2. 湖南大学环境科学与工程学院, 长沙 410082
2. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
微塑料(microplastics, MPs)是指粒径小于5 mm的塑料颗粒, 由环境中大塑料经过紫外线光解、物理分裂和生物降解等长期作用下形成, 已成为环境中新兴污染物之一[1, 2].现阶段关于污水处理厂中MPs的研究主要集中于其污染水平, 且进水丰度大多分布在1.80×102~1.20×104个·L-1, 其中聚对苯二甲酸乙二醇酯微塑料(polyethylene terephthalate microplastics, PET-MPs)的检出最为普遍[3~5].同时MPs也会被截留在污泥中, 随着微塑料截留量的逐步积累, 会对污泥微生物的生长发育过程造成负面作用[6~8], 有学者研究发现MPs蓄积会导致轮虫生长滞缓[9]及沉积物丰度下降[10].因此, MPs的长期暴露可能会对污水生物处理系统的稳定运行产生潜在影响.
好氧颗粒污泥(aerobic granular sludge, AGS)作为传统活性污泥改良后的一种特殊生物膜, 因具备优良沉降性能、结构密实和微生物含量高等优势而拥有广阔的工程应用前景[11].但其颗粒化过程较为复杂, 会受诱导晶核、胞外聚合物(extracellular polymeric substances, EPS)和水力条件等因素的影响[11, 12].MPs因具有比表面积大[13]、疏水性[14]和难降解[15]等特性, 不仅在水环境中易于团聚[14], 而且能为微生物提供生态位[16, 17].然而有关MPs是否会作为外源晶核对污泥颗粒化过程的造粒进程、物质循环和微生物菌群产生作用至今尚未见报道, 因此开展微塑料暴露对污泥颗粒化过程的影响研究具有重要意义.
基于此, 本文拟选用PET-MPs为研究对象, 通过外源投加不同粒径(13、48和250 μm)PET-MPs模拟污泥颗粒化过程中的微塑料暴露污染, 考察颗粒化过程中氮素转化规律、污泥结构差异和EPS分泌变化, 揭示颗粒化进程中微塑料暴露下系统脱氮效能、污泥理化特性和微生物富集的响应机制, 旨在为微塑料暴露对AGS形成过程的影响和稳定运行提供理论依据与技术支撑.
1 材料与方法 1.1 接种污泥与试验用水本试验所需接种污泥取自宁波市福明净化水厂的二沉池, 呈黑褐色絮体状, 接种后混合液污泥浓度(mixed liquor suspended solids, MLSS)约为6 000 mg·L-1, 污泥沉降指数(sludge index, SVI)在55 mL·g-1左右.取回种泥并空曝24 h, 去除其中的残余污染物质后进行好氧颗粒污泥培养试验.废水中检测到微塑料的平均粒径为200 μm, 但经环境长期作用会进一步裂解成更小尺寸的微粒[18], 因此本研究设置4种处理方式:R0(Control)、RS(投加13 μm PET-MPs)、RM(投加48 μm PET-MPs)和RL(投加250 μm PET-MPs), 其中PET-MPs购自中新塑料有限公司, 投加浓度均为100 mg·L-1, 以探明微塑料在环境水平浓度暴露下对AGS形成过程的影响.试验用水的主要成分如下:COD(CH3COONa·3H2 O)为200~250 mg·L-1; NH4+-N(NH4Cl)为25~35 mg·L-1; SOP(KH2PO4)为7~8 mg·L-1; NaHCO3为110 mg·L-1; MgSO4·7H2 O为40 mg·L-1; CaCl2为30 mg·L-1.
1.2 试验装置与运行条件本试验在4个构造相同的SBR反应器中进行, 如图 1所示.反应器整体由有机玻璃制成, 上部呈圆柱体, 底部呈圆锥体, 反应区高度为90 cm, 内径为8 cm, 有效容积为4.5 L; 采用上部进水、中部出水和底部曝气的形式, 排水比为50% ~60%; 采用好氧/缺氧模式, 每天运行2~3个周期, 具体过程如下:进水15 min、好氧240 min、缺氧180 min、沉降5~30 min和排水10~15 min.
![]() |
图 1 SBR试验装置示意 Fig. 1 SBR experiment device |
NH4+-N、NO2--N和NO3--N分别采用纳氏试剂分光光度法、N-(1-萘基)-乙二胺分光光度法和酚二磺酸分光光度法测定[12], TN通过加和法计算; COD采用微波消解-重铬酸钾法测定[12]; 典型周期内污染物的测定方法:待好氧颗粒污泥基本稳定后, 从各母反应器中移取相同污泥浓度的泥样至有效容积为4.5 L的4个子反应器, 多次淘洗后加试验用水至刻度线处, 试验用水的主要成分见1.1节, 分别每隔30 min进行取样检测; SV5和SV30采用重力沉降法测定[12]; MLSS、MLVSS和ESS采用重量法测定[12]; 利用光学显微镜、数码相机和扫描电镜(scanning electron microscope, SEM)对污泥外观及微观形态进行观察分析; 通过热处理法提取EPS, 并分别采用改良型BCA蛋白质测定试剂盒和苯酚-硫酸法测定其中的蛋白质(protein, PN)和多糖(polysaccharide, PS)[11, 19]; 通过上海美吉生物医药科技有限公司的Illumina MiSeq平台对污泥样品进行高通量测序及分析.
2 结果与讨论 2.1 污泥造粒进程的形态变化为了直观比较不同粒径PET-MPs暴露下AGS形成过程的差异, 本试验分别在5、25、45和65 d时对污泥形貌进行考察(图 2).由图 2可见, 驯化初期污泥为色泽暗黄、结构疏松的絮状污泥.经过25 d的培养, 试验组各反应器内粒状晶核数量增多, 但R0反应器中仍以絮状污泥为主体.当反应器运行至45 d时, R0反应器出现污泥晶核, 而此时RS和RM反应器内形成污泥小颗粒, RL反应器则基本实现污泥颗粒化.随着污泥造粒程度持续推进至65 d左右, 颗粒污泥粒径进一步增大, RL反应器的颗粒污泥结构密实规则, RS和RM反应器内颗粒污泥细小、结构较松散, 而此时R0反应器中仍有少量絮状污泥环绕在颗粒周围.由此可见, 微塑料暴露对污泥颗粒化进程具有促进作用, 且造粒速度与微塑料粒径呈正相关.分析其原因, 这可能是因为疏水性强的MPs能够作为载体供微生物黏附生长[16], 且粒径越大能够提供越多的附着位点, 从而加快污泥造粒进程.
![]() |
光学显微镜倍数:64 图 2 颗粒化过程中污泥外观变化 Fig. 2 Changes in the appearance of sludge during granulation |
根据污泥形貌差异将颗粒化过程分为3个阶段, 阶段Ⅰ(0~15 d)为接种驯化期, 阶段Ⅱ(16~60 d)为颗粒形成期, 阶段Ⅲ(61~80 d)为颗粒稳定期.为探究AGS颗粒化进程中污泥特性对微塑料暴露的响应机制, 考察了不同粒径PET-MPs暴露下不同生长时期的污泥浓度及絮凝沉降性能的变化, 结果如图 3所示.
![]() |
图 3 颗粒化过程中污泥浓度、沉降性和絮凝性变化 Fig. 3 Changes in sludge concentration, sedimentation, and flocculation during granulation |
由图 3可见, 驯化期由于沉淀时间调整, 沉降性能较差的污泥会被选择性排出, 各反应器的MLSS迅速下降, MLVSS/MLSS随之升高, 同时SV30/SV5也呈上升趋势; 对照组R0反应器ESS浓度无明显变化, 试验组则先增加后减少.这可能是因为启动初期各反应器内为絮状污泥, 经微塑料暴露后污泥絮凝性下降, 但随着微塑料持续暴露和颗粒的逐步形成, 颗粒污泥对微塑料具有更好的耐受性, 絮凝能力有所恢复.形成期R0污泥浓度趋于稳定至3 602.3 mg·L-1, 但试验组各反应器的MLSS均低于对照组, 最低值(mg·L-1)分别下降至1 650.5(RS)、1 886.4(RM)和546.6(RL), 这表明微塑料持续暴露会抑制微生物生长, 且大粒径PET暴露下抑制作用最显著.然而RL反应器的SV30/SV5在40 d时最先达到1.0, 第60 d时RL的MLVSS/MLSS增至97.2%, 同时ESS降至137.3 mg·L-1; RS和RM反应器的SV30/SV5均在50 d后趋于1.0, R0反应器则在70 d后趋于1.0.已有相关研究表明微塑料作为载体可为微生物提供附着位点[17, 20], 由此推测在整个造粒过程中, 投加微塑料可以诱导污泥微生物定殖和污泥晶核形成, 同时发现较大粒径微塑料能够促进游离细菌向污泥晶核靠拢, 进而更有利于实现污泥颗粒化.
2.3 颗粒化进程中胞外聚合物的分泌规律胞外聚合物(EPS)是微生物分泌并黏附于细胞壁外的一类高分子聚合物[21], 包含蛋白质(PN)、多糖(PS)、腐殖酸和核酸等, 其中PN和PS为主要组成部分[22], PN/PS值则与细胞表面疏水性密切相关[23, 24].
已有相关研究表明EPS可以通过架桥等作用连接和粘附微生物细胞, 有利于颗粒污泥的形成[25].图 4为污泥颗粒化进程中PN、PS含量和PN/PS值在不同粒径PET-MPs暴露影响下的变化特征.从中可见, 驯化期各反应器PN、PS含量和PN/PS值无明显变化; 形成期试验组各反应器的EPS总量均呈上升趋势, 而对照组R0反应器增幅不显著, 可见微塑料暴露下有助于刺激污泥微生物分泌EPS, 这意味着污泥粒径的增加不仅受益于微塑料提供附着生长的环境, 也受益于微塑料刺激下EPS分泌量的上升.随着污泥颗粒化程度的提高, 稳定期试验组各反应器EPS总量均高于对照组, 其中RL反应器在65 d时陡增至410.59 mg·g-1, 这可能是微生物处于微塑料蓄积压力下的一种自我保护行为[26~28].同时可以发现, 在整个颗粒化过程中PN占据主导地位, 因其带正电荷而更易通过静电作用与污泥键合, 是影响微生物聚集的关键因素[29, 30].此外, 试验组各反应器中的PN/PS值在颗粒化过程中增加趋势明显快于对照组, 分别由最初的5.57逐渐增至12.33、13.06和14.32, 这表明微塑料的引入造成PN/PS值的提升, 从而增强细胞表面疏水性.
![]() |
图 4 颗粒化过程中EPS分泌变化 Fig. 4 Changes in EPS secretion during granulation |
为明晰不同粒径微塑料对颗粒化过程中除污性能的影响, 各反应器COD、NH4+-N和TN出水情况变化如图 5所示.从中可见, 在整个颗粒化进程中对照组R0反应器的除污性能逐步提升.与对照组相比, 驯化期试验组各反应器的NH4+-N和TN去除均未受到明显影响, COD去除则在反应器运行至12 d时开始恶化, 表明微塑料暴露会抑制有机污染物的降解, 这可能是由于微塑料自身具备特殊的表面性质能够吸附废水中的部分污染物[31~33], 从而干扰微生物对污染物的去除.随着微塑料的持续暴露, 试验组各反应器COD、NH4+-N和TN均呈现不断恶化趋势, 其中ρ(TN)出水峰值最高可达(13.94±1.78)mg·L-1, 较大粒径暴露下的抑制作用更显著, 这显示出污泥造粒速度的加快并没有提升系统除污性能, 与Guo等[34]以碳酸钙和羟基磷灰石为外源晶核促进污泥颗粒化的研究结果相一致.
![]() |
图 5 颗粒化过程中COD、NH4+-N和TN出水情况变化 Fig. 5 Variations in COD, NH4+-N, and TN effluent during granulation |
为进一步探析各反应器除污性能恶化的原因, 对稳定期典型周期内各系统的COD、NH4+-N、NO2--N和NO3--N的转化过程进行考察, 结果如图 6所示, 其转化过程主要集中在好氧阶段.从图 6可以看出各反应器对COD的转化利用无明显差异[图 6(a)].对照组R0反应器的NH4+-N浓度在120 min时最先基本去除殆尽, RS和RM反应器分别在反应进行至150 min和210 min时亦几乎检测不出, 而RL反应器在好氧结束时(240 min)的ρ(NH4+-N)为(1.85±0.09)mg·L-1, 表明较大粒径微塑料暴露明显抑制了氨氮的去除过程.此外通过对比各反应器NH4+-N浓度随时间变化的趋势发现, NH4+-N去除速率随微塑料粒径的增大而减缓, 该现象直观显示微塑料暴露降低了氨氧化速率, 其中较大粒径抑制作用更明显[图 6(b)].对照组R0和试验组RS、RM的NO2--N浓度均呈现先升高后下降的趋势, 同时NO3--N浓度始终维持在较低的浓度, 呈现显著的同步硝化反硝化作用; 各反应器NO2--N的最大积累量随着微塑料粒径的增大而上升, 其中RL反应器的ρ(NO2--N)持续升至(5.08±0.24)mg·L-1, 且NO3--N浓度均低于其余反应器, 这表明NO2--N氧化为NO3--N的过程明显受阻, 系统脱氮过程主要以短程硝化反硝化的方式进行[图 6(c)~6(d)].
![]() |
图 6 稳定期COD、NH4+-N、NO2--N和NO3--N典型周期内的变化 Fig. 6 Variations in the typical cycle of COD, NH4+-N, NO2--N, and NO3--N in the stable stage |
各反应器污泥微观结构的SEM结果显示, 对照组R0污泥结构规则且孔隙率高, 而微塑料暴露下的颗粒污泥内部结构受到严重破坏, 污泥骨架趋于松散, 孔隙率明显下降(图 7).这表明PET-MPs的持续暴露不仅改变了污泥内部的结构, 也阻碍了传质通道中营养物质和O2的运输传递, 从微观角度解释了微塑料暴露下污染物转化过程受阻的原因.
![]() |
(a) R0; (b) RS; (c) RM; (d) RL 图 7 稳定期的污泥微观形态 Fig. 7 Morphology of sludge in the stable stage |
为探明微塑料对污泥颗粒化过程的影响机制, 考察了稳定期门、科水平上前10和前20的菌群富集特征(图 8).从图 8(a)中可以看出, 变形菌门(Proteobacteria)和拟杆菌门(Bacteroidota)是颗粒化过程中相对丰度最高的2个优势门, 但微塑料暴露使其产生明显差异.由于微塑料具备疏水特性, 在运行期间增加了其与污泥微生物的接触, 这进一步表明微塑料有利于微生物富集定殖.有研究表明, Proteobacteria是分泌EPS的主要菌门之一[35, 36], 其在试验组各反应器中的相对丰度较对照组分别上升了10.58%(RS)、23.19%(RM)和32.02%(RL), 可见Proteobacteria在微塑料暴露下通过分泌EPS提升了污泥疏水性, 从而加快污泥造粒进程.微塑料持续暴露后使厚壁菌门(Firmicutes)相对丰度增加, 产生更多具有较强抗逆性的内生孢子形成保护[37, 38], 以防微塑料造成进一步破坏.Bacteroidota是降解有机化合物的功能性微生物[39], 硝化螺旋菌门(Nitrospirota)则是一类具备硝化能力的菌门[40], 试验组各反应器的相对丰度较对照组均出现不同程度的下降, 与试验组中出现COD上升[图 5(a)]和亚硝酸氮积累现象[图 6(c)]相符.
![]() |
(a) 门水平; (b) 科水平 图 8 门和科水平的微生物群落相对丰富度变化 Fig. 8 Changes in relative abundance of microbial community at phylum and family level |
在科水平上进一步探析了颗粒形成过程中各反应器的微生物富集差异, 分布情况见图 8(b).有研究表明, 红环菌科(Rhodocyclaceae)、鞘氨醇杆菌科(Sphingomonadaceae)、黄杆菌科(Flavobacteriaceae)和红细菌科(Rhodanobacteraceae)都能够分泌EPS以促进污泥絮体附着和好氧颗粒的形成[41, 42].这些菌科在微塑料暴露下均呈现上升趋势, 共聚集后能够良好共存, 对于颗粒污泥的形成起到关键作用.根据已有研究发现丛毛单胞菌科(Comamonadaceae)是硝化菌的一种[43~45], 能够转化去除污水中的NH4+-N和NO2--N, 然而其在试验组各反应器的相对丰度由对照组的16.77%分别下降为11.83%(RS)、8.22%(RM)和0.13%(RL); 几丁质菌科(Chitinophagaceae)则是一种氨氧化细菌[46], 在试验组各反应器中的相对丰度均低于对照组, 这进一步从微生物学角度证明微塑料可抑制氨氮和亚硝酸盐氮氧化过程及效率.此外, 微塑料的持续暴露还阻碍了一些反硝化细菌的生长, 如红杆菌科(Rhodobacteraceae)、生丝单胞菌科(Hyphomonadaceae)和黄单胞菌科(Xanthomonadaceae)[47, 48], 其相对丰度在微塑料暴露后均出现不同程度的下降, 进而抑制了各试验组反应器TN的去除.
3 结论(1) 不同粒径PET-MPs暴露均可促进污泥颗粒化, PET暴露粒径越大, 可以提供更多微生物生态位, 同时有助于刺激分泌EPS, 显著增强细胞表面疏水性, 更易于诱导污泥造粒.
(2) 在污泥颗粒化过程中, 当颗粒晶核形成后, PET-MPs的持续暴露会堵塞内部传质通道和吸附污染物质, 抑制系统硝化过程, 从而导致氮素蓄积, 其中250 μm PET组的影响最为明显.
(3) 在AGS形成过程中, Rhodocyclaceae、Sphingomonadaceae、Flavobacteriaceae和Rhodanobacteraceae会富集分泌EPS, 从而促进污泥造粒; 但微塑料持续暴露会导致Comamonadaceae、Chitinophagaceae、Rhodobacteraceae、Hyphomonadaceae和Xanthomonadaceae丰度降低, 进而削弱系统的脱氮性能.
[1] | Wang Q Y, Li Y L, Liu Y Y, et al. Effects of microplastics accumulation on performance of membrane bioreactor for wastewater treatment[J]. Chemosphere, 2022, 287. DOI:10.1016/j.chemosphere.2021.131968 |
[2] | Sun J, Dai X H, Wang Q L, et al. Microplastics in wastewater treatment plants: detection, occurrence and removal[J]. Water Research, 2019, 152: 21-37. DOI:10.1016/j.watres.2018.12.050 |
[3] | Wei W, Chen X M, Peng L, et al. The entering of polyethylene terephthalate microplastics into biological wastewater treatment system affects aerobic sludge digestion differently from their direct entering into sludge treatment system[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116731 |
[4] | Li L, Song K, Yeerken S, et al. Effect evaluation of microplastics on activated sludge nitrification and denitrification[J]. Science of the Total Environment, 2020, 707. DOI:10.1016/j.scitotenv.2019.135953 |
[5] |
贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112. Jia Q L, Chen H, Zhao X, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112. DOI:10.13227/j.hjkx.201903100 |
[6] |
白濛雨, 赵世烨, 彭谷雨, 等. 城市污水处理过程中微塑料赋存特征[J]. 中国环境科学, 2018, 38(5): 1734-1743. Bai M Y, Zhao S Y, Peng G Y, et al. Occurrence, characteristics of microplastic during urban sewage treatment process[J]. China Environmental Science, 2018, 38(5): 1734-1743. DOI:10.3969/j.issn.1000-6923.2018.05.016 |
[7] | Prata J C. Microplastics in wastewater: State of the knowledge on sources, fate and solutions[J]. Marine Pollution Bulletin, 2018, 129(1): 262-265. DOI:10.1016/j.marpolbul.2018.02.046 |
[8] | Zhang J S, Liu G H, Wei Q, et al. Regional discrepancy of microbial community structure in activated sludge system from Chinese WWTPs based on high-throughput 16S rDNA sequencing[J]. Science of the Total Environment, 2022, 818. DOI:10.1016/j.scitotenv.2021.151751 |
[9] | Jeong C B, Won E J, Kang H M, et al. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus)[J]. Environmental Science & Technology, 2016, 50(16): 8849-8857. |
[10] |
李汶璐, 王志超, 杨文焕, 等. 微塑料对沉积物细菌群落组成和多样性的影响[J]. 环境科学, 2022, 43(5): 2606-2613. Li W L, Wang Z C, Yang W H, et al. Effects of microplastics on bacterial community composition and diversity in sediments[J]. Environmental Science, 2022, 43(5): 2606-2613. DOI:10.13227/j.hjkx.202109135 |
[11] | Peng T, Wang Y Y, Wang J Q, et al. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge[J]. Chemosphere, 2022, 303(2). DOI:10.1016/j.chemosphere.2022.135116 |
[12] |
张兰河, 赵倩男, 张海丰, 等. Ca2+对污泥硝化活性和絮凝沉降性能的影响[J]. 环境科学, 2019, 40(9): 4160-4168. Zhang L H, Zhao Q N, Zhang H F, et al. Effect of Ca2+ on the nitrification activity and the flocculation and sedimentation performances of the activated sludge[J]. Environmental Science, 2019, 40(9): 4160-4168. |
[13] | Zhou C S, Wu J W, Ma W L, et al. Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes[J]. Journal of Hazardous Materials, 2022, 432. DOI:10.1016/j.jhazmat.2022.128715 |
[14] |
董姝楠, 夏继红, 王为木, 等. 典型水环境因素对聚酯微塑料沉降的影响机制研究[J]. 中国环境科学, 2021, 41(2): 735-742. Dong S N, Xia J H, Wang W M, et al. Effect mechanism of aquatic environmental factor on the sedimentation of polyethylene terephthalate microplastic[J]. China Environmental Science, 2021, 41(2): 735-742. DOI:10.3969/j.issn.1000-6923.2021.02.028 |
[15] | Gatidou G, Arvaniti O S, Stasinakis A S. Review on the occurrence and fate of microplastics in sewage treatment plants[J]. Journal of Hazardous Materials, 2019, 367: 504-512. DOI:10.1016/j.jhazmat.2018.12.081 |
[16] | Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches[J]. Marine Pollution Bulletin, 2011, 62(8): 1683-1692. DOI:10.1016/j.marpolbul.2011.06.004 |
[17] |
陶辉, 戚怡婷, 于多, 等. 微塑料对变形杆菌生物膜生长发育的影响[J]. 环境科学, 2022, 43(3): 1455-1462. Tao H, Qi Y T, Yu D, et al. Influence of microplastics on the development of Proteus biofilm[J]. Environmental Science, 2022, 43(3): 1455-1462. DOI:10.13227/j.hjkx.202107084 |
[18] | Xu X, Jian Y, Xue Y G, et al. Microplastics in the wastewater treatment plants (WWTPs): Occurrence and removal[J]. Chemosphere, 2019, 235: 1089-1096. DOI:10.1016/j.chemosphere.2019.06.197 |
[19] | Tang L, Liu X R, Yang G J, et al. Spatial distribution, sources and risk assessment of perfluoroalkyl substances in surface soils of a representative densely urbanized and industrialized city of China[J]. CATENA, 2021, 198. DOI:10.1016/j.catena.2020.105059 |
[20] | Long B, Yang C Z, Pu W H, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63. DOI:10.1016/j.biortech.2014.05.039 |
[21] | Yang G J, Zhang N, Yang J N, et al. Interaction between perfluorooctanoic acid and aerobic granular sludge[J]. Water Research, 2020, 169. DOI:10.1016/j.watres.2019.115249 |
[22] | Xu J K, Wang X Y, Zhang Z N, et al. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge[J]. Science of the Total Environment, 2021, 783. DOI:10.1016/j.scitotenv.2021.146954 |
[23] |
程祯, 刘永军, 刘喆, 等. 好氧污泥强化造粒过程中EPS的分布及变化规律[J]. 环境工程学报, 2015, 9(5): 2033-2040. Cheng Z, Liu Y J, Liu Z, et al. Distribution and changes of EPS in strengthening granulation process of aerobic sludge[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2033-2040. |
[24] | Li Y F, Wang D B, Yang G J, et al. The novel pretreatment of Co2+ activating peroxymonosulfate under acidic condition for dewatering waste activated sludge[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 259-267. DOI:10.1016/j.jtice.2019.06.010 |
[25] | He Q L, Zhang J, Gao S X, et al. A comprehensive comparison between non-bulking and bulking aerobic granular sludge in microbial communities[J]. Bioresource Technology, 2019, 294. DOI:10.1016/j.biortech.2019.122151 |
[26] | Coburn K M, Wang Q Z, Rediske D, et al. Effects of extracellular polymeric substance composition on bacteria disinfection by monochloramine: application of MALDI-TOF/TOF-MS and multivariate analysis[J]. Environmental Science & Technology, 2016, 50(17): 9197-9205. |
[27] | Kedves A, Sánta L, Balázs M, et al. Chronic responses of aerobic granules to the presence of graphene oxide in sequencing batch reactors[J]. Journal of Hazardous Materials, 2020, 389. DOI:10.1016/j.jhazmat.2019.121905 |
[28] | He Q L, Yuan Z, Zhang J, et al. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading[J]. Chemosphere, 2017, 173: 411-416. DOI:10.1016/j.chemosphere.2017.01.085 |
[29] | Tang C J, Zheng P, Wang C H, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research, 2011, 45(1): 135-144. DOI:10.1016/j.watres.2010.08.018 |
[30] | Jin B, Wilén B M, Lant P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge[J]. Chemical Engineering Journal, 2003, 95(1-3): 221-234. DOI:10.1016/S1385-8947(03)00108-6 |
[31] | Zhang Z Q, Chen Y G. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review[J]. Chemical Engineering Journal, 2020, 382. DOI:10.1016/j.cej.2019.122955 |
[32] | Bakir A, Rowland S J, Thompson R C. Transport of persistent organic pollutants by microplastics in estuarine conditions[J]. Estuarine, Coastal and Shelf Science, 2014, 140: 14-21. DOI:10.1016/j.ecss.2014.01.004 |
[33] | Cimbritz M, Edefell E, Thörnqvist E, et al. PAC dosing to an MBBR-Effects on adsorption of micropollutants, nitrification and microbial community[J]. Science of the Total Environment, 2019, 677: 571-579. DOI:10.1016/j.scitotenv.2019.04.261 |
[34] | Guo Y, Zhang B, Feng S Q, et al. Unveiling significance of Ca2+ ion for start-up of aerobic granular sludge reactor by distinguishing its effects on physicochemical property and bioactivity of sludge[J]. Environmental Research, 2022, 212. DOI:10.1016/j.envres.2022.113299 |
[35] | Tang L Q, Su C Y, Fan C P, et al. Long-term effect of perfluorooctanoic acid on the anammox system based on metagenomics: Performance, sludge characteristic and microbial community dynamic[J]. Bioresource Technology, 2022, 351. DOI:10.1016/j.biortech.2022.127002 |
[36] | Miao L Z, Wang P F, Hou J, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Science of the Total Environment, 2019, 650: 2395-2402. |
[37] | Liu Y R, Wei D, Xu W Y, et al. Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: System evaluation and community structure[J]. Bioresource Technology, 2019, 288. DOI:10.1016/j.biortech.2019.121504 |
[38] | Wang H Y, He Q L, Chen D, et al. Microbial community in a hydrogenotrophic denitrification reactor based on pyrosequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(24): 10829-10837. DOI:10.1007/s00253-015-6929-y |
[39] | Li J R, Chen T, Yin J, et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334. DOI:10.1016/j.biortech.2021.125143 |
[40] | Perman E, Schnürer A, Björn A, et al. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste[J]. Biomass and Bioenergy, 2022, 161. DOI:10.1016/j.biombioe.2022.106478 |
[41] | Lv Y, Wan C L, Lee D J, et al. Microbial communities of aerobic granules: Granulation mechanisms[J]. Bioresource Technology, 2014, 169: 344-351. DOI:10.1016/j.biortech.2014.07.005 |
[42] | Khan M F, Yu L L, Tay J H, et al. Coaggregation of bacterial communities in aerobic granulation and its application on the biodegradation of sulfolane[J]. Journal of Hazardous Materials, 2019, 377: 206-214. |
[43] |
严子春, 李永波, 彭虎. Mn2+对A/O-BAF系统处理效能和细菌群落多样性的影响[J]. 微生物学报, 2022, 62(1): 176-188. Yan Z C, Li Y B, Peng H. Effects of Mn2+ on the removal efficiency and microbial community diversity of A/O-BAF[J]. Acta Microbiologica Sinica, 2022, 62(1): 176-188. |
[44] | Nájera A F, Serwecińska L, Szklarek S, et al. Seasonal and spatial changes of N-transforming microbial communities in sequential sedimentation-biofiltration systems-Influence of system design and environmental conditions[J]. International Biodeterioration & Biodegradation, 2021, 159. DOI:10.1016/j.ibiod.2021.105203 |
[45] | Jia L P, Jiang B H, Huang F, et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system[J]. Bioresource Technology, 2019, 294. DOI:10.1016/j.biortech.2019.122140 |
[46] | Wu L N, Shen M Y, Li J, et al. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal[J]. Environmental Pollution, 2019, 254. DOI:10.1016/j.envpol.2019.112965 |
[47] |
杨惠兰, 张丹, 兰书焕, 等. 聚己内酯复合固体碳源的制备及其深度脱氮性能研究[J]. 环境科学学报, 2022, 42(5): 263-273. Yang H L, Zhang D, Lan S H, et al. Preparation of polycaprolactone composite solid carbon source and its tertiary nitrogen removal[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 263-273. |
[48] | McCormick A, Hoellein T J, Mason S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river[J]. Environmental Science & Technology, 2014, 48(20): 11863-11871. |