环境科学  2024, Vol. 45 Issue (2): 837-843   PDF    
黄河中下游典型抗性细菌及抗性基因污染分布
闵威1, 高明昌2, 孙绍芳1,3, 宋茜茜1, 邱立平3,4     
1. 济南大学土木建筑学院, 济南 250022;
2. 济南大学水利与环境学院, 济南 250022;
3. 山东省功能材料水质净化工程技术研究中心, 济南 250022;
4. 山东建筑大学市政与环境工程学院, 济南 250101
摘要: 以黄河中下游某城市段的黄河水体作为研究对象, 对其中可培养总细菌、典型抗性细菌[阿莫西林(AMX)抗性细菌、磺胺甲唑(SMZ)抗性细菌]及其对应的典型抗性基因[β-内酰胺类抗性基因(blaCTX-M)、磺胺类抗性基因(sulIsulⅡ)]、1种整合酶基因int1的季节及沿程分布进行调研分析.结果表明, 该市黄河流域可培养总细菌、AMX抗性细菌和SMZ抗性细菌受温度与人类活动影响显著, 其菌属组成与数量具有明显的时空分布特征, 主要以芽孢杆菌属(Bacillus)和假单胞菌属(Pseudomonas)为主.抗性基因丰度随温度降低呈下降趋势, β-内酰胺类抗性基因在总基因中占比高于磺胺类基因, 磺胺类基因中以sulI为优势基因.相关性分析表明, Ⅰ型整合子是加速抗性基因传播的重要因素.研究有助于了解该地黄河水体抗性污染现状, 可为黄河中下游流域抗性基因风险评估提供理论支撑.
关键词: 黄河流域      抗性基因(ARGs)      抗性细菌(ARB)      时空分布      荧光定量PCR(qPCR)     
Distribution of Typical Resistant Bacteria and Resistance Genes in Source Water of the Middle and Lower Reaches of the Yellow River
MIN Wei1 , GAO Ming-chang2 , SUN Shao-fang1,3 , SONG Qian-qian1 , QIU Li-ping3,4     
1. School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China;
2. School of Conservancy and Environment, University of Jinan, Jinan 250022, China;
3. Shandong Province Engineering Technology Research Center for Water Purification Functional Material, Jinan 250022, China;
4. School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
Abstract: The Yellow River water of an urban area located in the middle and lower reaches of the Yellow River was taken as the research object, in which the seasonal and along-range distribution of total culturable bacteria, typical antibiotic resistant bacteria (amoxicillin resistant bacteria and sulfamethoxazole-resistant bacteria), and their corresponding typical resistance genes [β-lactam resistance gene (blaCTX-M) and sulfamamide resistance genes (sulI and sulⅡ), as well as intⅠ1 were investigated. The results showed that the total culturable bacteria, β-lactam-resistant bacteria and sulfonamide-resistant bacteria in the Yellow River Basin were significantly affected by temperature and human activities. The composition and quantity of their genera had obvious spatiotemporal distribution characteristics, in which Bacillus and Pseudomonas were dominant in the composition and number of bacteria. The abundance of resistance genes decreased with the decrease in temperature. The proportion of β-lactam resistance genes in the total genes was higher than that of sulfanilamide genes, and sulI was the dominant gene in sulfanilamide genes. Correlation analysis showed that class Ⅰ integron played an important role in accelerating the spread of resistance genes. This study offers insight into the status quo of water resistance pollution in the Yellow River and provides theoretical support for the risk assessment of resistance genes in the middle and lower reaches of the Yellow River Basin.
Key words: Yellow River Basin      antibiotic resistance genes(ARGs)      antibiotic resistant bacteria(ARB)      spatial and temporal distribution      quantitative-polymerase chain reaction(qPCR)     

水环境中抗生素的长期赋存会诱导抗生素抗性细菌(antibiotic resistance genes, ARGs)的增殖, 进而导致环境中抗性基因(antibiotic resistant bacteria, ARB)大量传播[1, 2].抗性细菌和抗性基因作为新型环境污染物, 近年来在国际上引起广泛关注[3].抗性基因可通过垂直基因转移[4]不断累积, 并有可能通过水平基因转移的方式[5, 6]从抗性细菌传递到致病菌中, 引起抗药性的散播和流行[7], 给生态系统安全和人类健康带来严重威胁[8, 9].

近年来, 我国各大流域都发现存在不同程度的抗性基因与抗性细菌污染问题[10 ~ 15].黄河作为中国的母亲河, 在中国经济社会发展和生态安全方面具有十分重要的地位[16], 黄河中下游流域畜禽养殖业发达, 而导致抗生素污染问题尤其突出[17].但是目前有关黄河中下游流域水体抗性细菌与抗性基因的污染问题缺乏系统的研究.

因此, 本文以黄河中下游某城市段的黄河水体为研究对象, 对其中可培养总细菌、典型抗性细菌(AMX抗性细菌、SMZ抗性细菌)、典型抗性基因(sulIsulⅡblaCTX-M)及16S rDNA含量的季节及沿程分布进行调研分析, 以期为黄河中下游流域水体抗性细菌与抗性基因污染风险评价提供参考, 并为全面控制黄河中下游水环境中典型抗性细菌和抗性基因污染提供可靠数据支撑和依据.

1 材料与方法 1.1 实验试剂及仪器

主要试剂如下:E.Z.N.A Soil DNA Kit(Omega, 美国), TaKaRa MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0、SYBR® Premix Ex TaqTM Ⅱ(Tli RNaseH Plus)和TaKaRa Ex Taq(TaKaRa日本), TIAN prep Mini Plasmid Kit Ⅱ、pGM-T克隆试剂盒、D2000 DNA Maker和6 × loading buffer(天根生化科技有限公司, 中国), PCR引物(Invitrogen, 美国), 磺胺甲唑和阿莫西林(源叶生物, 中国).

主要仪器如下:梯度PCR仪(MultigeneTM optimax, Labnet美国), 荧光定量PCR仪(LightCycle Nano, Roche瑞士), 凝胶成像仪(MiniBIS Pro, DNR, 以色列), 核酸微量定量仪(Nanodrop2000, Thermo Scientific, 美国).

1.2 水样采集

黄河自西向东流经该市, 根据该市地形特点, 沿黄河流向设立6个取样点(A ~ F点, 如 图 1所示), 采样时间分别为夏季(6月)、秋季(10月)和冬季(12月), 环境温度分别在28 ~ 35、16 ~ 25及-5 ~ 8℃, 采样时尽量避免降水与温差的影响;使用提前消毒和反复冲洗后的10 L聚乙烯塑料桶于采样点河流中央地带采样, 避免河岸沉积物对水样的污染.每个采样点在距离表层水体1 m的位置取3个平行样品, 取后避光用冰袋保存运送到实验室尽快完成分析[18].

图 1 黄河中下游某城市段取样点分布示意 Fig. 1 Distribution of sampling sites in a city in the middle and lower reaches of the Yellow River

1.3 细菌检测

利用异养菌平板计数法来测定不同水样中可培养总细菌(不添加抗生素R2A琼脂培养基[19])、可培养SMZ抗性细菌(添加64 mg·L-1磺胺甲噁唑R2A琼脂培养基)和可培养AMX抗性细菌(添加16 mg·L-1阿莫西林R2A琼脂培养基)[20, 21]的数量.筛选出单菌落后, 保存在15%的甘油中, 委托上海博尚生物公司测序.

1.4 抗性基因检测 1.4.1 水样DNA的提取

本实验中所涉及实验材料事先置于灭菌器中高压灭菌, 将不同采样点采集的水样用真空泵抽滤, 利用0.22 μm孔径的醋酸纤维素滤膜收集水中细菌.使用E.Z.N.A Soil DNA Kit(Omega美国)试剂盒提取样品DNA.

1.4.2 PCR反应

PCR反应体系(50 μL)包括Ex Taq酶0.125 μL, 10 × Ex Taq Buffer(20mmol·L-1 Mg2 + Plus)2.5 μL, dNTP Mixture(2.5 mmol·L-1)2.0 μL, 模板DNA 2.0 μL, 上下游引物各1.0 μL, ddH2O 16.375 μL.反应程序为:预变性(94℃, 5 min)、变性(94℃, 30 s)、退火(30 s)、延伸(72℃, 30 s)、循环(36次)和延伸(72℃, 7 min).相关引物序列及相关信息如表 1所示.

表 1 目标引物序列 Table 1 Target primer sequence

1.4.3 抗性基因定量检测及计算

本文利用荧光定量PCR技术(qPCR)对目标基因进行定量检测.荧光定量PCR反应体系(20 μL)包括SYBR Green PCR混合染料10 μL, 上下游引物各0.8 μL, 模板DNA 2 μL, ddH2O 6.4 μL.反应程序设定为:预变性(95℃, 5 min)、变性(95℃, 15 s)、退火(20 s)、循环(45次).利用产物的溶解曲线验证样品扩增特异性.

将携带目标基因的质粒梯度稀释10倍, 绘制qPCR标准曲线.相关目标基因的标准曲线和扩增率如表 2所示.

表 2 目标基因定量所需的标准曲线与扩增效率1) Table 2 Standard curve and amplification efficiency of target genes for qPCR

水环境样品中抗性基因的量可用绝对丰度和相对丰度按公式(1)和公式(2)计算:

(1)
(2)
2 结果与讨论 2.1 典型抗性细菌时空分布特征 2.1.1 典型抗性细菌时间分布特征

不同季节黄河中下游某市黄河沿程取样点中可培养总细菌、AMX抗性细菌和SMZ抗性细菌数量及分布状况如 图 2所示.可培养总细菌、AMX抗性细菌和SMZ抗性细菌数量在该市水体中具有明显的季节性特征, 随着温度降低(夏季到冬季), 各取样点3种菌的菌属数与菌落数量均呈现下降趋势, 表明温度下降对抗性细菌活性影响较大.

柱状图右侧数字表示各取样点检测到的不同菌属的数量 图 2 黄河水各季沿程可培养细菌分布 Fig. 2 Distribution of culturable bacteria along the Yellow River in different seasons

表 3所示, 随温度降低, 可培养总细菌数量逐渐减少, 由夏季的1.99 × 104 CFU·mL-1降低至冬季的0.63 × 104 CFU·mL-1, 数量减少68%以上, 但菌属数始终维持在3 ~ 6种之间, 夏季总细菌菌属以芽孢杆菌属(Bacillus)和假单胞菌属(Pseudomonas)为主, 随着温度下降, 秋季芽孢杆菌属丰度由64.03%下降至13.78%, 假单胞菌属、莱茵海默氏菌属(Rheinheimera)和脑膜脓毒性菌(Elizabethkingia meningoseptica)占比上升, 冬季时假单胞菌属成为主要菌属(68.94%).AMX抗性细菌丰度受温度影响较大, 由夏季到冬季, 其平均丰度由1.32 × 104 CFU·mL-1降低至0.26 × 104 CFU·mL-1, 下降80%以上.同时, 平均菌属数量由3种下降为2种.夏季菌属以芽孢杆菌属(15.25%)、假单胞菌属(72.43%)和莱茵海默氏菌属(9.76%)为主, 冬季低温下以假单胞菌属为主要菌属, 占比超过85%.SMZ抗性细菌丰度变化与AMX抗性细菌相类似, 平均丰度随着温度降低, 由1.10 × 104 CFU·mL-1降低至0.17 × 104 CFU·mL-1, 芽孢杆菌属逐渐减少, 假单胞菌属成为主要菌属.以上结果表明温度对可培养总细菌、AMX抗性细菌和SMZ抗性细菌具有较强选择性, 假单胞菌属抗性细菌具有良好的低温抵抗能力.

表 3 各季可培养细菌菌落数平均值/CFU·mL-1 Table 3 Mean number of culturable bacterial colonies in each season/CFU·mL-1

从检测结果看, AMX抗性细菌数在总体上高于SMZ抗性细菌, 这一现象可能是由于华东地区β-内酰胺类抗生素使用量远高于磺胺类[25].徐艳等[26]报道石家庄汪洋沟地区地表水总细菌和磺胺类抗性细菌丰度分别在8.40 × 103 ~ 2.71 × 105 CFU·mL-1和5.33 × 101 ~ 8.32 × 104 CFU·mL-1之间;欧丹云等[27]研究九龙江下游流域四环素与氟甲砜霉素抗性细菌丰度在8.41 × 103 ~ 1.14 × 105 cells·mL-1及1.61 × 102 ~ 5.88 × 102 cells·mL-1之间;Moore等[28]研究北爱尔兰Lagan River中四环素和β-内酰胺类等12种抗生素抗性细菌丰度在103.8 ~ 104.3 CFU·mL-1之间.对比可知, 该市黄河水中总细菌与SMZ抗性细菌的赋存水平处于中等水平.

2.1.2 典型抗性细菌空间分布特征

沿程条件下黄河中下游某市黄河沿程取样点中抗性细菌数量变化及分布状况如 图 2所示.各季节中3类细菌数量从A ~ F点检测的沿程菌落数具有明显的区域特征, 即沿河水流向呈现先上升后下降趋势.从 图 2可知, A和F点的3类细菌菌属数量最低, 而E点3类细菌菌属数量最高.可培养总细菌年平均菌落数的低值区出现在A点, 可培养总细菌数为1.05 × 104 CFU·mL-1, 沿流向到取样点C可培养总细菌数量上升至1.68 × 104 CFU·mL-1, 随后在F点下降至1.07 × 104 CFU·mL-1.该市黄河中AMX抗性细菌与SMZ抗性细菌年平均菌落数变化趋势与可培养总细菌相似, 在E点达到最高值, F点取得最低值.由 图 1可知, A点和F点位于该市郊区, 人口较稀疏, 而E点位于人口密集的城市下游, 受人类活动干扰较大.以上数据表明, 抗性细菌的空间分布特征受人类活动影响显著.

2.2 典型抗性基因时空分布特征 2.2.1 典型抗性基因绝对丰度变化特征

为避免纯培养方法的局限性, 对黄河中两种磺胺类抗性基因(sulⅠsulⅡ), 一种β-内酰胺类抗性基因(blaCTX-M)和一种整合酶基因(intⅠ1)进行了定量检测, 结果如 图 3所示.

图 3 黄河水沿程抗性基因绝对丰度 Fig. 3 Absolute abundance of antibiotic resistance genes along the Yellow River

4种基因绝对丰度的变化在总体上仍呈由夏至冬逐渐衰减的趋势, 这与Luo等[24]报道的抗性基因季节变化规律是一致的.磺胺类抗性基因受温度变化影响较大, 夏季各取样点sulⅠsulⅡ丰度平均值为2.07 × 105 copies·mL-1和8.75 × 104 copies·mL-1, 到冬季sulⅠsulⅡ丰度平均值仅剩3.63 × 103 copies·mL-1和4.98 × 102 copies·mL-1, 下降率达98.25%和99.43%.blaCTX-MintⅠ1基因同样遵循上述规律, 但温度对β-内酰胺类抗性基因和型整合子intⅠ1的影响不如磺胺类抗性基因明显, intⅠ1在三季里总平均丰度最高, 达2.47 × 105 copies·mL-1, 这可能与整合子具有广泛的抗生素抗性有关[29].徐秋鸿等[14]对夏季长江口近岸地区水样进行了研究, 结果表明水样中抗性基因的绝对丰度平均值为2.32 × 104 ~ 7.66 × 104 copies·mL-1.张丹丹等[30]研究了敖江下游各类抗生素抗性基因的分布特征, 目的基因绝对丰度介于7.7 × 104 ~ 1.5 × 106 copies·mL-1之间.Na等[31]对北黄海中sulⅠ, sulⅡ进行了表征, 其丰度范围在3.3 × 104 ~ 3.55 × 104 copies·mL-1之间.胡亚茹等[32]检测到华东地区某饮用水源地中sulⅠsulⅡ的平均丰度分别为2.10 × 105 copies·mL-1和1.70 × 104 copies·mL-1.上述长江、海河流域人口密集, 抗生素使用和排放量大[25], 致使其抗性基因污染较为严重, 而该市黄河流域抗性基因污染则处于国内一般水平.

从空间角度分析, 各抗性基因沿流向呈先降低后上升趋势.上游段(A点和B点)sulⅠsulⅡblaCTX-MintI1在夏秋中的丰度平均值相对较高, 分别为9.87 × 104、5.04 × 104、1.46 × 105和4.37 × 105 copies·mL-1, 该段是农村禽、畜、渔养殖密集区, 且夏秋季为畜禽疫病防治重点时期, 抗生素类药物使用量大且面源污染严重, 可能是加重该段河流中抗性基因富集的主要原因[33-35];中游段(C点和D点)上述4种基因有所下降;城市下游E点受城市人类活动影响其抗性基因丰度再次上升, 达到最高值2.48 × 105、1.18 × 105、1.65 × 105和4.50 × 104 copies·mL-1;在远离城市的F点, 抗性基因恢复到低丰度水平.上述分析表明:水环境中整合子和抗性基因的赋存水平与人类活动、城市开发及抗生素释放密切相关[28, 36 ~ 38].

2.2.2 典型抗性基因相对丰度变化特征

抗性基因相对丰度可更好地反映各抗性基因的分布情况, sulⅠsulⅡblaCTX-M的相对丰度计算结果如 图 4所示.随着温度降低, 3种抗性基因相对丰度均呈先减少后增多趋势.夏季blaCTX-M抗性基因相对丰度为1.53 × 10-3, 秋季略有下降, 但冬季相对丰度迅速上升至1.36 × 10-2, 表明AMX抗性细菌对低温具有较强适应性, 导致该类抗性基因大量赋存.磺胺类抗性基因主要以sulⅠ为主, 夏季sulⅠ相对丰度均值为1.50 × 10-3, 而sulⅡ仅为6.09 × 10-4.冬季时两者增至3.66 × 10-3和4.82 × 10-4水平, 含量差距更为明显.冬季该市黄河流域进入枯水期, 水面结冰导致常规方法检测不到的厌氧菌与异养菌大量繁殖[39], 可能是造成冬季blaCTX-MsulⅠ的平均相对丰度高于夏秋季的原因.

图 4 黄河水沿程抗性基因相对丰度 Fig. 4 Relative abundance of antibiotic resistance genes along the Yellow River

3类抗性基因相对丰度随沿程总体呈现先下降后上升的趋势.其中, 上游(A点和B点)的高相对量与养殖业抗生素的集中使用有关, 而城市中心取样点(C点和D点)3类抗性基因相对丰度略微下降, 结合总细菌变化趋势, 推测人类活动导致河流中细菌大量繁殖, 进而16S rDNA检测值升高, 而沿程下游中细菌丰度下降, 相对值有所上升.对比已有研究, 该流域段β-内酰胺类抗性基因相对丰度高于太湖水体[40]与黄浦江表层水体[41].磺胺类基因相对丰度与海河流域[24]相近, 低于北江流域[42], 而Pruden等[3]检测科罗拉多州北部河流受磺胺类基因污染最严重的地区中sulⅠsulⅡ相对丰度仅为10-3和10-4.可见国内各流域抗性基因污染问题必须予以高度重视.

2.3 型整合子与抗性基因相关性分析

整合子是实现抗性基因水平转移的重要遗传单位[43, 44], 本研究采用Spearman相关性检验[45]型整合子基因和其他抗性基因进行了相关分析, 结果如表 4所示.可知磺胺类和β-内酰胺类抗性基因均与intⅠ1呈极显著相关性(P < 0.01), 说明整合子仍是加速抗性基因传播的重要因素[44].Luo等[24]对海河流域进行了磺胺类基因与I型整合子的相关性分析, 结果与本研究的相同.然而, 前人对长江口近岸地区[14]和温榆河流域[46]的分析表明sulⅡintⅠ1无显著相关性, 与本研究的结果不符.sulⅠ可能作为型整合子3’-CS的组分, 故与intⅠ1具有更强的相关性[47].除整合子外, sulⅡβ-内酰胺酶基因的水平播散还与ISCR元件耦合, 而ISCR结构使得抗性基因更容易在质粒上整合, 导致抗性基因的加速传播[48].

表 4 型整合子与抗性基因相关性分析1) Table 4 Correlation analysis between intI1 and antibiotic resistance genes

3 结论

(1)该市黄河流域夏秋冬三季中可培养总细菌、AMX抗性细菌、SMZ抗性细菌在菌属组成与数量变化上均有明显的时空分布特征, 这是由于温度变化和人类活动影响造成的.

(2)该流域段抗性基因污染情况处于一般水平, 其中β-内酰胺类抗性基因(blaCTX-M)的检出丰度明显高于磺胺类抗性基因, 磺胺类抗性基因中sulⅠ为优势基因.

(3)相关性分析表明, 磺胺类抗性基因(sulⅠsulⅡ)和β-内酰胺类抗性基因(blaCTX-M)均与intI1具有显著相关性(P < 0.01), 表明整合子基因仍是加速抗性基因传播的重要因素.

参考文献
[1] Nguyen A Q, Vu H P, Nguyen L N, et al. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges[J]. Science of the Total Environment, 2021, 783. DOI:10.1016/j.scitotenv.2021.146964
[2] Zheng D S, Yin G Y, Liu M, et al. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments[J]. Science of the Total Environment, 2021, 777. DOI:10.1016/j.scitotenv.2021.146009
[3] Pruden A, Pei R T, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:  studies in northern colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450.
[4] Li B, Qiu Y, Song Y Q, et al. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics[J]. Environment International, 2019, 131. DOI:10.1016/j.envint.2019.105007
[5] Zhang Y P, Niu Z G, Zhang Y, et al. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them[J]. Environmental Pollution, 2018, 236: 126-136. DOI:10.1016/j.envpol.2018.01.033
[6] Gillings M R. Lateral gene transfer, bacterial genome evolution, and the Anthropocene[J]. Annals of the New York Academy of Sciences, 2017, 1389(1): 20-36. DOI:10.1111/nyas.13213
[7] Han Z M, Zhang Y, An W, et al. Antibiotic resistomes in drinking water sources across a large geographical scale: Multiple drivers and co-occurrence with opportunistic bacterial pathogens[J]. Water Research, 2020, 183. DOI:10.1016/j.watres.2020.116088
[8] Yang Y, Zhou R J, Chen B W, et al. Characterization of airborne antibiotic resistance genes from typical bioaerosol emission sources in the urban environment using metagenomic approach[J]. Chemosphere, 2018, 213: 463-471. DOI:10.1016/j.chemosphere.2018.09.066
[9] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: A review of lakes, China[J]. Science of the total Environment, 2018, 627: 1195-1208. DOI:10.1016/j.scitotenv.2018.01.271
[10] 秦荣, 喻庆国, 刘振亚, 等. 人类活动影响下的高原湿地四环素类抗生素抗性基因赋存与微生物群落共现性[J]. 环境科学, 2023, 44(1): 169-179.
Qin R, Yu Q G, Liu Z Y, et al. Co-occurrence of tetracycline antibiotic resistance genes and microbial communities in plateau wetlands under the influence of human activities[J]. Environmental Science, 2023, 44(1): 169-179.
[11] 杨继平, 邱志刚, 袁兆康, 等. 天津海河流域抗生素抗性基因分布特征及与指示微生物的关系[J]. 环境与健康杂志, 2017, 34(4): 313-316.
Yang J P, Qiu Z G, Yuan Z K, et al. Distribution of antibiotic resistance genes and their relationship with indicator microorganisms in Haihe River Basin, Tianjin[J]. Journal of Environment and Health, 2017, 34(4): 313-316.
[12] Yin Z Z. Distribution and ecological risk assessment of typical antibiotics in the surface waters of seven major rivers, China[J]. Environmental Science: Processes & Impacts, 2021, 23(8): 1088-1100.
[13] Zhang G D, Lu S Y, Wang Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China[J]. Environmental Pollution, 2020, 257. DOI:10.1016/j.envpol.2019.113365
[14] 徐秋鸿, 刘曙光, 娄厦, 等. 长江口近岸地区抗生素抗性基因与微生物群落分布特征[J]. 环境科学, 2023, 44(1): 158-168.
Xu Q H, Liu S G, Lou S, et al. Distributions of antibiotic resistance genes and microbial communities in the nearshore area of the Yangtze River estuary[J]. Environmental Science, 2023, 44(1): 158-168.
[15] 黄高琪, 石伟, 李君剑. 汾河水体抗生素抗性基因赋存特征[J]. 环境科学学报, 2022, 42(3): 227-236.
Huang G Q, Shi W, Li J J. The occurrance and distribution of antibiotic resistance genes in the water environment of Fenhe River[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 227-236.
[16] 习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话[J]. 中国水利, 2019(20): 1-3. DOI:10.3969/j.issn.1000-1123.2019.20.006
[17] Yue Z F, Zhang J, Zhou Z G, et al. Pollution characteristics of livestock faeces and the key driver of the spread of antibiotic resistance genes[J]. Journal of Hazardous Materials, 2020, 409. DOI:10.1016/j.jhazmat.2020.124957
[18] 徐慕, 李世豪, 马巾, 等. 上海沙田湖养殖区及周边水体中氟喹诺酮类抗性基因的分布特征及其与环境因子关系[J]. 环境科学, 2021, 42(12): 5848-5856.
Xu M, Li S H, Ma J, et al. Investigation on fluoroquinolone resistance genes in the intensive aquaculture area of Shatianhu intensive aquiculture farm and surrounding waterbodies in Shanghai, China[J]. Environmental Science, 2021, 42(12): 5848-5856.
[19] Low A, Ng C, He J Z. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds[J]. Water Research, 2016, 106: 330-338. DOI:10.1016/j.watres.2016.09.032
[20] Rizzo L, Fiorentino A, Anselmo A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains[J]. Chemosphere, 2013, 92(2): 171-176. DOI:10.1016/j.chemosphere.2013.03.021
[21] Huang J J, Hu H Y, Tang F, et al. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant[J]. Water Research, 2011, 45(9): 2775-2781. DOI:10.1016/j.watres.2011.02.026
[22] Pei R T, Kim S C, Carlson K H, et al. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG)[J]. Water Research, 2006, 40(12): 2427-2435. DOI:10.1016/j.watres.2006.04.017
[23] Zhang J Y, Chen M X, Sui Q W, et al. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting[J]. Water Research, 2016, 91: 339-349. DOI:10.1016/j.watres.2016.01.010
[24] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19): 7220-7225.
[25] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[26] 徐艳, 张远, 郭昌胜, 等. 石家庄汪洋沟地区抗生素、抗性细菌和抗性基因污染特征[J]. 农业环境科学学报, 2014, 33(6): 1174-1182.
Xu Y, Zhang Y, Guo C S, et al. Pollution characteristics of antibiotics and antibiotic-resistant bacteria and genes in Wangyanggou River, Shijiazhuang, China[J]. Journal of Agro-Environment Science, 2014, 33(6): 1174-1182.
[27] 欧丹云, 陈彬, 陈灿祥, 等. 九龙江下游河口水域抗生素及抗性细菌的分布[J]. 中国环境科学, 2013, 33(12): 2243-2250.
Ou D Y, Chen B, Chen C X, et al. Distribution of antibiotics residue and resistant bacteria in the downstream and estuarine area in Jiulong River[J]. China Environmental Science, 2013, 33(12): 2243-2250.
[28] Moore J E, Moore P J A, Millar B C, et al. The presence of antibiotic resistant bacteria along the River Lagan[J]. Agricultural Water Management, 2010, 98(1): 217-221. DOI:10.1016/j.agwat.2010.09.001
[29] Lu Z H, Na G S, Gao H, et al. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities[J]. Science of the Total Environment, 2015, 527-528: 429-438. DOI:10.1016/j.scitotenv.2015.04.101
[30] 张丹丹, 郭亚平, 任红云, 等. 福建省敖江下游抗生素抗性基因分布特征[J]. 环境科学, 2018, 39(6): 2600-2606.
Zhang D D, Guo Y P, Ren H Y, et al. Characteristics of antibiotic resistance genes in downstream areas of the Aojiang River, Fujian province[J]. Environmental Science, 2018, 39(6): 2600-2606.
[31] Na G S, Zhang W R, Zhou S Y, et al. Sulfonamide antibiotics in the Northern Yellow Sea are related to resistant bacteria: Implications for antibiotic resistance genes[J]. Marine Pollution Bulletin, 2014, 84(1-2): 70-75. DOI:10.1016/j.marpolbul.2014.05.039
[32] 胡亚茹, 姜蕾, 张天阳, 等. 华东地区某饮用水源地中磺胺类抗性基因的分布特征[J]. 环境科学, 2018, 39(9): 4222-4228.
Hu Y R, Jiang L, Zhang T Y, et al. Distribution characteristics of sulfonamide antibiotic resistance genes in a drinking water source in east China[J]. Environmental Science, 2018, 39(9): 4222-4228.
[33] Wang J H, Lu J, Zhang Y X, et al. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems[J]. Bioresource Technology, 2018, 253: 235-243. DOI:10.1016/j.biortech.2018.01.035
[34] Chen C Q, Zheng L, Zhou J L, et al. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in Southeast China[J]. Science of the Total Environment, 2017, 580: 1175-1184. DOI:10.1016/j.scitotenv.2016.12.075
[35] Liu X, Wang H, Zhao H. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China[J]. Environmental Pollution, 2020, 261. DOI:10.1016/j.envpol.2020.114155
[36] 周昕原, 王言仔, 苏建强, 等. 微塑料对河水抗生素抗性基因的影响[J]. 环境科学, 2020, 41(9): 4076-4080.
Zhou X Y, Wang Y Z, Su J Q, et al. Microplastics-induced shifts of diversity and abundance of antibiotic resistance genes in river water[J]. Environmental Science, 2020, 41(9): 4076-4080.
[37] Yang Y Y, Song W J, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis[J]. Environment International, 2018, 116: 60-73. DOI:10.1016/j.envint.2018.04.011
[38] Yang Y Y, Liu W Z, Xu C, et al. Antibiotic resistance genes in lakes from middle and lower reaches of the Yangtze River, China: Effect of land use and sediment characteristics[J]. Chemosphere, 2017, 178: 19-25. DOI:10.1016/j.chemosphere.2017.03.041
[39] 杨继平. 天津海河流域抗生素抗性基因分布特征及与指示微生物的关系[D]. 南昌: 南昌大学, 2017.
Yang J P. Occurrence of antibiotic resistance genes and the relationship with indicator bacteria in Haihe River, Tianjin[D]. Nanchang: Nanchang University, 2017.
[40] Stange C, Yin D, Xu T, et al. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China[J]. Science of the Total Environment, 2019, 655: 337-346. DOI:10.1016/j.scitotenv.2018.11.211
[41] Jiang L, Hu X L, Xu T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the Total Environment, 2013, 458-460: 267-272. DOI:10.1016/j.scitotenv.2013.04.038
[42] 杨颖. 北江水环境中抗生素抗性基因污染分析[D]. 广州: 中山大学, 2010.
Yang Y. Characterizing the pollution by the representative antibiotic resistance genes (ARGs) in the Beijiang River, South China[D]. Guangzhou: Sun Yat-Sen University, 2010.
[43] Liao H P, Friman V P, Geisen S, et al. Horizontal gene transfer and shifts in linked bacterial community composition are associated with maintenance of antibiotic resistance genes during food waste composting[J]. Science of the Total Environment, 2019, 660: 841-850. DOI:10.1016/j.scitotenv.2018.12.353
[44] Stedtfeld R D, Stedtfeld T M, Waseem H, et al. Isothermal assay targeting class 1 integrase gene for environmental surveillance of antibiotic resistance markers[J]. Journal of Environmental Management, 2017, 198: 213-220. DOI:10.1016/j.jenvman.2017.04.079
[45] 程森, 路平, 冯启言. 渔业复垦塌陷地抗生素抗性基因与微生物群落[J]. 环境科学, 2021, 42(5): 2541-2549.
Cheng S, Lu P, Feng Q Y. Distribution of antibiotic resistance genes and microbial communities in a fishery reclamation mining subsidence area[J]. Environmental Science, 2021, 42(5): 2541-2549.
[46] Xu Y, Guo C S, Luo Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China[J]. Environmental Pollution, 2016, 213: 833-840. DOI:10.1016/j.envpol.2016.03.054
[47] Su H C, Ying G G, Tao R, et al. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China[J]. Environmental Pollution, 2012, 169: 42-49. DOI:10.1016/j.envpol.2012.05.007
[48] Partridge S R, Kwong S M, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clinical Microbiology Reviews, 2018, 31(4). DOI:10.1128/cmr.00088-17