2. 青岛农业大学分析测试中心, 青岛 266109
2. Instrumental Analysis Center of Qingdao Agricultural University, Qingdao 266109, China
抗生素是守护人类健康的“卫士”, 种植养殖业中也有广泛使用, 对社会经济的贡献巨大[1, 2].目前, 抗生素生产消费持续增长, 在土壤、水和沉积物等环境中均有检出[3, 4], 其诱发细菌耐药性和抗性基因, 产生环境风险[5, 6].抗生素污染已成为威胁人类健康安全的全球性环境问题.养殖粪污、医药医疗废水和生活污水等是抗生素污染的主要来源[7~10].因而, 污废水中抗生素的高效去除研究备受国内外学者关注, 同时也是我国养殖、制药和医疗卫生实现绿色可持续发展所面临的巨大挑战.
活性污泥、生物膜等生物处理技术和吸附、混凝、膜滤、氧化等物化处理技术是常用污废水的净化方法[11, 12].其中, 吸附具有操作简易、高效和可再生等优点, 是消减水中污染物的有效方法之一[13].活性炭、沸石和氧化铝等是常见的商用吸附剂, 其中活性炭最被熟知[14~16].以废弃生物质制得的生物炭吸附性能良好, 其成本较低, 有望成为新型吸附材料[17, 18].然而, 不同种类生物质生物炭的特性差异较大, 一些生物炭的吸附性能并不理想[19].因此, 越来越多的研究关注功能化生物炭吸附剂的研发[20], 涉及物化活化[21~23]、高能球磨[24, 25]、无机/有机物负载[26, 27]和纳米材料包覆[28, 29]等改性方法.负载磁性铁基氧化物(如Fe3 O4和MgFe2 O4等)可改善生物炭的孔隙结构, 增大比表面积, 调控表面电荷等特性, 提升吸附能力, 还可赋予其磁性回收性能, 备受关注[30~32].Xin等[33]将生物炭用作还原剂成功合成了生物炭修饰的CuFeO2复合材料.基于磁性铁基生物炭的优良特性, CuFeO2改性生物炭可成为潜在的高效去除水中污染物的吸附材料, 然而其对抗生素的吸附特性和作用机制尚未有报道.
本文以慢速炭化法制备生物炭, 利用共沉淀和水热技术合成CuFeO2改性生物炭, 通过吸附动力学、等温线和热力学等实验探究其对TC的吸附性能, 结合材料的官能团和多孔性等特性分析吸附作用机制, 以期为功能型生物炭在抗生素污染治理中的应用提供数据支撑和理论依据.
1 材料与方法 1.1 CuFeO2改性生物炭的制备辣椒秸秆清除表面杂污, 烘干、粉碎后经热解2 h制得生物炭, 温度条件为250、350、450、550和650℃, 标记为BC250、BC350、BC450、BC550和BC650.经实验筛选出BC450用于CuFeO2改性生物炭的制备.配制含1 ∶1量比的Cu(NO3)2和Fe(NO3)3的溶液, 加入BC450和NaOH, 转入聚四氟乙烯釜, 于160℃保持12 h, 冷却后离心、冲洗, 80℃真空干燥得到材料粉末[33].CuFeO2与BC450质量比设为4 ∶1、2 ∶1、1 ∶1、1 ∶2和1 ∶4, 标记为CuFeO2/BC450=4 ∶1、CuFeO2/BC450=2 ∶1、CuFeO2/BC450=1 ∶1、CuFeO2/BC450=1 ∶2和CuFeO2/BC450=1 ∶4.
1.2 吸附材料的特性表征利用扫描电镜(SEM, S4800, HITACHI)和透射电镜(TEM, HT7700, HITACHI)观察样品微观形貌.SEM配有能量色散X射线光谱仪(7593-H, Horiba)测定微区元素组成, TEM选定CuFeO2颗粒进行高分辨晶格成像.通过D8 Adcance型XRD(Bruker)和Nicolet 6700型FTIR(Thermo Scientific)分析矿物和官能团.建立样品对N2的吸脱附曲线(JW-BK122W, 精微高博), 分析比表面积和孔隙特性.
1.3 吸附实验建立批吸附实验探究材料对TC的吸附, 称取吸附剂于玻璃瓶中, 加入30 mL已知浓度TC溶液, 于25℃避光振荡(180 r·min-1), 反应后悬浊液过0.22 μm滤膜, 用液相色谱仪(LC-20, Shimadzu)测定滤液中TC剩余浓度.实验设3个重复, 以TC溶液样品排除降解的影响.吸附动力学条件:TC浓度20 mg·L-1、剂量0.5 g·L-1、pH为7.0±0.1.吸附等温线条件:TC浓度5~200 mg·L-1、剂量0.5 g·L-1、pH为7.0±0.1.考察温度(10、25、40℃)、剂量(0.1、0.2、0.5、1、2 g·L-1)、pH(1~11)和5次解吸再生对TC去除的影响, 各实验除影响因子外的条件同吸附动力学.
1.4 数据分析以式(1)计算吸附量:
![]() |
(1) |
式中, c0、ct和ce为初始、t和平衡时刻浓度(mg·L-1); qt和qe为t和平衡时刻吸附量(mg·g-1); V为体积(L); m为投加量(g).
以准一级、准二级动力学[式(2)、式(3)]和颗粒内扩散[式(4)]模型拟合动力学[32, 34].
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
式中, k1(min-1)、k2[g·(mg·min)-1]和k3[mg·(g·min0.5)-1]为速率常数; b为边界层效应(mg·g-1).
以Langmuir[式(5)]和Freundlich[式(6)]模型拟合吸附等温线.以式(7)和式(8)计算分离系数(RL)和亲和力指数(Kd, L·g-1)[17, 18, 32].
![]() |
(5) |
![]() |
(6) |
![]() |
(7) |
![]() |
(8) |
式中, qm为最大吸附量(mg·g-1); KL(L·mg-1)和KF(mg1-n·Ln·g-1)分别为Langmuir和Freundlich系数; n为Freundlich参数.
以式(9)~式(10)计算吸附热力学参数吉布斯自由能(ΔGθ, J·mol-1)、焓变(ΔHθ, J·mol-1)和熵变[ΔSθ, J·(mol·K)-1][31, 35].
![]() |
(9) |
![]() |
(10) |
式中, T为绝对温度(K); R为8.314 J·(mol·K)-1; Kθ为平衡分配系数, 由lnKd-ce曲线截距得到.
2 结果与讨论 2.1 CuFeO2改性生物炭吸附剂的选择在TC浓度20 mg·L-1、投加量0.5 g·L-1时, 对TC吸附效果的大小顺序为:BC450>BC550>BC650>BC350>BC250[图 1(a)], 从而选择以BC450合成CuFeO2改性生物炭.CuFeO2/BC450对TC的吸附量是BC450的1.70~2.56倍(图 1), 表明负载CuFeO2显著提升了生物炭对TC的吸附能力.CuFeO2/BC450=2 ∶1的吸附效果最佳, 然而CuFeO2/BC450=4 ∶1的吸附量却更低.过多CuFeO2负载不利于吸附的提升, 原因可能是BC450过少无法提供充足的还原位点, 不利于CuFeO2生成和与BC450复合, 减少孔隙形成和表面暴露, 甚至由于矿物堆叠导致孔隙堵塞[36].
![]() |
图 1 TC吸附动力学曲线 Fig. 1 Kinetic curves of TC adsorption |
准一级动力学方程对BC450吸附TC的拟合较好[图 2(a)和表 1], 表明BC450吸附位点较均一.CuFeO2吸附TC则更符合准二级动力学模型, 表明其与化学吸附有关[31].CuFeO2/BC450=2 ∶1吸附TC的准一级和准二级动力学拟合Radj2仅为0.616和0.821, 表明其对TC的吸附过程、机制更加复杂.利用颗粒内扩散模型拟合0~1 h和1~6 h两阶段TC在CuFeO2/BC450=2 ∶1上的吸附, Radj2达到0.967和0.975, 说明吸附速率受到扩散过程的控制[37].另外, 该模型b为12.8 mg·g-1, 占0~1 h阶段吸附量的45.6%, 界面扩散对此阶段吸附速率的影响显著.吸附剂对TC吸附量大小顺序为:CuFeO2/BC450=2 ∶1>CuFeO2>BC450, 但吸附速率顺序与之不同, 即CuFeO2改性提高了BC450的吸附量, 却降低了吸附速率.
![]() |
图 2 吸附材料对TC的吸附性能 Fig. 2 Performance of TC adsorption by the adsorbents |
![]() |
表 1 吸附动力学拟合结果1) Table 1 Kinetic fitting results of TC adsorption |
吸附等温线拟合结果见图 2(b)和表 2.供试材料吸附TC的n均小于1, 为非线性吸附.CuFeO2/BC450=2 ∶1的n为0.20, 小于BC450和CuFeO2的0.32和0.30, 表明CuFeO2负载增加了吸附位点的异质性[17, 38].CuFeO2/BC450=2 ∶1吸附TC的qm为82.8 mg·g-1, 分别是BC450和CuFeO2的2.50倍和2.22倍. Kd随Ce增大而降低[图 2(c)], 这与低浓度时TC分子优先占据强亲和性位点有关[39].CuFeO2/BC450=2 ∶1的Kd均大于BC450和CuFeO2, 说明CuFeO2和BC450的复合能够增加更强亲和力的吸附位点. RL在0~1范围之间, c0越大RL越小[图 2(d)], 表明高浓度有利于TC吸附.与BC450和CuFeO2相比, CuFeO2/BC450=2 ∶1的RL更小, 表明CuFeO2负载可促进BC450对TC的吸附[18, 31].以上结果证明CuFeO2/BC450=2 ∶1对TC具有更大的吸附量和更强的吸附亲和性.
![]() |
表 2 吸附材料对TC的等温吸附拟合结果 Table 2 Fitting results of TC adsorption on the tested adsorbents |
循环利用性是评价吸附剂性能的重要指标之一.CuFeO2/BC450=2 ∶1磁滞回线以原点对称呈S型, 饱和磁化强度为14.1 emu·g-1, 外加磁场时固液分离效果明显[图 3(a)].CuFeO2/BC450=2 ∶1经磁回收再生后对TC的去除效果降低[图 3(b)], 可能是由于再生时孔隙中TC分子存在解吸滞后而占据吸附位点[40].尽管如此, 经5次再生后CuFeO2/BC450=2 ∶1仍对TC具有较好的吸附性能, 去除率达到75%. CuFeO2/BC450=2 ∶1的5次再生循环利用中Cu浸出浓度小于65 μg·L-1, 无二次污染.
![]() |
图 3 CuFeO2/BC450=2 ∶1的磁回收循环利用性 Fig. 3 Magnetic recovery reusability of CuFeO2/BC450=2 ∶1 |
不同环境温度下CuFeO2/BC450=2 ∶1对TC的吸附如图 4(a)所示.温度越高, CuFeO2/BC450=2 ∶1的qm越大(表 3), 较高的温度有利于有机分子在孔隙中扩散迁移和与表面位点的接触并吸附[18]. ΔGθ小于0, CuFeO2/BC450=2 ∶1对TC的吸附是自发的.通过lnKθ-1/T线性关系[图 4(b)], 计算出ΔHθ为14.8 kJ·mol-1, 说明吸附TC是吸热反应. ΔSθ指示吸附中固液界面的混乱度[41], 其值为164 J·(mol·K)-1, 说明随TC在CuFeO2/BC450=2 ∶1的吸附, 体系的混乱度增加.
随CuFeO2/BC450=2 ∶1剂量增加, 其对TC的去除率渐增, 于2.0 mg·L-1达到99.2%[图 4(c)].更多的吸附剂提供更多吸附位点, 与吸附质分子间碰撞接触增加, 更有利于对吸附质的捕获去除, 但吸附剂过量时吸附位点不能被充分利用, 导致去除率趋于稳定[42].CuFeO2/BC450=2 ∶1对TC的吸附量则呈相反趋势, 即随剂量的增大不断减小.因此, 构建吸附系统时应选用适宜的剂量, 达到吸附剂的高效利用.
![]() |
图 4 反应条件对CuFeO2/BC450=2 ∶1吸附TC的影响 Fig. 4 Effects of conditions on TC adsorption by CuFeO2/BC450=2 ∶1 |
![]() |
表 3 CuFeO2/BC450=2 ∶1吸附TC的热力学参数 Table 3 Thermodynamic parameters of TC adsorption by CuFeO2/BC450=2 ∶1 |
随pH增大, CuFeO2/BC450=2 ∶1对TC的吸附呈先增加后降低的趋势, pH为7时效果最佳[图 4(d)].pH增加导致TC发生去质子化, pH < 7时TCH3+比例降低, 转为TCH2±, pH>7后TCH2±减少, 向TCH-和TC2-转变[37].利用Zetasizer Nano ZSE(Malvern)测得, BC450和CuFeO2/BC450=2 ∶1的等电点约为3.18和7.54[图 4(e)], 与文献报道中生物炭和CuFeO2的接近[43, 44].酸性pH下TCH3+与CuFeO2/BC450=2 ∶1正电荷表面和碱性pH下TCH-、TC2-与CuFeO2/BC450=2 ∶1负电荷表面的静电斥力不利于吸附作用.此外, H+与TCH3+、OH-与TCH-/TC2-还存在竞争吸附位点[45].
2.4 CuFeO2/BC450=2 ∶1的物化特性与CuFeO2的ICDD PDF卡片No. 75-2146比对, CuFeO2/BC450=2 ∶1的XRD谱中观察到(006)、(101)、(012)、(104)、(018)和(110)晶面衍射峰[图 5(a)], 为3R-CuFeO2晶体[44].与BC450相比, FTIR检出CuFeO2/BC450=2 ∶1在578 cm-1和462 cm-1的特征峰[图 5(b)], 分别为Cu—O和Fe—O的吸收峰[46].对比SEM图像发现许多固形物质分散在BC450表面[图 6(a)~6(c)], CuFeO2/BC450=2 ∶1制备中未发生CuFeO2的堆积和板化.CuFeO2的晶格条纹间距为0.25 nm[图 6(d)和6(e)], 对应(012)晶面, 与XRD中(012)衍射峰最强的结果一致, 说明CuFeO2沿(012)晶相生长的择优取向.EDS测试检出Cu和Fe的存在, 其质量分数分别为30.12%和32.55%[图 6(f)].以上表征结果证明了CuFeO2成功负载到BC450表面.
![]() |
图 5 吸附材料的XRD和FTIR谱图 Fig. 5 XRD and FTIR spectra of adsorbents |
![]() |
(a)~(c)BC450、CuFeO2和CuFeO2/BC450=2 ∶1的SEM图像, (d)~(e)CuFeO2的HRTEM图像, (f)CuFeO2/BC450=2 ∶1区域EDS谱图 图 6 吸附材料的微观形貌和元素组成 Fig. 6 Surface morphology and elemental composition of adsorbents |
吸附材料对N2吸脱附曲线如图 7(a)所示.BC450、CuFeO2和CuFeO2/BC450=2 ∶1均存在滞后环, 相对压力较高时无吸附限制, 孔隙以微介孔为主.CuFeO2/BC450=2 ∶1平均孔径、比表面积和总孔体积分别为13.09 nm、40.06 m2·g-1和0.132 cm3·g-1, 是BC450的3.52、6.82和26.4倍(表 4), 说明CuFeO2和BC450复合形成了更多孔隙结构.由孔径分布可知[图 7(b)], CuFeO2对BC450的负载改性显著增加了材料的微孔、介孔和大孔结构.相比之下, 孔隙增加大小顺序为:微孔>介孔>大孔.
![]() |
图 7 吸附材料的多孔性 Fig. 7 Porosity of adsorbents |
![]() |
表 4 吸附材料的比表面积和孔隙参数 Table 4 Surface area and pore parameters of adsorbents |
2.5 CuFeO2/BC450=2 ∶1对TC的吸附机制
有研究报道了生物炭对可解离有机污染物(如抗生素等)的吸附机制, 包括:π-π电子供受体作用、氢键作用、静电作用、疏水效应和孔隙填充[19, 21, 38, 45].相比于BC450, CuFeO2/BC450=2 ∶1的比表面积更大, 可提供更多吸附位点, 因而具有更强的吸附性能.CuFeO2/BC450=2 ∶1的微孔和介孔更多, 有利于TC经孔扩散吸附, 与吸附过程受颗粒内扩散控制的拟合结果一致.CuFeO2与BC450复合后, 吸附材料通过表面O—H与TC的氢键作用和Cu—O、Fe—O与TC的表面络合作用提高吸附性能[32].另外, pH中性条件下吸附效果最优, 较高等电点的CuFeO2引入使CuFeO2/BC450=2 ∶1表面呈正电, 静电作用有利于TC吸附.
3 结论(1) CuFeO2改性生物炭对TC具有良好的吸附性能, CuFeO2/BC450=2 ∶1的吸附能力最强, 298 K时Langmuir最大吸附量为82.8 mg·g-1.
(2) CuFeO2/BC450=2 ∶1对TC的吸附受界面扩散和孔隙扩散的控制, 是自发吸热的过程.
(3) CuFeO2/BC450=2 ∶1对TC的吸附随pH增加呈先增后降趋势, 中性pH下效果最佳.
(4) CuFeO2/BC450=2 ∶1对TC的强吸附得益于CuFeO2负载对孔隙的增加, 比表面积的增大和表面官能团、电荷属性的改变.
[1] |
刘昌孝. 当代抗生素发展的挑战与思考[J]. 中国抗生素杂志, 2017, 42(1): 1-12. Liu C X. Challenges and thinking of current antibiotic development[J]. Chinese Journal of Antibiotics, 2017, 42(1): 1-12. DOI:10.3969/j.issn.1001-8689.2017.01.002 |
[2] | Van Boeckel T P, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5649-5654. |
[3] |
李佳乐, 王萌, 胡发旺, 等. 江西锦江流域抗生素污染特征与生态风险评价[J]. 环境科学, 2022, 43(8): 4064-4073. Li J L, Wang M, Hu F W, et al. Antibiotic pollution characteristics and ecological risk assessment in Jinjiang River Basin, Jiangxi Province[J]. Environmental Science, 2022, 43(8): 4064-4073. |
[4] |
卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399. Wei C F, Li J L, Sun Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399. |
[5] | Zhu Y G, Zhao Y, Li B, et al. Continental-scale pollution of estuaries with antibiotic resistance genes[J]. Nature Microbiology, 2017, 2(4). DOI:10.1038/nmicrobiol.2016.270 |
[6] | Liu S Q, Hou X T, Xin Q, et al. Degradation of rifamycin from mycelial dreg by activated persulfate: Degradation efficiency and reaction kinetics[J]. Science of the Total Environment, 2022, 821. DOI:10.1016/j.scitotenv.2022.153229 |
[7] |
颉亚玮, 於驰晟, 李菲菲, 等. 某市污水厂抗生素和抗生素抗性基因的分布特征[J]. 环境科学, 2021, 42(1): 315-322. Xie Y W, Yu C S, Li F F, et al. Distribution characteristics of antibiotics and antibiotic resistance genes in wastewater treatment plants[J]. Environmental Science, 2021, 42(1): 315-322. |
[8] |
隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用与耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5): 20-34. Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production: An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5): 20-34. |
[9] |
刘邓平, 李彦澄, 李江, 等. 农村污水中药物及个人护理产品的污染水平及去除研究进展[J]. 生态与农村环境学报, 2020, 36(12): 1514-1521. Liu D P, Li Y C, Li J, et al. Research progress on pollution level and removal for pharmaceuticals and personal care products in rural wastewater[J]. Journal of Ecology and Rural Environment, 2020, 36(12): 1514-1521. |
[10] |
周雅靓, 沙菁洲, 巫明毫, 等. 四川抗生素制药企业废水抗生素残留特征与风险评估[J]. 中国抗生素杂志, 2021, 46(4): 346-352. Zhou Y L, Sha J Z, Wu M H, et al. Risk assessment of antibiotic residues and selective drug resistance in wastewater from antibiotic pharmaceutical enterprises in Sichuan[J]. Chinese Journal of Antibiotics, 2021, 46(4): 346-352. |
[11] |
张昱, 唐妹, 田哲, 等. 制药废水中抗生素的去除技术研究进展[J]. 环境工程学报, 2018, 12(1): 1-14. Zhang Y, Tang M, Tian Z, et al. Research progress of removal technology of antibiotics from antibiotic production wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 1-14. |
[12] |
王玉玺, 丁笑寒, 王烁阳, 等. 抗生素在城市污水处理过程中的去除研究进展[J]. 环境科学与技术, 2019, 42(5): 135-142. Wang Y X, Ding X H, Wang S Y, et al. The research progress of removal of antibiotics in municipal wastewater treatment[J]. Environmental Science & Technology, 2019, 42(5): 135-142. |
[13] | Yang K, Xing B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application[J]. Chemical Reviews, 2010, 110(10): 5989-6008. |
[14] | Liu J F, Lin H, Dong Y B, et al. The effective adsorption of tetracycline onto MoS2@Zeolite-5: Adsorption behavior and interfacial mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). DOI:10.1016/j.jece.2021.105912 |
[15] | Sousa é M L, Otero M, Rocha L S, et al. Multivariable optimization of activated carbon production from microwave pyrolysis of brewery wastes-Application in the removal of antibiotics from water[J]. Journal of Hazardous Materials, 2022, 431. DOI:10.1016/j.jhazmat.2022.128556 |
[16] |
苟恒通, 张燕. 改性介孔分子筛去除水中微量环丙沙星的研究[J]. 科技通报, 2020, 36(4): 136-142. Gou H T, Zhang Y. Removal of trace ciprofloxacin in water by modified mesoporous molecular sieve[J]. Bulletin of Science and Technology, 2020, 36(4): 136-142. |
[17] | Zheng H, Zhang Q, Liu G C, et al. Characteristics and mechanisms of chlorpyrifos and chlorpyrifos-methyl adsorption onto biochars: Influence of deashing and low molecular weight organic acid (LMWOA) aging and co-existence[J]. Science of the Total Environment, 2019, 657: 953-962. |
[18] |
范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性[J]. 环境科学, 2020, 41(3): 1308-1318. Fan S S, Liu W P, Wang J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution[J]. Environmental Science, 2020, 41(3): 1308-1318. |
[19] | Xiang W, Zhang X Y, Chen J J, et al. Biochar technology in wastewater treatment: A critical review[J]. Chemosphere, 2020, 252. DOI:10.1016/j.chemosphere.2020.126539 |
[20] | Liu Y X, Lonappan L, Brar S K, et al. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review[J]. Science of the Total Environment, 2018, 645: 60-70. |
[21] | Yakout S M. Monitoring the changes of chemical properties of rice straw-derived biochars modified by different oxidizing agents and their adsorptive performance for organics[J]. Bioremediation Journal, 2015, 19(2): 171-182. |
[22] | Kołtowski M, Hilber I, Bucheli T D, et al. Activated biochars reduce the exposure of polycyclic aromatic hydrocarbons in industrially contaminated soils[J]. Chemical Engineering Journal, 2017, 310: 33-40. |
[23] | Bian S Y, Xu S, Yin Z B, et al. An efficient strategy for enhancing the adsorption capabilities of biochar via sequential KMnO4-promoted oxidative pyrolysis and H2 O2oxidation[J]. Sustainability, 2021, 13(5). DOI:10.3390/su13052641 |
[24] | Zou H W, Zhao J W, He F, et al. Ball milling biochar iron oxide composites for the removal of chromium (Cr(Ⅵ)) from water: Performance and mechanisms[J]. Journal of Hazardous Materials, 2021, 413. DOI:10.1016/j.jhazmat.2021.125252 |
[25] |
马文艳, 裴鹏刚, 高歌, 等. 微纳米粒径生物炭的结构特征及其对Cd2+吸附机制[J]. 环境科学, 2022, 43(7): 3682-3691. Ma W Y, Pei P G, Gao G, et al. Structural characteristics of micro-nano particle size biochar and its adsorption mechanism for Cd2+[J]. Environmental Science, 2022, 43(7): 3682-3691. |
[26] |
张宏, 朱振亚, 姜英宇, 等. 壳聚糖和FeS改性生物炭吸附四环素: 吸附机制与位能分布[J]. 环境科学学报, 2020, 40(12): 4306-4317. Zhang H, Zhu Z Y, Jiang Y Y, et al. Study on the adsorption of tetracycline by chitosan and FeS modified biochar: Adsorption mechanism and site energy distribution[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4306-4317. |
[27] | Bai S S, Jin C, Zhu S S, et al. Coating magnetite alters the mechanisms and site energy for sulfonamide antibiotic sorption on biochar[J]. Journal Of Hazardous Materials, 2021, 409. DOI:10.1016/j.jhazmat.2020.125024 |
[28] |
丛鑫, 王宇, 李瑶, 等. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. Cong X, Wang Y, Li Y, et al. Adsorption characteristics of biochars and graphene oxide/biochar composites for antibiotics from aqueous solution[J]. Ecology and Environmental Sciences, 2022, 31(2): 326-334. |
[29] | Fang Z, Gao Y R, Bolan N, et al. Conversion of biological solid waste to graphene-containing biochar for water remediation: A critical review[J]. Chemical Engineering Journal, 2020, 390. DOI:10.1016/j.cej.2020.124611 |
[30] |
魏太庆, 王博, 艾丹, 等. 磁性生物炭的制备及其在环境修复中的研究进展[J]. 功能材料, 2021, 52(10): 10039-10047. Wei T Q, Wang B, Ai D, et al. Preparation of magnetic biochar and its application in environmental remediation[J]. Journal of Functional Materials, 2021, 52(10): 10039-10047. |
[31] |
王芳君, 桑倩倩, 邓颖, 等. 磁性铁基改性生物炭去除水中氨氮[J]. 环境科学, 2021, 42(4): 1913-1922. Wang F J, Sang Q Q, Deng Y, et al. Synthesis of magnetic iron modifying biochar for ammonia nitrogen removal from water[J]. Environmental Science, 2021, 42(4): 1913-1922. |
[32] | Yao B, Luo Z R, Du S Z, et al. Sustainable biochar/MgFe2 O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms[J]. Bioresource Technology, 2021, 340. DOI:10.1016/j.biortech.2021.125698 |
[33] | Xin S S, Liu G C, Ma X H, et al. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism[J]. Applied Catalysis B: Environmental, 2021, 280. DOI:10.1016/j.apcatb.2020.119386 |
[34] | Liu B X, Chen T, Wang B, et al. Enhanced removal of Cd2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2022, 438. DOI:10.1016/j.jhazmat.2022.129467 |
[35] |
魏金伯. 铁基磁性材料的制备及其铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. Wei J B. Synthesis of iron-based magnetic materials and their adsorption properties of uranium[D]. Harbin: Harbin Engineering University, 2015. |
[36] | Arif M, Liu G J, Yousaf B, et al. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review[J]. Journal of Cleaner Production, 2021, 310. DOI:10.1016/j.jclepro.2021.127548 |
[37] |
方群生, 陈志和. 多元竞争体系下的微界面动力学响应机理研究——以细颗粒泥沙吸附多元重金属离子铅、铜和镉为例[J]. 环境科学学报, 2022, 42(9): 123-132. Fang Q S, Chen Z H. Study on response mechanism of the micro-interface kinetics under multicompetition system: A case study of multiple heavy metal ions such as lead, copper and cadmium adsorption on fine sediment[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 123-132. |
[38] | Ma X H, Xin Y J, Yan Q H, et al. Adsorption characteristics of tetracycline onto biochars as affected by solution chemistry conditions and ball milling treatment[J]. Water, Air, & Soil Pollution, 2020, 231(8). DOI:10.1007/s11270-020-04769-7 |
[39] | Lian F, Xing B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. |
[40] |
田华, 田雪, 辛拓, 等. 不同土壤对菲的吸附解吸及阻滞性能[J]. 干旱区资源与环境, 2020, 34(7): 156-162. Tian H, Tian X, Xin T, et al. Adsorption-desorption of phenanthrene and retardation on different soils[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 156-162. |
[41] |
詹旭, 王婷婷, 王蒙, 等. 锌铝复合改性海泡石的磷酸盐吸附研究[J]. 环境科学与技术, 2022, 45(7): 137-144. Zhan X, Wang T T, Wang M, et al. Study on phosphate adsorption on modified Zn-Al composite sepiolite[J]. Environmental Science & Technology, 2022, 45(7): 137-144. |
[42] |
曹世军, 苏琼, 王彦斌, 等. 聚吡咯-苯胺改性核桃青皮复合材料及其对布洛芬的吸附性能研究[J]. 功能材料, 2022, 53(9): 9098-9107. Cao S J, Su Q, Wang Y B, et al. Study on polypyrrole-polyaniline modified walnut green peel biomass charcoal and its adsorption properties for ibuprofen[J]. Journal of Functional Materials, 2022, 53(9): 9098-9107. |
[43] |
连神海, 张树楠, 刘锋, 等. 不同生物炭对磷的吸附特征及其影响因素[J]. 环境科学, 2022, 43(7): 3692-3698. Lian S H, Zhang S N, Liu F, et al. Phosphorus adsorption characteristics of different biochar types and its influencing factors[J]. Environmental Science, 2022, 43(7): 3692-3698. |
[44] | Wang R N, An H Z, Zhang H Y, et al. High active radicals induced from peroxymonosulfate by mixed crystal types of CuFeO2 as catalysts in the water[J]. Applied Surface Science, 2019, 484: 1118-1127. |
[45] | Ma C C, Huang H, Gao X, et al. Honeycomb tubular biochar from fargesia leaves as an effective adsorbent for tetracyclines pollutants[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91: 299-308. |
[46] | Jia D M, Liu M, Xia J B, et al. Effective removal of aqueous glyphosate using CuFe2 O4@biochar derived from phragmites[J]. Journal of Chemical Technology and Biotechnology, 2020, 95(1): 196-204. |