富集因子法(EF)[19]和污染因子法(CF)[20]. 多种金属元素污染综合评价方法包括:污染负荷指数法(PLI)[21]和内梅罗综合污染指数法(NIPI)[11]. 不同的评价方法有着不同的侧重. 例如, 土壤和地表灰尘中重金属含量受粒径的影响, 细颗粒因较大的表面积, 更易吸附重金属污染物, 即重金属含量与粒度负相关, EF可消除粒度组成等因素对重金属含量的影响, 实现重金属污染时空变化评价结果的可比性[22];而NIPI可兼顾单个元素污染指数的平均值和最大值, 突出了高含量污染物的影响[23]. 然而, 目前土壤或地表灰尘重金属污染评价方法不统一, 导致评价结果的可比性不强. Birch[24]通过比较多种评价方法, 发现EF评价结果在单个重金属污染评价方面更具参考性. 但目前多种金属污染综合评价方法皆以CF为基础, 应建立并完善基于EF的多元素污染综合评价方法及污染等级分类标准.

2.2 城市土壤和地表灰尘重金属污染时空特征 2.2.1 城市土壤重金属污染时空特征

城市土壤重金属污染空间特征与人类活动强度和土地利用类型密切相关[25~27]. 城市化早期工业主要布局在城郊地区, 受Khatoon-Abad冶炼厂的影响, 伊朗Rafsanjan市土壤As、Cd和Cu呈现重度到极重度污染, 其污染水平随冶炼厂距离的增加而降低[28]. 受包钢工业释放及西北风的影响, 包头市西部土壤Cr、Pb、Mn和Zn呈现极重度污染, 污染程度呈现自西向东递减趋势[10]图 2). 北京市土壤中Cu和Pb污染与交通密集程度高度相关, 呈现自市中心向城市边缘递减趋势[3]. 伊朗Malayer市, 交通用地土壤中Cd、Cu、Pb和Zn的污染均较高, 住宅用地重金属污染较低[27]. 哥伦比亚中东部Villavicencio市商业区土壤的Cr、Cu和Pb污染分别为住宅区的50、21和8倍[29].

(a)包头市土壤[17], (b)上海市地表灰尘[32], (c)希腊Thessaloniki市地表灰尘[41] 图 2 包头、上海和希腊Thessaloniki市土壤和地表灰尘重金属含量空间分布 Fig. 2 Spatial distributions of heavy metal concentrations in soil and surface dust of Baotou, Shanghai, and Thessaloniki

城市土壤重金属具有累积性和稳定性[11, 30], 其时间变化对污染源类型与释放强度的动态变化响应敏感. 受旧式含铅建筑涂料的影响, 美国Baltimore-Washington都市区1940年前所建的旧式住宅附近土壤中Cd、Pb和Zn含量为1940年后的新式住宅的2~10倍[31]. 在工业释放的影响下, 西班牙工业城市Avilés土壤中Ba、Cd、Pb和Zn平均含量在1996~2011年间增加了17%~275%[32]. 在中国汽车保有量逐年增长的影响下, 2010~2019年中国城市土壤中Cu、Pb和Zn的平均含量较2000~2009年升高[11]. 随着国家对产业机构的调整和对污染控制投资水平的提高, 中国城市土壤中重金属的总体污染状况呈现改善趋势[11]. 因土壤重金属的累积性, 历史遗存污染源也可成为目前城市土壤重金属的重要影响因素. 例如, 即使含铅汽油已在上世纪末禁用, 但含铅汽油等历史遗存源对日本东京市和美国New Orleans市土壤Pb污染的贡献仍占绝对优势[33, 34].

2.2.2 城市地表灰尘重金属污染时空特征

城市地表灰尘重金属污染在空间上呈现出“点、线、面”结合的特征[35]. 其中, “面型”指某特定污染源在主导风向的影响下, 形成污染程度在区域内递减的特征. 一般来说, “面型”污染与燃煤释放、金属冶炼等工业释放过程有关. 例如, 在北部宝山工业释放的影响下, 上海市灰尘中Cd和Cr污染水平呈现出自北向南递减的趋势[25]图 2). “线型”和“点型”指重金属污染高值呈现沿交通主干道分布, 或在交通信号灯控制的路口污染值较高的特点. 例如, 南京市地表灰尘中的Pb和Zn污染高值集中出现在交通强度高的旅游区[36];希腊Thessaloniki市地表灰尘中的Cd、Cu和Pb的极重度污染出现在交通流量较高的西部地区以及交通信号灯附近的怠速区[37]图 2). 当前关于地表灰尘重金属污染的研究大多集中于道路灰尘[12, 38]. 除道路外, 公园[39]、校园[40, 41]、车站[42~44]和社区[45]等城市中其他不同类型不透水地面灰尘重金属污染及空间特征的研究尚不多见.

城市地表灰尘重金属污染的时间变化特征可分为年际、季节和短期累积特征[30]. 其中, 重金属污染的年际和季节变化与污染物的释放强度密切相关[46]. Hilker等[47]通过对加拿大Toronto市近地面超细颗粒物14 a的连续监测, 发现重金属污染水平呈现显著降低趋势, 这与燃煤发电的淘汰以及汽车排放控制技术的不断改进有关;然而冬季因受到燃煤的影响, 重金属污染水平仍高于夏季. 由于工业释放, 武汉市青山区灰尘中Cd、Cr、Cu、Mn、Pb和Zn在冬季样品中呈中度污染的比例比夏季增加近一倍[46];由于交通释放的减弱, 北京市冬季地表灰尘中Cu、Pb和Zn污染程度低于夏季[48].

城市地表灰尘不具有土壤的长期累积性, 呈现出晴天累积的短期动态特征[49]. 前期累积天数可影响灰尘粒径[50], Li等[50]对北京奥林匹克公园地表灰尘粒径特征的研究发现, 随着前期累积天数从2 d增加到15 d, < 38.5、38.5~76和76~150 μm颗粒的质量占比分别增加了62.70%、99.89%和29.58%, 即随着累积日数的增加, 细颗粒的占比升高. 细颗粒更易通过吸附等方式富集重金属[51, 52], 且颗粒粒径组成与来源密切相关. 但是, 目前针对地表灰尘重金属的短期累积特征研究多是基于其累积负荷, 分析重金属累积与粒度、土地利用、前期累积天数和降雨特征等环境因子的关系[53~55], 而关于污染源对地表灰尘短期累积过程中重金属含量和化学形态等影响的研究较少, 这在一定程度上影响了单次采样的代表性和污染防治的针对性. 因此, 地表灰尘的短期累积对重金属污染水平及来源影响的研究还有待进一步加强.

3 城市土壤和地表灰尘重金属污染来源解析 3.1 重金属污染源

城市土壤和地表灰尘中重金属受多种污染源的影响, 其中工业排放和交通释放的贡献最为突出[56~58]. 在以重工业为主导的城市, 工业排放对土壤和地表灰尘中重金属污染的影响尤为典型[59~61], 主要表现为金属冶炼厂、电锻厂和轧钢厂等金属加工厂的废气和废渣排放, 煤炭和石油燃烧排放的烟气等. 例如, 在冶金、金属酸洗和电镀过程中, Cu作为化石燃料及燃烧过程中的润滑油的主要成分, 其释放可导致土壤和灰尘Cu污染[62];冶金、精炼过程中产生的工业废气可造成Cd、Cu和Zn的污染[14];Sb作为金属合金和焊料的重要成分, 在电子和机械行业的广泛应用会导致土壤和灰尘Sb的富集[20];电子、造纸、制药工业和燃料燃烧的排放也会造成As、Cr、Fe和Hg在城市环境中的富集[18, 63]. 针对工业排放的特点, 对污染源采取管理和升级措施以降低排放量, 是目前防控城市土壤和地表灰尘重金属污染的有效措施[64].

交通释放已成为城市土壤和地表灰尘重金属污染的另一重要来源[5, 57]. 不同国家研究表明, 交通对城市土壤重金属污染贡献率达40%(瑞士)和90%(英国)[65]. 根据对中国31个省级行政区58个城市的统计, 交通排放对地表灰尘中重金属污染的贡献率为58%, 且逐年上升[12]. 城市交通释放可分为尾气排放和非尾气释放(非燃烧释放)两大类. 20世纪, 含铅汽油的使用导致了部分城市土壤和地表灰尘中Pb的严重污染[66]. 随着含Pb汽油的禁用[26, 67, 68], 尾气释放对城市重金属污染的贡献明显减弱, 非燃烧释放已成为Pb等重金属污染的重要来源. 但是, 伦敦市大气颗粒物和表土对比研究表明, 仍有32%~43%的Pb来自含铅汽油等历史遗存源[69]. 与交通有关的非燃烧释放的重金属污染主要集中在交通密集区[6], 并与交通流、制动行为、与路口的距离密切相关[70, 71], 主要来源为刹车释放、汽车部件的腐蚀和磨损、润滑油的泄漏、路面标志物损耗和路面磨损等[72~74]. 例如, Cd常用作刹车片的电镀材料[75];Cu和Ba常被用作制动材料[21, 76];Pb被广泛用于汽车制动材料的添加剂、斑马线及路标的涂料[73];Zn可源于轮胎的磨损, 也可在汽车部件中被用作镀锌剂[75];Cd、Pb和Zn的污染也与润滑油的泄漏有关[37];汽车制动磨损、汽车及部分镀铬零部件的腐蚀可能是地表灰尘中Cr的污染源[14, 75]. 综上所述, 工业和交通释放是城市土壤和地表灰尘中重金属的两大主要污染源[77]. 科学地识别不同污染源的贡献, 对城市环境的重金属污染治理和生态环境保护至关重要.

城市环境中, 土壤和地表灰尘中重金属受多个污染源的共同影响, 其源-汇关系也是当前研究的难点[17], 相关研究较薄弱. 土壤是地表灰尘重金属的来源之一[56]. Han等[78]通过分析安阳市工业区土壤和灰尘重金属的污染特征, 认为灰尘中Co、Cr和Mn主要来自土壤的再悬浮和沉降. 由于重金属含量较低的土壤颗粒的稀释效应, 即使受到较强的交通源的影响, 日本东京市道路灰尘中Cd、Cu、Pb和Zn含量也低于社区灰尘[79]. 同时, 地表灰尘可在外力条件下(如风力和车流等)再次迁移, 沉降后进入城市大气和土壤, 加重土壤污染[1, 12, 30]. 在重力作用下, 非燃烧释放的粉尘在道路两侧土壤沉积, 导致道路两侧土壤中Cu、Pb、Sb和Zn污染呈现随与主干道距离增加而减小的指数变化趋势[80, 81]. 王幼奇等[82]研究表明, 银川市土壤重金属受粉尘沉降的影响不可忽视, 且道路两侧的土壤重金属因受到交通释放的直接和间接影响, 污染水平较高. 因此, 在单独分析土壤和地表灰尘重金属污染源基础上, 二者在不同条件下的相互影响机制有待进一步研究.

3.2 重金属污染来源定量识别

传统的重金属来源分析往往将多元统计分析结果与重金属污染空间特征结合[3], 常用的多元统计分析方法, 例如相关性分析、主成分分析和聚类分析, 主要通过重金属间的密切程度和时空变化的相似性反映其来源[3]. 相关分析法、主成分分析法和聚类分析法主要通过分析要素之间相互关系的密切程度, 反映要素潜在影响因素. Zhao等[83]运用主成分分析法, 发现天津市塘沽区土壤中As、Cd、Cu、Hg、Pb和Zn受人为来源影响明显, 而Cr和Ni主要来源于土壤母质. Lu等[60]调查了宝鸡市地表灰尘重金属污染现状, 结合相关性分析、主成分分析和聚类分析结果, 发现宝鸡市地表灰尘中As、Co、Pb和V为自然和交通的混合来源, Cu、Hg、Mn和Zn为工业和交通混合源, 而Cr和Ni来源于当地土壤.

由于重金属污染来源的复杂性, 仅根据空间特征和多元统计分析法无法对重金属的来源进行定量解析. 近年来, 受体模型在大气、水体、沉积物和土壤污染物定量源解析方面已得到广泛运用[17, 18, 84]. 绝对因子得分-多元线性回归模型(APCS-MLR)、正定矩阵因子分解法(PMF)和非负约束的因子分析模型(FA-NNC)为常用的源解析受体模型[38, 85]. Yang等[86]运用PMF模型, 发现农业活动、工业释放和交通排放分别贡献了浙江省温岭市土壤重金属污染的46.6%、22.2%和31.2%(图 3). Ma等[87]运用APCS-MLR模型, 发现燃煤源、交通与工业源、自然源、建筑源和未知源对厦门地表灰尘中重金属的贡献率分别为34.1%、20.7%、18.7%、7.6%和18.9%(图 3). 尽管受体模型在土壤和地表灰尘来源分析研究中的应用已较为广泛, 但若过于依靠模型结果, 与重金属污染的时空分布特征结合不足, 或导致源解析结果缺乏说服力[88]. 当前研究对不同受体模型的原理对比不够充分, 对不同受体模型的适用性和结果的不确定性评估较为薄弱;若同时运用多种统计方法, 不同源解析模型结果可能存在较大差异[17], 因此, 研究中模型的选择一定程度上具有一定的主观性, 这在一定程度上降低了来源解析结果的可靠性[85, 89]. 因此, 基于受体模型的城市土壤和地表灰尘重金属来源解析仍需其他数据与研究方法加以验证.

(a)浙江省温岭市土壤[86], (b)福建省厦门市地表灰尘[87] 图 3 土壤和地表灰尘中重金属来源解析 Fig. 3 Sources appointment of metals in soil and surface dust

随着同位素测定技术的发展, 具有指纹特征的同位素被广泛用于不同环境介质中污染源的示踪研究[65, 90, 91]. Chen等[91]通过分析土壤样品和环境介质中的Pb-Zn-Cu同位素, 证实了污水灌溉和大气沉降是黄淮流域土壤重金属的主要人为来源, 验证了PMF和UNMIX源解析结果的准确性. Zhao等[90]尝试通过分析地表灰尘Pb和Sr的同位素组成对多元统计结果加以印证, 表明机动车和工业排放对Pb污染的贡献率分别为61%和26%, 人为源和土壤源对Sr的贡献率分别为60%和40%, 该结果与多元统计分析的结果较为吻合. Jeong等[65]发现δ65CuAE647δ66ZnIRMM3702为机动车非燃烧释放源的良好示踪剂. 但受到试验成本较高和较严格的试验条件等限制, 针对同位素端元信息的基础研究仍较薄弱, 除了Pb同位素之外, 其他金属元素同位素在城市土壤和灰尘中重金属来源解析方面的应用仍较为局限.

扫描电子显微镜联合能谱分析(SEM/EDX)可以观测到矿物颗粒的大小、形态、矿物组成和微观形貌特征[92], 并表征其化学成分, 进而判断颗粒的来源和成因. Gunawardana等[75]应用SEM/EDX技术, 通过测定澳大利亚Gold Coast地表灰尘物理化学性质和矿物形态特征, 结合主成分分析结果, 发现地表灰尘中Fe和Mn主要自来周围土壤, 而Cd、Cr、Cu、Ni、Pb和Zn主要来自交通源, 包括轮胎磨损、沥青粉煤灰和燃烧产物, 进而证实了车辆交通对城市地表灰尘重金属的重要贡献. Dousova等[6]发现Sb污染在交通繁忙路口处明显升高, 结合SEM分析, 确认制动磨耗为Sb污染的主要贡献因子. 然而, SEM/EDX作为重金属污染源识别的定性手段, 仅能初步推断污染源, 需与受体模型、同位素组分等方法联用, 才能提高污染源定量识别的准确性.

除了上述分析方法之外, 宏观层面上的城市经济指标可在一定程度上反映人为活动释放对土壤和地表灰尘中重金属污染的贡献[93]. 例如, Yang等[11]通过对比中国144个城市土壤重金属污染和来源的关系, 发现城市表土中重金属污染主要为工业活动、燃煤释放和交通活动等来源, 且污染主要集中在经济发达和/或受工业影响更严重的城市. Chang等[94]通过研究中国19个城市地表灰尘中Sb负荷与交通要素的关系, 发现车辆流量和交通拥堵指数的交互作用对地表灰尘中Sb负荷的影响最显著. Wang等[12]运用地理探测器, 分析了中国58个城市地表灰尘重金属污染的驱动力和贡献率, 发现交通因素贡献最大(57.8%), 其次为工业因素(55.4%)和人口因素(37.2%), 且交通因素与人口因素的交互作用最强(82.5%). 然而, 当前关于城市经济指标与重金属污染关系的分析, 大多以全国或某一区域为研究范围, 且以单个城市为最小研究单元. 在城市内部, 不同区域之间的经济或社会指标也存在明显差异[88], 但尚未发现将城市内部经济社会发展层面的数据纳入土壤和地表灰尘重金属污染来源的研究.

除重金属含量外, 土壤和地表灰尘中重金属污染与其化学形态特征密切相关[28, 54], 重金属的化学形态关系到其可迁移性和生态健康风险, 并可反映潜在来源[95]. 根据Tessier浸提法, 重金属形态分为5类:酸可提取态、碳酸盐结合态、Fe-Mn氧化物结合态、有机物结合态和残渣态[96]. 根据欧共体物质标准局提出的BCR三步连续提取法, 重金属形态分为4类:酸可提取态、可还原态、可氧化态和残渣态[55, 97]. 其中, 酸可提取态和可还原态组分和重金属污染程度高度相关[55]. 在西安市, 道路等级越高、交通活动越频繁, 地表灰尘重金属的可交换态和碳酸盐结合态比例也越高;通过对比不同路面特征和重金属形态的关系, 发现沥青路面灰尘中酸可提取态和碳酸盐结合态重金属相对富集[98]. Kumar等[79]将Pb同位素比值分析和形态提取结合, 发现受油漆、汽油和气溶胶等污染源的复合影响, 不同化学形态的Pb同位素存在差异, 然而, 重金属化学形态对来源的指示作用还有待明确. Liu等[99]对比了不同污染源主导的城市中地表灰尘重金属形态差异, 未发现明显规律. 目前, 从重金属同位素信息与化学形态耦合的角度分析重金属化学形态与来源的关系, 受到两方面限制:一是端元特征信息欠缺, 现有针对污染端元的同位素分析仅基于重金属全量[100], 而重金属的形态组成及不同形态的同位素信息过少, 这增加了对比讨论的难度;二是缺乏不同元素同位素信息的综合分析, 除Pb之外, Cd、Cu和Zn等为典型交通非燃烧释放的指示元素[65], 但对其同位素信息与化学形态的综合分析仍欠缺. 除与同位素技术结合外, 重金属化学形态是否与城市经济社会发展要素存在耦合关系, 仍需进一步研究.

4 城市土壤和地表灰尘重金属生态环境和健康风险 4.1 重金属生态环境风险研究

基于污染物质含量的风险评价已成为环境管理的重要支撑. 澳大利亚和荷兰等国家针对As、Cr、Cu、Ni、Pb和Zn等污染物建立了环境风险评价准则[101, 102], 当污染物的含量超过其对应的阈值时, 就表明陆地生态系统可能由于污染物的存在而受到有害影响. 根据中国生态环境部2018年发布的《土壤环境质量建设用地土壤污染风险管控标准》, 以土壤污染筛选值和土壤污染风险管制值为风险阈值, 重金属含量可分为3级. 当土壤中重金属含量等于或低于污染筛选值时, 其风险可忽略;超过该值的, 可能存在风险, 应展开进一步调查和风险评估[103];当土壤中重金属含量超过风险管制值时, 通常存在不可接受的风险, 应采取风险管控或修复措施[103]. As、Cd、Cr、Cu、Hg、Ni和Pb被列为建设用地土壤污染风险基本项目, Be、Co、Sb和V被列为建设用地土壤污染风险其他项目[103]. 但中国疆域辽阔, 不同的区域自然环境结构和功能导致区域生态和健康效应差异明显[102]. 因此, 应当在典型区域系统开展土壤环境基准的本土化案例研究, 为中国生态环境和人体健康提供良好支撑[102]. 此外, 单纯以重金属含量为标准的风险评价未考虑重金属的毒性、形态和迁移转化特征[104], 在进行重金属的生态环境危害评价时存在明显的局限性.

潜在生态风险指数法(RI)为常用的水体沉积物重金属生态环境风险评价方法. RI考虑了重金属区域背景值差异, 结合重金属元素的毒性进行生态风险评价[105]. RI方法也常被用于评估土壤和地表灰尘重金属的生态环境风险[106~108]. 基于RI评价结果, 西安市公园表土重金属呈现出高生态风险, 并具有较高的空间异质性[109]. 尼日利亚Benin市土壤重金属呈现低到中生态风险, 其中Cd为最大生态风险元素[110]. 宝鸡市地表灰尘重金属达到严重污染水平, RI结果显示具有严重潜在生态危害[105]. 然而, RI评价方法放大了参评金属数目的影响, 未考虑最大风险元素[22]. Men等[77]耦合RI和内梅罗综合污染指数法(NIPI), 提出了内梅罗综合风险指数法(NIRI), 丰富了重金属生态风险评价的内涵. Wang等[12]运用NIRI方法, 综合评价了中国58个城市地表灰尘重金属的生态风险, 发现东南沿海地区(如广州、泉州、苏州、杭州)和京津冀地区(如天津、保定、石家庄、廊坊)地表灰尘重金属呈极高生态风险, 而西部地区(如克拉玛依、西宁)地表灰尘重金属生态风险较低. 但是, 目前应用RI和NIRI进行城市土壤和地表灰尘重金属生态风险评价时, 未考虑重金属对城市生态环境造成危害的不同途径或形式. 土壤中水溶态和酸可提取态的重金属元素通过淋滤可迁移进入地表水和地下水[111], 影响水体质量;而植物根际在吸收土壤水分和养分的同时, 可吸收土壤重金属元素并进行转移累积[111], 威胁生态安全. 与土壤不同, 灰尘主要通过降雨冲刷, 进入城市水体, 其荷载的重金属在径流运输过程中对沉积区的环境质量产生较大影响[112]. 因此, 在评价城市灰尘重金属的生态风险时, 除重金属总量与毒性外, 基于重金属形态的迁移率因子(MF)也是影响其生态环境风险的重要因素. Liu等[99]发现南京市地表灰尘中重金属的可迁移率依次为:Cd(84%) > Cu(76%) > Zn(73%) > Pb(73%) > Ni(30%) > Cr(14%), 由此推断Cd、Cu、Pb和Zn在进入城市水体后可能会产生一定的生态风险, 以Cd为最高. 将重金属毒性与基于化学形态的迁移率结合, 对评价地表灰尘重金属尤其是重金属进入水体后的生态环境风险至关重要.

4.2 重金属健康风险评价

1983年, 美国国家科学院编制的《联邦政府的风险评价:管理程序》将健康风险评价的步骤确定为“四步法”原则:危害识别、剂量-反应评估、暴露评价和风险表征. 1986年, 美国环保署(USEPA)颁布了关于土壤健康风险评价的一系列准则、指南和技术性文件, 对健康风险评价进行了更为详细的规定和说明. 根据USEPA提出的人体暴露风险评价导则[113], 重金属可通过手-口摄入、呼吸吸入和皮肤直接接触这3种途径进入人体, 且摄入量排序为手-口摄入 > 皮肤接触 > 呼吸吸入[36, 67], 由此给人体健康造成非致癌风险(HI)或致癌风险(CF)[114, 115]. 根据USEPA评价导则, 中国工业企业土壤重金属的潜在非致癌风险明显偏高, 且Pb为非致癌风险的主要贡献因子, As的致癌风险也需高度关注[9];巴基斯坦Gujranwala市土壤中的Cd和Cr可对儿童造成致癌风险[114];在马来西亚首都Kuala Lumpur市和塞浦路斯首都Nicosia市, 地表灰尘中高含量的Cr可对儿童形成非致癌风险[68, 116]. 众多针对重金属健康风险的评价表明, 土壤和灰尘中重金属元素对儿童的非致癌风险大于成人[114, 117]. 校园和车站等高暴露场所土壤或灰尘中污染物对儿童和青少年等高敏感人群的健康风险也逐渐受到关注. 例如, 兰州市BRT站台灰尘中As、Cr和Pb对儿童具有非致癌风险, 而两侧绿化带土壤中的As和Cr对儿童及成人均具有致癌风险[44]. 虽然USEPA评价大量用于地表灰尘中重金属等污染物健康风险评价, 但是土壤和灰尘因其不同的粒径及动力学行为, 对人群具有不同的暴露程度;基于土壤构建的USEPA模型参数, 对地表灰尘的适用性仍待研究. 且USEPA模型中的儿童和成人暴露参数皆建立在美国人群研究基础上[113], 为提高健康风险预测的准确性, 应尽快完善中国人群暴露参数手册. USEPA方法未考虑重金属人体内的吸收转化行为, 以致以重金属总量为基准的传统评估结果往往较为保守[118].

重金属在人体内的吸收转化行为也是健康风险评估中的研究重点[119], 一般可用生物有效性(bioavailability)和生物可给性(bioaccessibility)两种指标表征环境中重金属的风险. 生物有效性通常是指污染物或营养物被人体吸收进入血液, 在体内重新分布的含量, 一般通过临床试验或动物活体试验进行监测[120]. 由于动物活体试验方法存在试验周期长、费用高、动物个体间差异和伦理方面等问题, 在作为评估工具运用上受到了限制[119, 121]. 而生物可给性主要以人工模拟胃肠道物理化学环境为主的体外试验进行健康评价, 具有试验周期较短、操作方法简单、样品快速测定和能够高度拟合动物活体试验结果等优点, 近年来深受国内外研究学者的广泛关注[119, 122].

在计算人体健康风险时, 将体外模拟试验得出的生物可给性结果考虑在内, 在剂量-反应评估环节对USEPA重金属健康风险评价方法进行优化, 可增加评价方法的科学性和评价结果的指导性[123]. 目前, 由欧洲生物可达性研究组(BAGRE)开发的统一测定方法(UBM)、基于生理学的浸提试验法(PBET)、简单生物可给性提取试验(SBET)、溶解度生物利用度研究联盟方法(SBRC)和体外胃肠道法(IVG)等重金属生物可给性提取方法已被广泛利用[64, 124~127]. 上述方法利用特定溶剂模拟胃肠液, 分别处理得到胃期和胃肠期试验样本, 并在不同的酸碱环境中测定重金属的浓度, 得到生物可给性[128, 129]. Ma等[130]对比了兰州市灰尘和土壤重金属的生物可给性, 发现兰州市灰尘和土壤重金属胃期生物可给性 > 肠期, 且胃期灰尘重金属生物可给性 > 表土. 在研究的10种重金属当中, 人为源主导的Cd、Cu、Pb和Zn生物可给性较高, 这与Charlesworth等[131]的结论一致. Li等[122]发现UBM、SBRC、IVG和PBET体外提取结果具有较好的一致性, 从胃期至肠期, Cd的生物可给性降低, 且与Cd的酸可提取态和碳酸盐结合态密切相关[107]. He等[132]发现重金属Fe-Mn氧化物结合态和碳酸盐结合态是影响重金属生物可给性的关键因素. 因此, 研究土壤和灰尘中重金属生物可给性、以及化学形态特征对重金属生物可给性的影响, 可提高经口暴露的重金属人体健康风险预测能力[99, 122].

Pb对6岁以下儿童的智力发育危害较大, 其健康风险研究较为系统[132]. 因此, 依据环境Pb监测数据预测儿童血铅水平, 对保护儿童免遭Pb危害尤为重要. 1994年, USEPA开发了综合暴露吸收生物动力学(IEUBK)模型, 该模型运用统计学方法将环境Pb暴露和血铅联系起来, 通过暴露、摄取、生物动力学和概率分布4个模块的联用[133], 预测儿童血铅水平及铅暴露风险[134]. 儿童血铅水平因手-口行为不同, 存在明显的年龄差异, 1~3岁血铅水平高于0~1岁和4~6岁儿童[132, 135]. IEUBK模型已在欧美国家研究中广泛使用, 其预测值与儿童血铅实测值较一致[136]. 但中国0~6岁儿童的铅暴露、摄入、吸收和代谢等参数与欧美国家不同[133], 若将国外参数直接应用于国内儿童血铅水平预测, 可能导致评估结果偏高, 尤其是1~3岁高血铅水平组[134, 135]. He等[132]通过体外模拟试验, 分析了陕西省榆林市土壤和灰尘中Pb的生物可给性, 优化了IEUBK摄取模块中经肺和胃肠的“生物利用度”参数, 模拟得到0~6岁儿童的血铅水平, 该预测值与儿童血铅实测值的趋势相似, 但1~3岁儿童血铅水平的预测值高于实测值. Zhang等[135]考虑到中国幼儿园的入学年龄和管理方式, 将3~4岁儿童的每日土壤/灰尘总摄入量从0.135 g·d-1调整为0.100 g·d-1, 缩小了IEUBK预测值与实测值的差距. 因此, 将模型中各项参数“本土化”, 是IEUBK在中国得到良好应用的基础, 但目前仍缺乏相关暴露参数数据, 限制了IEUBK的预测水平.

4.3 基于来源的重金属生态环境和健康风险评价

在重金属来源定量解析的基础上, 也有学者将重金属来源分析、生态环境风险和健康风险评估进行整合, 建立了一种基于不同来源重金属生态和健康风险的评价方法, 这对具有重大风险的污染源进行优先管控具有指导意义[137]. 例如, Yang等[86]结合PMF源解析模型和EPA暴露模型, 发现工业释放仅占温岭市土壤重金属污染的22.2%, 但贡献了45.3%的致癌风险. Jiang等[137]将PMF源解析模型分别与生态风险和健康风险模型结合, 发现工业释放和农业活动分别是广东省揭阳市土壤重金属生态风险和健康风险的最大贡献因子. 目前, 因来源定量识别的可靠性和准确度有待验证, 其结果仍存在不确定性. 因此, 基于来源的重金属生态和健康风险评价, 需根据来源定量识别结果准确度的提高来加以优化, 以提高其风险评价和管控指导性.

5 展望

(1)在城市土壤和地表灰尘重金属污染及其时空变化方面:城市土壤和地表灰尘重金属污染的时空特征受污染源的主导, 在城市内具有复合性和多样性. 目前土壤和地表灰尘重金属污染评价方法不统一, 导致评价结果的可比性不强. 建立基于EF的多元素污染综合评价方法和分类标准, 以提高重金属污染综合评价结果的科学性.

(2)在城市土壤和地表灰尘重金属来源分析方面:工业排放和交通释放是重金属的主要污染源, 对土壤和地表灰尘重金属在不同条件下相互影响机制的研究有待进一步加强. 受体模型可对重金属污染来源进行定量解析, 但对来源解析结果的可靠性还缺乏系统地评估, 仍需其他数据与研究方法加以验证. 采用受体模型、多同位素组分、颗粒的微观形貌特征、城市经济社会指标等要素联用的方法, 或可增加来源定量识别的准确性和指导性. 当前重金属来源研究大多以重金属全量为基础, 而重金属化学形态与来源关系尚不清楚, 仍需开展更为深入的研究. 来源驱动下的地表灰尘短期累积过程研究仍较欠缺, 这可能会降低单次采样的代表性.

(3)在重金属生态风险方面:中国重金属生态风险评价较欧美国家起步晚, 但发展迅速. 中国《土壤环境质量建设用地土壤污染风险管控标准》提供了宏观指导, 但因其未考虑重金属的毒性、形态和迁移转化特征, 存在明显的局限性. 目前, RI和NIRI为最常用的基于重金属全量和毒性的生态风险评价方法, 但该方法缺少重金属化学形态对生态风险影响的考量, 也未考虑地表灰尘迁移过程中对水体生态环境产生的影响. 如何将重金属含量、毒性和基于化学形态的迁移率结合, 对地表灰尘在土壤-街尘-水体系统迁移过程中的生态风险进行综合评价仍需加强.

(4)在重金属健康风险方面:USEPA提出的人体暴露风险评价导则是城市土壤和地表灰尘重金属的非致癌和致癌健康风险的重要方法, IEUBK模型则是预测儿童血铅水平的重要依据. USEPA和IEUBK两种健康风险评价模型的暴露参数皆需“本土化”, 但是对中国相关暴露参数的研究仍不充分. 现有研究已将生物可给性纳入健康风险模型考量中, 以提高模型结果的准确性. 为进一步提高健康风险预测能力, 重金属化学形态对生物可给性的影响有待深入探究.

参考文献
[1] Bi C J, Zhou Y, Chen Z L, et al. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of the Total Environment, 2018, 619⁃620: 1349-1357.
[2] Long Z J, Zhu H, Bing H J, et al. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China[J]. Journal of Hazardous Materials, 2021, 420. DOI:10.1016/j.jhazmat.2021.126638
[3] Jin Y L, O'Connor D, Ok Y S, et al. Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019, 124: 320-328. DOI:10.1016/j.envint.2019.01.024
[4] Chen R H, Zhang Q R, Chen H Y, et al. Source apportionment of heavy metals in sediments and soils in an interconnected river-soil system based on a composite fingerprint screening approach[J]. Journal of Hazardous Materials, 2021, 411. DOI:10.1016/j.jhazmat.2021.125125
[5] Donado E P, Oliveira M L S, Gonçalves J O, et al. Soil contamination in Colombian playgrounds: effects of vehicles, construction, and traffic[J]. Environmental Science and Pollution Research, 2021, 28(1): 166-176. DOI:10.1007/s11356-020-09965-w
[6] Dousova B, Lhotka M, Buzek F, et al. Environmental interaction of antimony and arsenic near busy traffic nodes[J]. Science of the Total Environment, 2020, 702. DOI:10.1016/j.scitotenv.2019.134642
[7] Zheng N, Liu J S, Wang Q C, et al. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China[J]. Science of the Total Environment, 2010, 408(4): 726-733. DOI:10.1016/j.scitotenv.2009.10.075
[8] Dietrich M, O'Shea M J, Gieré R, et al. Road sediment, an underutilized material in environmental science research: a review of perspectives on United States studies with international context[J]. Journal of Hazardous Materials, 2022, 432. DOI:10.1016/j.jhazmat.2022.128604
[9] Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. DOI:10.1016/j.scitotenv.2018.06.068
[10] Wang B, Xia D S, Yu Y, et al. Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geochemical approach[J]. Science of the Total Environment, 2018, 642: 95-104. DOI:10.1016/j.scitotenv.2018.06.050
[11] Yang Z P, Li X Y, Wang Y, et al. Trace element contamination in urban topsoil in China during 2000-2009 and 2010-2019: pollution assessment and spatiotemporal analysis[J]. Science of the Total Environment, 2021, 758. DOI:10.1016/j.scitotenv.2020.143647
[12] Wang S Y, Wang L Q, Huan Y Z, et al. Concentrations, spatial distribution, sources and environmental health risks of potentially toxic elements in urban road dust across China[J]. Science of the Total Environment, 2022, 805. DOI:10.1016/j.scitotenv.2021.150266
[13] Tong R P, Liu J F, Wang W, et al. Health effects of PM2.5 emissions from on-road vehicles during weekdays and weekends in Beijing, China[J]. Atmospheric Environment, 2020, 223. DOI:10.1016/j.atmosenv.2019.117258
[14] Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece[J]. Geoderma, 2009, 151(3-4): 257-263. DOI:10.1016/j.geoderma.2009.04.016
[15] Chen X X, Cheng X Y, Meng H, et al. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: a 20-year systemic review based on scientific econometrics[J]. Science of the Total Environment, 2021, 774. DOI:10.1016/j.scitotenv.2021.145585
[16] Chen C M. CiteSpace Ⅱ: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI:10.1002/asi.20317
[17] Zeng W B, Wan X M, Wang L Q, et al. Apportionment and location of heavy metal(loid)s pollution sources for soil and dust using the combination of principal component analysis, Geodetector, and multiple linear regression of distance[J]. Journal of Hazardous Materials, 2022, 438. DOI:10.1016/j.jhazmat.2022.129468
[18] Men C, Liu R M, Xu F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China[J]. Science of the Total Environment, 2018, 612: 138-147. DOI:10.1016/j.scitotenv.2017.08.123
[19] Padoan E, Romè C, Ajmone-Marsan F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect[J]. Science of the Total Environment, 2017, 601⁃602: 89-98.
[20] Li X P, Zhang M, Gao Y, et al. Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: Spatial occurrences, sources and health risks[J]. Ecotoxicology and Environmental Safety, 2018, 162: 474-487. DOI:10.1016/j.ecoenv.2018.07.006
[21] Bourliva A, Kantiranis N, Papadopoulou L, et al. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: a one-year monitoring period[J]. Science of the Total Environment, 2018, 639: 417-427. DOI:10.1016/j.scitotenv.2018.05.170
[22] Zhou L, Liu G J, Shen M C, et al. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China[J]. Chemosphere, 2022, 302. DOI:10.1016/j.chemosphere.2022.134864
[23] Zhang X X, Zha T, Guo X P, et al. Spatial distribution of metal pollution of soils of Chinese provincial capital cities[J]. Science of the Total Environment, 2018, 643: 1502-1513. DOI:10.1016/j.scitotenv.2018.06.177
[24] Birch G F. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158129
[25] Wang J, Chen Z L, Sun X J, et al. Quantitative spatial characteristics and environmental risk of toxic heavy metals in urban dusts of Shanghai, China[J]. Environmental Earth Sciences, 2009, 59(3): 645-654. DOI:10.1007/s12665-009-0061-1
[26] Tang R L, Ma K M, Zhang Y X, et al. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China[J]. Applied Geochemistry, 2013, 35: 88-98. DOI:10.1016/j.apgeochem.2013.03.016
[27] Solgi E, Oshvandi Z. Spatial patterns, hotspot, and risk assessment of heavy metals in different land uses of urban soils (case study: Malayer city)[J]. Human and Ecological Risk Assessment: An International Journal, 2018, 24(1): 256-270. DOI:10.1080/10807039.2017.1377597
[28] Forghani G, Kelm U, Mazinani V. Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu Smelter, SE Iran[J]. Journal of Geochemical Exploration, 2019, 196: 66-80. DOI:10.1016/j.gexplo.2018.09.012
[29] Trujillo-González J M, Torres-Mora M A, Keesstra S, et al. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses[J]. Science of the Total Environment, 2016, 553: 636-642. DOI:10.1016/j.scitotenv.2016.02.101
[30] He Y, Peng C, Zhang Y, et al. Comparison of heavy metals in urban soil and dust in cities of China: characteristics and health risks[J]. International Journal of Environmental Science and Technology, 2023, 20(2): 2247-2258. DOI:10.1007/s13762-022-04051-9
[31] Pouyat R V, Szlavecz K, Yesilonis I D, et al. Multi-scale assessment of metal contamination in residential soil and soil fauna: a case study in the Baltimore–Washington metropolitan region, USA[J]. Landscape and Urban Planning, 2015, 142: 7-17. DOI:10.1016/j.landurbplan.2015.05.001
[32] Ordóñez A, Álvarez R, De Miguel E, et al. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15years of study[J]. Science of the Total Environment, 2015, 524-525: 93-103. DOI:10.1016/j.scitotenv.2015.04.024
[33] Takaoka M, Yoshinaga J, Tanaka A. Influence of paint chips on lead concentration in the soil of public playgrounds in Tokyo[J]. Journal of Environmental Monitoring, 2006, 8(3): 393-398. DOI:10.1039/b517227f
[34] Mielke H W, Gonzales C R, Powell E T, et al. Spatiotemporal dynamic transformations of soil lead and children's blood lead ten years after Hurricane Katrina: New grounds for primary prevention[J]. Environment International, 2016, 94: 567-575. DOI:10.1016/j.envint.2016.06.017
[35] Žibret G. Influences of coal mines, metallurgical plants, urbanization and lithology on the elemental composition of street dust[J]. Environmental Geochemistry and Health, 2019, 41(3): 1489-1505. DOI:10.1007/s10653-018-0228-3
[36] Wang X Y, Liu E F, Lin Q, et al. Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114518
[37] Bourliva A, Christophoridis C, Papadopoulou L, et al. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece[J]. Environmental Geochemistry and Health, 2017, 39(3): 611-634. DOI:10.1007/s10653-016-9836-y
[38] Fan P, Lu X W, Yu B, et al. Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust[J]. Environment International, 2022, 160. DOI:10.1016/j.envint.2021.107073
[39] Zhao L S, Yu R L, Yan Y, et al. Bioaccessibility and provenance of heavy metals in the park dust in a coastal city of southeast China[J]. Applied Geochemistry, 2020, 123. DOI:10.1016/j.apgeochem.2020.104798
[40] Chen H, Lu X W, Gao T N, et al. Identifying hot-spots of metal contamination in campus dust of Xi'an, China[J]. International Journal of Environmental Research and Public Health, 2016, 13(6). DOI:10.3390/ijerph13060555
[41] Chen H, Lu X W. Origin and distribution of trace elements in the campus dust of Xi'an, China[J]. Toxicological & Environmental Chemistry, 2019, 101(1-2): 75-90.
[42] 李小飞, 陈志彪, 张永贺, 等. 福州市公交枢纽站地表灰尘重金属含量、来源及其健康风险评价[J]. 环境科学研究, 2013, 26(8): 906-912.
Li X F, Chen Z B, Zhang Y H, et al. Concentrations, sources and health risk assessments of heavy metals in ground surface dust from urban bus terminals of Fuzhou City[J]. Research of Environmental Sciences, 2013, 26(8): 906-912.
[43] 杨孝智, 陈扬, 徐殿斗, 等. 北京地铁站灰尘中重金属污染特征及健康风险评价[J]. 中国环境科学, 2011, 31(6): 944-950.
Yang X Z, Chen Y, Xu D D, et al. Characteristics of heavy metal pollution and health risk assessment in subway dust in Beijing[J]. China Environmental Science, 2011, 31(6): 944-950.
[44] 李军, 李开明, 位静, 等. 兰州BRT沿线站台灰尘及其两侧绿化带土壤重金属污染及健康风险评价[J]. 地球与环境, 2022, 50(2): 228-240.
Li J, Li K M, Wei J, et al. Contaminations and health risks of heavy metals from the roadside greenbelt soils and dust along the BRT platform in Lanzhou[J]. Earth and Environment, 2022, 50(2): 228-240.
[45] Yu B, Lu X W, Wang L Q, et al. Potentially toxic elements in surface fine dust of residence communities in valley industrial cities[J]. Environmental Pollution, 2023, 327. DOI:10.1016/j.envpol.2023.121523
[46] Zhu X, Yu W X, Li F, et al. Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district[J]. Science of the Total Environment, 2021, 780. DOI:10.1016/j.scitotenv.2021.146357
[47] Hilker N, Jeong C H, Wang J M, et al. Elucidating long-term trends, seasonal variability, and local impacts from thirteen years of near-road particle size data (2006-2019)[J]. Science of the Total Environment, 2021, 774. DOI:10.1016/j.scitotenv.2021.145028
[48] Men C, Liu R M, Wang Q R, et al. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts[J]. Science of the Total Environment, 2018, 637⁃638: 844-854.
[49] 赵洪涛, 李叙勇, 尹澄清. 街尘与城市降雨径流污染的关系综述[J]. 生态学报, 2012, 32(24): 8001-8007.
Zhao H T, Li X Y, Yin C Q. Research progress on the relationship of pollutants between road-deposited sediments and its washoff[J]. Acta Ecologica Sinica, 2012, 32(24): 8001-8007.
[50] Li H Y, Shi A B, Zhang X R. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park[J]. Journal of Environmental Sciences, 2015, 32: 228-237. DOI:10.1016/j.jes.2014.11.014
[51] Fujiwara F, Rebagliati R J, Marrero J, et al. Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires[J]. Microchemical Journal, 2011, 97(1): 62-67. DOI:10.1016/j.microc.2010.05.006
[52] Guo G H, Zhang D G, Wang Y T. Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China[J]. Environmental Science and Pollution Research, 2021, 28(8): 9313-9326. DOI:10.1007/s11356-020-11312-y
[53] Jayarathne A, Egodawatta P, Ayoko G A, et al. Intrinsic and extrinsic factors which influence metal adsorption to road dust[J]. Science of the Total Environment, 2018, 618: 236-242. DOI:10.1016/j.scitotenv.2017.11.047
[54] Jayarathne A, Egodawatta P, Ayoko G A, et al. Geochemical phase and particle size relationships of metals in urban road dust[J]. Environmental Pollution, 2017, 230: 218-226. DOI:10.1016/j.envpol.2017.06.059
[55] Zhang J, Hua P, Krebs P. The build-up dynamic and chemical fractionation of Cu, Zn and Cd in road-deposited sediment[J]. Science of the Total Environment, 2015, 532: 723-732. DOI:10.1016/j.scitotenv.2015.06.074
[56] Hou S N, Zheng N, Tang L, et al. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018[J]. Environment International, 2019, 128: 430-437. DOI:10.1016/j.envint.2019.04.046
[57] Bassi Penteado P, Covaes Nogarotto D, Perilo Baltazar J, et al. Inorganic pollution in urban topsoils of Latin American cities: a systematic review and future research direction[J]. Catena, 2022, 210. DOI:10.1016/j.catena.2021.105946
[58] 胡梦珺, 王佳, 张亚云, 等. 基于随机森林评价的兰州市主城区校园地表灰尘重金属污染[J]. 环境科学, 2020, 41(4): 1838-1846.
Hu M J, Wang J, Zhang Y Y, et al. Assessment of heavy metal pollution in surface dust of Lanzhou schools based on random forests[J]. Environmental Science, 2020, 41(4): 1838-1846.
[59] Kong S F, Lu B, Bai Z P, et al. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city[J]. Atmospheric Environment, 2011, 45(25): 4192-4204. DOI:10.1016/j.atmosenv.2011.05.011
[60] Lu X W, Wang L J, Li L Y, et al. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China[J]. Journal of Hazardous Materials, 2010, 173(1-3): 744-749. DOI:10.1016/j.jhazmat.2009.09.001
[61] Zhang M M, Lu X W, Chen H, et al. Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1): 637-646. DOI:10.1007/s10967-014-3300-1
[62] Ali M U, Liu G J, Yousaf B, et al. Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China[J]. Chemosphere, 2017, 181: 111-121. DOI:10.1016/j.chemosphere.2017.04.061
[63] Li K X, Liang T, Wang L Q, et al. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China[J]. Journal of Geographical Sciences, 2015, 25(12): 1439-1451. DOI:10.1007/s11442-015-1244-1
[64] Cao P Q, Fujimori T, Juhasz A, et al. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana[J]. Chemosphere, 2020, 240. DOI:10.1016/j.chemosphere.2019.124909
[65] Jeong H, Ryu J S, Ra K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118339
[66] Sezgin N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway[J]. Environment International, 2004, 29(7): 979-985. DOI:10.1016/S0160-4120(03)00075-8
[67] Tang Z W, Chai M, Cheng J L, et al. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China[J]. Ecotoxicology and Environmental Safety, 2017, 138: 83-91. DOI:10.1016/j.ecoenv.2016.11.003
[68] Wahab M I A, Razak W M A A, Sahani M, et al. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.135535
[69] Resongles E, Dietze V, Green D C, et al. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(26). DOI:10.1073/pnas.2102791118
[70] Alves C A, Vicente A M P, Calvo A I, et al. Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres[J]. Atmospheric Environment, 2020, 224. DOI:10.1016/j.atmosenv.2019.117252
[71] Gietl J K, Lawrence R, Thorpe A J, et al. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road[J]. Atmospheric Environment, 2010, 44(2): 141-146. DOI:10.1016/j.atmosenv.2009.10.016
[72] Hagen F H F Z, Mathissena M, Grabiecc T, et al. On-road vehicle measurements of brake wear particle emissions[J]. Atmospheric Environment, 2019, 217. DOI:10.1016/j.atmosenv.2019.116943
[73] Adachi K, Tainosho Y. Characterization of heavy metal particles embedded in tire dust[J]. Environment International, 2004, 30(8): 1009-1017. DOI:10.1016/j.envint.2004.04.004
[74] Thorpe A, Harrison R M. Sources and properties of non-exhaust particulate matter from road traffic: a review[J]. Science of the Total Environment, 2008, 400(1-3): 270-282. DOI:10.1016/j.scitotenv.2008.06.007
[75] Gunawardana C, Goonetilleke A, Egodawatta P, et al. Source characterisation of road dust based on chemical and mineralogical composition[J]. Chemosphere, 2012, 87(2): 163-170. DOI:10.1016/j.chemosphere.2011.12.012
[76] Valotto G, Rampazzo G, Visin F, et al. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy)[J]. Atmospheric Environment, 2015, 122: 596-608. DOI:10.1016/j.atmosenv.2015.10.006
[77] Men C, Liu R M, Xu L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121763
[78] Han Q, Liu Y, Feng X X, et al. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China[J]. Science of the Total Environment, 2021, 759. DOI:10.1016/j.scitotenv.2020.144023
[79] Kumar M, Furumai H, Kurisu F, et al. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting[J]. Geoderma, 2013, 211⁃212: 8-17.
[80] Wang X Y, Birch G F, Liu E F. Traffic emission dominates the spatial variations of metal contamination and ecological-health risks in urban park soil[J]. Chemosphere, 2022, 297. DOI:10.1016/j.chemosphere.2022.134155
[81] Yan G, Mao L C, Jiang B Y, et al. The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121352
[82] 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716.
Wang Y Q, Bai Y R, Wang J Y. Distribution of urban soil heavy metal and pollution evaluation in different functional zones of Yinchuan city[J]. Environmental Science, 2016, 37(2): 710-716.
[83] Zhao L, Xu Y F, Hou H, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014, 468⁃469: 654-662.
[84] 陈明, 王琳玲, 曹柳, 等. 基于PMF模型的某铅锌冶炼城市降尘重金属污染评价及来源解析[J]. 环境科学, 2023, 44(6): 3450-3462.
Chen M, Wang L L, Cao L, et al. Pollution assessment and source analysis of heavy metals in atmospheric deposition in a lead-zinc smelting city based on PMF model[J]. Environmental Science, 2023, 44(6): 3450-3462.
[85] Feng J S, Song N N, Yu Y X, et al. Differential analysis of FA-NNC, PCA-MLR, and PMF methods applied in source apportionment of PAHs in street dust[J]. Environmental Monitoring and Assessment, 2020, 192(11). DOI:10.1007/s10661-020-08679-3
[86] Yang S Y, He M J, Zhi Y Y, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International, 2019, 133. DOI:10.1016/j.envint.2019.105239
[87] Ma J J, Yan Y, Chen X J, et al. Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen, China[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.112985
[88] Wang X Y, Liu E F, Yan M X, et al. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk[J]. Science of the Total Environment, 2023, 878. DOI:10.1016/j.scitotenv.2023.163211
[89] Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: A comparison of three methods[J]. Environmental Pollution, 2016, 211: 28-37. DOI:10.1016/j.envpol.2015.12.037
[90] Zhao L S, Hu G R, Yan Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201: 201-211. DOI:10.1016/j.atmosenv.2018.12.050
[91] Chen Z F, Ding Y F, Jiang X Y, et al. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils[J]. Ecotoxicology and Environmental Safety, 2022, 234. DOI:10.1016/j.ecoenv.2022.113369
[92] Aryal R, Beecham S, Sarkar B, et al. Readily wash-off road dust and associated heavy metals on motorways[J]. Water, Air, & Soil Pollution, 2017, 228(1). DOI:10.1007/s11270-016-3178-3
[93] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价[J]. 环境科学, 2022, 43(1): 1-10.
Peng C, He Y L, Guo Z H, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China[J]. Environmental Science, 2022, 43(1): 1-10.
[94] Chang X, Yu Y, Li Y X. Response of antimony distribution in street dust to urban road traffic conditions[J]. Journal of Environmental Management, 2021, 296. DOI:10.1016/j.jenvman.2021.113219
[95] 杨善谋, 黄博. 基于空间分析的土壤重金属形态污染评价比较——以铜陵金属集矿区土壤Cd为例[J]. 农业技术与装备, 2019(8): 9-11.
Yang S M, Huang B. Comparison of soil heavy metal speciation pollution evaluation based on spatial——Taking the soil Cd in Tongling Mining Area as an example[J]. Agricultural Technology & Equipment, 2019(8): 9-11.
[96] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017
[97] Quevauviller P, Rauret G, López-Sánchez J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment, 1997, 205(2-3): 223-234. DOI:10.1016/S0048-9697(97)00205-2
[98] 袁宏林, 张恒, 李星星, 等. 西安市街尘中重金属赋存形态和污染特征分析[J]. 生态环境学报, 2015, 24(10): 1682-1688.
Yuan H L, Zhang H, Li X X, et al. Chemical forms and pollution characteristics of heavy metals in urban street dust of Xi'an, China[J]. Ecology and Environmental Sciences, 2015, 24(10): 1682-1688.
[99] Liu E F, Wang X Y, Liu H J, et al. Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing), China[J]. Ecotoxicology and Environmental Safety, 2019, 173: 381-392. DOI:10.1016/j.ecoenv.2019.02.019
[100] Tan M G, Zhang G L, Li X L, et al. Comprehensive study of lead pollution in Shanghai by multiple techniques[J]. Analytical Chemistry, 2006, 78(23): 8044-8050. DOI:10.1021/ac061365q
[101] National Environment Protection Council (NEPC). Schedule B5c, Guideline on ecological investigation levels for arsenic, chromium(Ⅲ), copper, DDT, lead, naphthalene, nickel & zinc[R]. Adelaide: NEPC, 2013.
[102] 葛峰, 徐坷坷, 刘爱萍, 等. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 2021, 58(2): 331-343.
Ge F, Xu K K, Liu A P, et al. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 2021, 58(2): 331-343.
[103] GB36600-2018, 土壤环境质量——建设用地土壤污染风险管控标准[S].
GB36600-2018, Soil environmental quality——Risk control standard for soil contamination of development land[S].
[104] 朱龙, 陈友媛, 苑公静, 等. 城市道路沉积物中重金属生态风险的优化评价[J]. 环境科学研究, 2022, 35(3): 836-844.
Zhu L, Chen Y Y, Yuan G J, et al. Optimal evaluation of ecological risk of heavy metals in urban road sediments[J]. Research of Environmental Sciences, 2022, 35(3): 836-844.
[105] 王利军, 卢新卫, 雷凯. 宝鸡市街尘重金属元素含量及其环境风险分析[J]. 土壤通报, 2012, 43(1): 200-205.
Wang L J, Lu X W, Lei K. Analysis of content and environmental risk of heavy metal elements in street dust of Baoji City[J]. Chinese Journal of Soil Science, 2012, 43(1): 200-205.
[106] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. DOI:10.1016/0043-1354(80)90143-8
[107] Jayarathne A, Egodawatta P, Ayoko G A, et al. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability[J]. Science of the Total Environment, 2018, 635: 1609-1619. DOI:10.1016/j.scitotenv.2018.04.098
[108] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916.
Chen J L, Li R Y, Xie X J, et al. Distribution characteristics and pollution evaluation of heavy metals in greenbelt Soils of Nanjing City[J]. Environmental Science, 2021, 42(2): 909-916.
[109] Guo B, Su Y, Pei L, et al. Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: a case study in Xi'an, Shaanxi Province, a northwest city of China[J]. Environmental Science and Pollution Research, 2020, 27(19): 24400-24412. DOI:10.1007/s11356-020-08744-x
[110] Iwegbue C M A, Martincigh B S. Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria[J]. Environmental Science and Pollution Research, 2018, 25(13): 12373-12390. DOI:10.1007/s11356-017-1113-9
[111] 熊燕. 土壤质量和土壤重金属污染评价方法综述[J]. 贵阳学院学报(自然科学版), 2021, 16(3): 92-95.
Xiong Y. Review of soil quality and heavy metal pollution assessment in soil[J]. Journal of Guiyang University (Natural Sciences), 2021, 16(3): 92-95. DOI:10.3969/j.issn.1673-6125.2021.03.020
[112] Birch G F, McCready S. Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia)[J]. Science of the Total Environment, 2009, 407(8): 2820-2835. DOI:10.1016/j.scitotenv.2008.12.051
[113] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington: Environmental Protection Agency, 2001.
[114] Yousaf B, Amina, Liu G J, et al. The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry[J]. Chemosphere, 2016, 150: 79-89. DOI:10.1016/j.chemosphere.2016.02.007
[115] 韩新宇, 郭晋源, 史建武, 等. 云南5城市道路扬尘PM2. 5中重金属含量表征及健康风险[J]. 环境科学, 2023, 44(6): 3463-3474.
Han X Y, Guo J Y, Shi J W, et al. Characterization and health risk of heavy metals in PM2.5 from road fugitive dust in five cities of Yunnan Province[J]. Environmental Science, 2023, 44(6): 3463-3474.
[116] Musa A A, Hamza S M, Kidak R. Street dust heavy metal pollution implication on human health in Nicosia, North Cyprus[J]. Environmental Science and Pollution Research, 2019, 26(28): 28993-29002. DOI:10.1007/s11356-019-06028-7
[117] Tan S Y, Praveena S M, Abidin E Z, et al. Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia)[J]. Environmental Science and Pollution Research, 2018, 25(34): 34623-34635. DOI:10.1007/s11356-018-3396-x
[118] 冯康宏, 范缙, Hii L U S, 等. 基于生物可给性的某冶炼厂土壤重金属健康风险评价[J]. 中国环境科学, 2021, 41(1): 442-450.
Feng K H, Fan J, Hii L U S, et al. Human health risk assessment of heavy metals in soil from a smelting plant based on bioaccessibility[J]. China Environmental Science, 2021, 41(1): 442-450. DOI:10.3969/j.issn.1000-6923.2021.01.050
[119] 罗杨, 吴永贵, 段志斌, 等. 基于CiteSpace重金属生物可给性的文献计量分析[J]. 农业环境科学学报, 2020, 39(1): 17-27.
Luo Y, Wu Y G, Duan Z B, et al. Bibliometric analysis of bioaccessibility of heavy metals based on CiteSpace[J]. Journal of Agro-Environment Science, 2020, 39(1): 17-27.
[120] Song Y Y, Qi Z H, Zhang Y H, et al. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model[J]. Science of the Total Environment, 2020, 732. DOI:10.1016/j.scitotenv.2020.139304
[121] 马津津, 闫钰, 于瑞莲, 等. 砷形态提取及其在消化道中生物可给性研究[J]. 环境科学与技术, 2020, 43(11): 137-147.
Ma J J, Yan Y, Yu R L, et al. Research on the extraction of arsenic speciation and its bioaccessibility in gastrointestinal tract[J]. Environmental Science & Technology, 2020, 43(11): 137-147.
[122] Li S W, Chang M H, Huang X Y, et al. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132655
[123] Fernández-Caliani J C, Giráldez M I, Barba-Brioso C. Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage[J]. Chemosphere, 2019, 237. DOI:10.1016/j.chemosphere.2019.124441
[124] Drahota P, Raus K, Rychlíková E, et al. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic[J]. Environmental Geochemistry and Health, 2018, 40(4): 1495-1512. DOI:10.1007/s10653-017-9999-1
[125] Fujimori T, Taniguchi M, Agusa T, et al. Effect of lead speciation on its oral bioaccessibility in surface dust and soil of electronic-wastes recycling sites[J]. Journal of Hazardous Materials, 2018, 341: 365-372. DOI:10.1016/j.jhazmat.2017.07.066
[126] Li S W, Li J, Li H B, et al. Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction[J]. Journal of Hazardous Materials, 2015, 295: 145-152. DOI:10.1016/j.jhazmat.2015.04.011
[127] Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94: 600-606. DOI:10.1016/j.envint.2016.06.022
[128] Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19). DOI:10.1016/j.scitotenv.2011.05.019
[129] Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental Science & Technology, 2012, 46(11): 6252-6260.
[130] Ma X Y, Xia D S, Liu X Y, et al. Application of magnetic susceptibility and heavy metal bioaccessibility to assessments of urban sandstorm contamination and health risks: case studies from Dunhuang and Lanzhou, Northwest China[J]. Science of the Total Environment, 2022, 830. DOI:10.1016/j.scitotenv.2022.154801
[131] Charlesworth S, De Miguel E, Ordóñez A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk[J]. Environmental Geochemistry and Health, 2011, 33(2): 103-123. DOI:10.1007/s10653-010-9325-7
[132] He A N, Li X P, Ai Y W, et al. Potentially toxic metals and the risk to children's health in a coal mining city: an investigation of soil and dust levels, bioaccessibility and blood lead levels[J]. Environment International, 2020, 141. DOI:10.1016/j.envint.2020.105788
[133] 胡佳, 陈建伟, 周宜开. IEUBK模型的应用概况及其本土化的初步探讨[J]. 环境与健康杂志, 2013, 30(7): 655-658.
Hu J, Chen J W, Zhou Y K. IEUBK model and its application in China[J]. Journal of Environment and Health, 2013, 30(7): 655-658.
[134] Laidlaw M A S, Mohmmad S M, Gulson B L, et al. Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia[J]. Environmental Research, 2017, 156: 781-790. DOI:10.1016/j.envres.2017.04.040
[135] Zhang X Y, Carpenter D O, Song Y J, et al. Application of the IEUBK model for linking Children's blood lead with environmental exposure in a mining site, south China[J]. Environmental Pollution, 2017, 231: 971-978. DOI:10.1016/j.envpol.2017.08.116
[136] Hogan K, Marcus A, Smith R, et al. Integrated exposure uptake biokinetic model for lead in children: empirical comparisons with epidemiologic data[J]. Environmental Health Perspectives, 1998, 106(S6): 1557-1567.
[137] Jiang H H, Cai L M, Wen H H, et al. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals[J]. Science of the Total Environment, 2020, 701. DOI:10.1016/j.scitotenv.2019.134466