环境科学  2023, Vol. 44 Issue (1): 367-375   PDF    
铜冶炼场地周边土壤重金属污染特征与风险评价
彭驰, 刘旭, 周子若, 姜智超, 郭朝晖, 肖细元     
中南大学冶金与环境学院环境工程研究所, 长沙 410083
摘要: 铜冶炼生产活动会造成周边土壤重金属污染, 威胁公众健康.通过收集整理已发表文献数据, 从整体上研究了国内外40个铜冶炼场地周边不同土地利用类型土壤重金属的累积特征、分布规律以及健康风险.结果表明, 铜冶炼场地周边土壤重金属ω(As)、ω(Cd)、ω(Cu)、ω(Pb)和ω(Zn)平均值分别为196、10.5、1 948、604和853 mg·kg-1, 地累积指数(Igeo)依次为:Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), Cd和Cu累积最严重.土壤重金属内梅罗指数(NIPI)高值主要出现在冶炼历史长、工艺落后和环保措施不足的场地.土壤重金属含量之间呈现显著相关性, 随着采样半径增加而降低, 主要累积在冶炼场地周边2~3 km内.相对于冶炼历史、规模和工艺, 土地利用类型对土壤重金属含量影响较小.铜冶炼场地周边土壤重金属普遍存在致癌风险与非致癌风险, 其中冶炼生产区As和Pb, 林地Pb的健康风险较高.研究结果可以指导冶炼场地周边土壤重金属污染风险防控工作.
关键词: 冶炼场地      土地利用类型      风险评价      全球尺度      数据整合分析     
Characteristics and Risk Assessment of Heavy Metals in the Soil Around Copper Smelting Sites
PENG Chi , LIU Xu , ZHOU Zi-ruo , JIANG Zhi-chao , GUO Zhao-hui , XIAO Xi-yuan     
Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
Abstract: Copper smelting can cause heavy metal pollution in surrounding soil and threaten human health. This study examined the characteristics, distribution, and health risk of heavy metals in soil with different land uses around 40 copper smelting sites at home and abroad by collecting published literature data. The results showed that the mean values of ω(As), ω(Cd), ω(Cu), ω(Pb), and ω(Zn) in the soil around the copper smelting sites were 196, 10.5, 1 948, 604, and 853 mg·kg-1, respectively. The order of Igeo was Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), and the accumulation of Cd and Cu was the most serious. High Nemero index (NIPI) values were found in the soil around smelting sites with a long history of smelting, outdated process, and insufficient environmental protection measures. Significant correlations were found between the concentrations of heavy metals in the soil, which decreased with the sampling distance. The heavy metals mainly accumulated within 2-3 km from the smelting sites. Compared with the smelting history, scale, and process, land use type had a lower effect on soil heavy metal concentrations. The heavy metals in the soil around copper smelters may pose carcinogenic and non-carcinogenic risks on residents. The high health risks were mainly caused by As and Pb in smelting production areas, and Pb in woodland. These results may guide the risk prevention of heavy metal pollution in the soil around smelting sites.
Key words: smelting site      land use type      risk assessment      global scale      data integration and analysis     

有色金属冶炼是造成土壤重金属污染的主要原因之一[1].铜冶炼是对铜矿石的精炼和提纯过程, 涉及焙烧和电解等工艺, 因此在生产过程中会排放大量的废水、废气和废渣[2].冶炼废气和废水中重金属在经由大气扩散和径流迁移后, 会在冶炼场地周边土壤中累积[3].冶炼废渣如被不合理堆放, 其中重金属会随降雨产生的地表径流迁移, 污染周边土壤[4].土壤重金属具有易积累、难降解、隐蔽性强和残留时间长等特点, 难以彻底去除[5, 6].同时土壤重金属可以通过多途径进入人体, 威胁居民健康[7].许多铜冶炼企业位于城市郊区, 随着城市扩张和环保要求升级, 冶炼企业普遍迁移和关停, 但其遗留的土壤污染问题不容忽视[8, 9].

目前, 对于冶炼场地周边土壤污染研究主要集中在重金属分布规律、源解析和风险评价等方面[10~12].土地利用类型会影响到重金属的迁移和归趋, 进而影响土壤重金属累积量[13].但现有研究大多针对单个冶炼场地与单种土地利用类型[14, 15], 对不同冶炼场地以及不同土地利用类型下土壤重金属整体累积特征的研究较少.通过分析公开发表的文献数据, 可以更为系统地分析土壤污染物整体分布和形成规律[16, 17].例如, Jiang等[18]和Lei等[19]通过研究已发表文献数据, 阐明了我国冶炼场地周边土壤重金属的累积特征与主要污染元素.但全球铜冶炼场地周边土壤重金属的分布规律和风险特征尚不明确.因此本研究在全球范围收集了已发表的铜冶炼场地周边土壤重金属数据, 通过整合分析:①阐明铜冶炼场地周边土壤重金属累积和分布特征; ②揭示土地利用类型对铜冶炼场地周边土壤重金属含量及其健康风险的影响, 以期为铜冶炼场地周边土壤重金属污染治理与风险防控提供建议与支持.

1 材料与方法 1.1 数据收集与处理

本研究整理收集了近20年发表的铜冶炼场地及周边土壤重金属相关研究论文, 其主要来源为Web of Science(www.webofknowledge. com)、Science Direct(www.sciencedirect.com)和中国知网(www.cnki.net).检索关键词包括“土壤重金属” “铜冶炼” “重金属”以及各个国家的名称等.文献筛选要求为公开发表且经过同行评议, 并且报道了定量分析和质控方法的研究性论文.此外, 为保证数据代表性, 每个研究采样点数需大于3个, 同时给出相关采样点位布设信息.文献中土壤重金属含量的定量方法主要为原子吸收光谱法(AAS)、电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体发射光谱法(ICP-OES)等.因筛选后文献大多针对As、Cd、Pb、Cu和Zn进行研究, 且这5种元素是铜冶炼的主要污染物[20, 21], 因此本研究选用这5种元素作为对象.最终筛选出19个国家的40个铜冶炼场地及周边区域的35篇文献, 共计1 296个表层土样(0~20 cm)的重金属含量数据.本研究对文献中冶炼场地位置、采样半径、土地利用类型和重金属含量统计值进行了整理汇总和二次统计分析.

1.2 内梅罗综合指数(NIPI)

使用内梅罗综合指数法研究土壤重金属的污染程度, 既能全面评价土壤中不同污染物的综合污染水平, 还能反映高含量污染物对环境的危害[22].计算公式为:

(1)
(2)

式中, PI表示污染物的单因子污染指数, PIave表示土壤中各重金属的污染指数平均值, PIimax表示土壤中各重金属的污染指数最大值, Ci表示土壤中重金属的含量(mg·kg-1), Bi表示其参考背景含量(mg·kg-1), 根据已有研究, 使用上地壳含量[23~25].内梅罗综合指数法将土壤重金属污染程度划分为5个等级:NIPI≤0.7为清洁, 0.7<NIPI≤1为尚清洁, 1<NIPI≤2为轻度污染, 2<NIPI≤3为中污染, NIPI>3为重度污染.

1.3 地积累指数(Igeo)

Igeo被广泛应用于评估土壤重金属的累积程度[26, 27].计算公式为:

(3)

式中, CiBi含义同公式(1).按Igeo大小可以将土壤重金属累积程度分为7个等级:Igeo≤0为未累积, 0<Igeo≤1为未累积至中度累积, 1<Igeo≤2为中度累积, 2<Igeo≤3为中度累积至重度累积, 3<Igeo≤4为重度累积, 4<Igeo≤5为重度累积至严重累积, Igeo>5为严重累积.

1.4 健康风险评价

美国环保署基于土壤污染物的暴露水平和毒性效应评估其致癌和非致癌风险, 并制定了土壤污染物风险筛选值SL[28], 可以用来快速评估土壤污染物的健康风险.根据USEPA建议, 对As进行致癌风险分析, 其它元素进行非致癌风险分析.基于筛选值的健康风险计算公式如下[29].

致癌风险:

(4)

非致癌风险:

(5)

式中, SLc表示致癌物的筛选值(mg·kg-1), Triskc表示总致癌风险, SLN表示非致癌物的筛选水平(mg·kg-1), Triskn表示总非致癌风险.根据筛选水平通用表, As、Cd、Cu、Pb和Zn的筛选水平标准分别为0.68、71、3 100、400和23 000(mg·kg-1).对于致癌风险, 风险值低于10-6代表安全水平, 介于10-6和10-4之间的代表潜在致癌风险, 大于10-4则代表存在致癌风险, 非致癌物的风险界定阈值为1.

1.5 数据处理

本研究中Igeo和NIPI的计算通过Excel 2019(Microsoft Corp., USA)完成.相关性分析通过SPSS 22.0(IBM, USA)完成.在相关分析之前, 将重金属含量进行对数转换以获得近似正态分布.土壤重金属含量的空间分布图使用ArcGIS 10.2(ESRI. Inc., USA)绘制.其它统计图通过Sigmaplot 14.0(Systat Software, USA)绘制.

2 结果与讨论 2.1 铜冶炼场地周边土壤重金属累积特征

表 1所示, 铜冶炼场地周边土壤重金属ω(As)、ω(Cd)、ω(Cu)、ω(Pb)和ω(Zn)平均值分别为196、10.5、1 948、604和853 mg·kg-1, 分别超过了背景值的34.4、175、72.1、24.2和11.1倍.场地间重金属含量差异很大, 多数场地重金属含量远高于背景值. ω(As)和ω(Cd)最高值出现在墨西哥, 分别为1 816 mg·kg-1和86.3 mg·kg-1. ω(Cu)、ω(Pb)和ω(Zn)最高值分别出现在伊朗、波兰和加拿大, 为31 240、3 533和7 001 mg·kg-1.场地间土壤重金属含量差异与冶炼矿石品质、冶炼历史、冶炼工艺和环保措施等差异有关[30~32].重金属平均Igeo大小依次为:Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), 见表 2.铜冶炼场地周边土壤均受到不同程度Cu和Cd累积, Cd和Cu的Igeo>3的场地占比超过90%和55%, 说明大部分铜冶炼场地周边土壤Cd和Cu在重度至严重累积水平.土壤中As、Pb和Zn的Igeo值从未累积到严重累积均有分布.As和Pb处于重度及以上污染的场地分别占43.5%和35.3%.土壤Zn累积程度最低, 有41.9%的场地不存在Zn累积.总之, 铜冶炼活动会造成周边土壤重金属明显累积, 尤其是Cd和Cu元素.

表 1 铜冶炼场地周边土壤重金属含量平均值汇总1) Table 1 Summary of average concentrations of heavy metals in soil around copper smelting sites

表 2 铜冶炼场地周边土壤Igeo平均值与等级分布 Table 2 Mean Igeo value and grade distribution of heavy metals in soil around copper smelting sites

2.2 全球范围铜冶炼场地周边土壤重金属分布特征

图 1所示, 已有研究中铜冶炼场地主要分布在欧洲(30%)、亚洲(27.5%)和北美洲(25%), 其次是南美洲(10%)和非洲(5%), 大洋洲仅占2.5%.其中研究较多的国家有中国、加拿大、智利和波兰等.以上国家铜矿资源丰富, 属于全球主要产铜国, 因此利用本国丰富的铜资源建立了较多的铜冶炼厂[68].重金属的NIPI指数可以反映出土壤重金属的整体污染水平.大多数场地的NIPI>3, 说明大部分场地土壤属于重度污染.NIPI超过300的场地分别位于墨西哥San Luis Potosi(1 054.7)、伊朗Sarchehmeh(843.4)和加拿大Flin Flon(449.8).100 < NIPI < 300的场地主要分布在英国Prescot、波兰Lower Silesia、瑞典Rönnskär、刚果(布)Lubumbashi、墨西哥Morales、中国辽宁省沈阳市、赞比亚Kitwe、美国Anaconda和俄罗斯Karabash.这些高污染场地多为当地规模较大的工业场地, 建立时间早, 工艺落后, 因而周边土壤重金属累积程度高.如英国Prescot和瑞典Rönnskär的场地建厂生产分别超过了100 a和70 a[54, 60].墨西哥Morales、伊朗Sarchehmeh和波兰Lower Silesia等场地, 将未经处理的冶炼渣随意堆放, 经风力侵蚀和雨水冲刷后, 可能向周边土壤释放重金属[38, 54, 59].虽然一些冶炼厂在经过长期生产后改进了工艺、增设了过滤设备, 但是土壤中重金属历史累积量大, 污染仍然严重[37, 53].相比之下, 西班牙Huelva和中国安徽省芜湖市的场地NIPI相对较低(NIPI分别为3.35和2.51), 这与冶炼厂生产历史较短、工艺较为先进有关[54, 60].因此, 冶炼历史、生产工艺和环保措施是影响铜冶炼场地周边土壤重金属污染程度的主要因素.

图 1 铜冶炼场地周边土壤重金属NIPI空间分布 Fig. 1 Distribution of NIPI values of heavy metals in soil around copper smelting sites

2.3 铜冶炼场地周边土壤重金属相关性分析

铜冶炼场地周边土壤重金属间相关性分析结果见表 3, As与Cd、Cu、Pb和Zn间显著相关(P < 0.01), Cd与Pb和Zn之间显著相关(P < 0.05), 说明这些重金属都有相似的来源.铜矿石中含有多种重金属元素, As、Cd、Pb和Zn都是其中的伴生元素[20, 58]. 铜矿石在冶炼生产中会经历焙烧、浸出、电解和萃取等一系列工序, 导致多种重金属元素从铜矿石中释放出来, 以三废的形式进入冶炼场地周边环境中. 因此冶炼场地周边土壤往往呈现出多重金属元素复合污染.

表 3 铜冶炼场地周边土壤重金属含量与采样半径间相关性分析结果1) Table 3 Correlations between soil heavy metal concentrations and sampling radius near copper smelting sites

采样半径代表各研究中土壤采样点与冶炼场地的最大采样距离, 其与土壤As、Cd、Cu和Pb均呈显著负相关(P < 0.05).这说明随着采样范围增大, As、Cd、Cu和Pb含量逐渐降低.由于土壤Zn累积程度较低, 含量与采样距离无显著相关.大气沉降和地表径流迁移是重金属进入土壤的主要途径, 因而随着到污染源的距离增加, 土壤重金属的含量逐渐降低[69~71].各研究采样半径分布不均, 其中3 km和2 km两个采样半径的场地分别占到研究总数的55%和42.5%, 因此本研究选取了这两个采样半径进行对比(图 2), 结果表明采样半径 < 3 km的研究中土壤As、Pb和Cu含量显著高于采样半径>3 km的研究结果(P < 0.05).此外, 采样半径 < 2 km的土壤Cd和Cu含量显著高于采样半径>2 km的研究(P < 0.05).可见场地周边2~3 km内土壤重金属累积更为严重, 需重点关注.但是部分场地3 km外土壤重金属依然存在严重累积, 如斯洛伐克Krompachy的场地土壤样品采集在下风向, 重金属迁移范围更大[53].俄罗斯Karabash的场地冶炼区域植被退化, 重金属随地表径流迁移更远[37].另外, 部分研究由于采样点不足、采样范围较小, 可能会低估污染范围.

图 2 铜冶炼场地周边不同采样半径下土壤重金属含量特征 Fig. 2 Concentrations of heavy metals in soil around copper smelting sites under different sampling radiuses

2.4 不同土地利用类型下土壤重金属累积特征

冶炼场地周边不同土地利用下土壤重金属含量存在差异, 土壤ω(As)、ω(Cu)、ω(Pb)和ω(Cd)平均值在冶炼生产区中最高, 其次为林地土壤(图 3).冶炼生产区与污染源距离最近, 因此重金属含量平均值最高.而林地通常分布在冶炼厂周边, 且林地中树冠会拦截大气环境重金属, 植物凋落物分解后的有机质会增加土壤对重金属的吸附能力[72, 73], 因此林地土壤重金属含量仅次于冶炼生产区.农用地中重金属来源除了大气沉降和污水灌溉, 农药和化肥施用也会向农用地输入重金属[74], 因此在农用地中Cu和Zn含量也较高.居住用地通常距离冶炼生产区更远, 因此重金属含量相对较低.方差分析表明不同土地利用类型中土壤重金属含量差异不显著, 这可能是因为各个研究针对的土地利用类型不一致, 如在加拿大Flin Flon的Cu-Zn冶炼厂周边仅研究了林地土壤, 而其ω(Zn)(7 001 mg·kg-1)显著提高了林地土壤Zn平均值.罗马尼亚Zlatna场地仅采集了农田土壤, 其Cu、Pb和Zn含量显著高于其它研究结果.因此, 冶炼历史、规模和工艺等因素在场地间的差异可能覆盖了土地利用类型对于土壤重金属累积的影响.

图 3 铜冶炼场地周边不同土地利用类型下土壤重金属含量特征 Fig. 3 Concentrations of heavy metals in soil with different land uses around copper smelting sites

2.5 铜冶炼场地及周边土壤重金属健康风险评价

铜冶炼场地周边土壤重金属健康风险评价结果见表 4.铜冶炼场地周边土壤总体致癌风险Triskc平均值为(2.77×10-4)>10-4, 说明铜冶炼场地周边土壤As普遍存在致癌风险.从空间分布上看, 存在致癌风险场地主要分布在北美洲、亚洲和欧洲, 风险较高的位于墨西哥San Luis Potosi和Morales、伊朗Sarchehmeh和罗马尼亚Zlatna等场地, 主要是因为这些场地土壤As含量较高.除了受冶炼影响外, 高风险也与周边工业分布情况有关, 如San Luis Potosi场地附近的As2O3工厂增加了As污染排放与风险[52].不同土地利用类型中, Triskc平均值依次为冶炼生产区(6.73×10-4)>居住用地(2.93×10-4)>林地(1.49×10-4)>农用地(1.21×10-4), 冶炼生产区中土壤致癌风险最高.总体非致癌风险Triskn平均值为2.31, 说明整体上存在非致癌风险.各元素的Triskn平均值依次为:Pb(1.51)>Cu(0.63)>Cd(0.14)>Zn(0.04), 可知Pb是主要非致癌风险元素.存在非致癌风险的场地主要分布在欧洲、北美洲、亚洲, 风险较高的场地有波兰Lower Silesia、墨西哥San Luis Potosi、中国辽宁省沈阳市等, 主要是因为土壤Pb含量过高而产生的风险.不同土地利用类型中, Triskn平均值依次为:冶炼生产区(4.29)>林地(3.13)>居住用地(0.96)>农用地(0.87), 说明冶炼生产区和林地土壤非致癌风险较高.需注意的是, 农田土壤中Cd过量累积会通过食物链造成健康风险[75, 76], 然而本研究中健康风险评价没有考虑到农作物吸收重金属经食物链对人体的健康风险, 因此会低估农用地Cd的风险.总之, 冶炼生产区土壤As和Pb, 以及林地土壤Pb的健康风险需要重点关注.

表 4 铜冶炼场地周边不同土地利用类型土壤重金属健康风险评价结果 Table 4 Health risks of heavy metals in soil with different land uses around copper smelting sites

3 结论

通过收集整理已发表的研究数据, 表明铜冶炼场地及周边土壤中ω(As)、ω(Cd)、ω(Cu)、ω(Pb)和ω(Zn)平均值分别为196、10.5、1 948、604和853 mg·kg-1, Igeo平均值依次为:Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), 土壤Cd和Cu累积最严重.NIPI值较高的场地位于英国Prescot、瑞典Rönnskär、墨西哥Morales、伊朗Sarchehmeh和波兰Lower Silesia等.冶炼历史较长、生产工艺落后且缺乏有效的环保措施是这些场地周边土壤污染程度高的主要原因.冶炼场地周边土壤重金属之间相关性显著, 都随着采样距离的增加而下降, 场地周边2~3 km内土壤重金属累积更严重.相对于冶炼历史、规模和工艺等因素来说, 土地利用类型对土壤重金属含量的影响较小.冶炼场地及周边土壤重金属存在不同程度健康风险, 其中冶炼生产区As和Pb, 以及林地土壤Pb健康风险较高.

参考文献
[1] Wu H Y, Yang F, Li H P, et al. Heavy metal pollution and health risk assessment of agricultural soil near a smelter in an industrial city in China[J]. International Journal of Environmental Health Research, 2020, 30(2): 174-186. DOI:10.1080/09603123.2019.1584666
[2] Zhou J, Liang J N, Hu Y M, et al. Exposure risk of local residents to copper near the largest flash copper smelter in China[J]. Science of the Total Environment, 2018, 630: 453-461. DOI:10.1016/j.scitotenv.2018.02.211
[3] De La Campa A M S, Sánchez-Rodas D, Castanedo Y G, et al. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: Influence on air quality[J]. Journal of Hazardous Materials, 2015, 291: 18-27. DOI:10.1016/j.jhazmat.2015.02.058
[4] 阳安迪, 肖细元, 郭朝晖, 等. 模拟酸雨下铅锌冶炼废渣重金属的静态释放特征[J]. 中国环境科学, 2021, 41(12): 5755-5763.
Yang A D, Xiao X Y, Guo Z H, et al. Static release characteristics of heavy metals from lead-zinc smelting slag leached by simulated acid rain[J]. China Environmental Science, 2021, 41(12): 5755-5763. DOI:10.3969/j.issn.1000-6923.2021.12.032
[5] 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497.
Yan D M, Guo Z H, Huang F L, et al. Effect of calcium magnesium phosphate on remediation paddy soil contaminated with cadmium using lime and sepiolite[J]. Environmental Science, 2020, 41(3): 1491-1497. DOI:10.13227/j.hjkx.201909095
[6] Zeng P, Guo Z H, Xiao X Y, et al. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil[J]. Science of the Total Environment, 2019, 650: 594-603. DOI:10.1016/j.scitotenv.2018.09.055
[7] Zeng S Y, Ma J, Yang Y J, et al. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 2019, 687: 642-653. DOI:10.1016/j.scitotenv.2019.05.291
[8] 王洋洋, 李方方, 王笑阳, 等. 铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J]. 环境科学, 2019, 40(1): 437-444.
Wang Y Y, Li F F, Wang X Y, et al. Spatial distribution and risk assessment of heavy metal contamination in surface farmland soil around a lead and zinc smelter[J]. Environmental Science, 2019, 40(1): 437-444. DOI:10.13227/j.hjkx.201803031
[9] 郑影怡, 刘杰, 蒋萍萍, 等. 河池市某废弃冶炼厂周边农田土壤重金属污染特征及风险评价[J]. 环境工程, 2021, 39(5): 238-245.
Zheng Y Y, Liu J, Jiang P P, et al. Pollution assessment of heavy metals in farmland soils around an abandoned smelter in Hechi, China[J]. Environmental Engineering, 2021, 39(5): 238-245. DOI:10.13205/j.hjgc.202105033
[10] Milosavljevic J S, Serbula S M, Cokesa D M, et al. Soil enzyme activities under the impact of long-term pollution from mining-metallurgical copper production[J]. European Journal of Soil Biology, 2020, 101. DOI:10.1016/j.ejsobi.2020.103232
[11] Shamsaddin H, Jafari A, Jalali V, et al. Spatial distribution of copper and other elements in the soils around the Sarcheshmeh copper smelter in southeastern Iran[J]. Atmospheric Pollution Research, 2020, 11(10): 1681-1691. DOI:10.1016/j.apr.2020.07.002
[12] Xu L, Dai H P, Skuza L, et al. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites[J]. Chemosphere, 2021, 285. DOI:10.1016/j.chemosphere.2021.131350
[13] Zhang Y, Zhang X, Bi Z L, et al. The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau, China[J]. Science of the Total Environment, 2020, 718. DOI:10.1016/j.scitotenv.2020.137305
[14] 陈丹丹, 谭璐, 聂紫萌, 等. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J]. 环境化学, 2021, 40(9): 2667-2679.
Chen D D, Tan L, Nie Z M, et al. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environmental Chemistry, 2021, 40(9): 2667-2679.
[15] 都雪利, 李波, 崔杰华, 等. 辽宁某冶炼厂周边农田土壤与农产品重金属污染特征及风险评价[J]. 农业环境科学学报, 2020, 39(10): 2249-2258.
Dou X L, Li B, Cui J H, et al. Assessment of heavy metal pollution and risk of farmland soil and agricultural products around a smelter in Liaoning[J]. Journal of Agro-Environment Science, 2020, 39(10): 2249-2258. DOI:10.11654/jaes.2020-0434
[16] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价[J]. 环境科学, 2022, 43(1): 1-10.
Peng C, He Y L, Guo Z H, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China[J]. Environmental Science, 2022, 43(1): 1-10.
[17] Kong L L, Guo Z H, Peng C, et al. Factors influencing the effectiveness of liming on cadmium reduction in rice: a meta-analysis and decision tree analysis[J]. Science of the Total Environment, 2021, 779. DOI:10.1016/j.scitotenv.2021.146477
[18] Jiang Z C, Guo Z H, Peng C, et al. Heavy metals in soils around non-ferrous smelteries in China: status, health risks and control measures[J]. Environmental Pollution, 2021, 282. DOI:10.1016/j.envpol.2021.117038
[19] Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science and Pollution Research, 2016, 23(13): 13128-13136. DOI:10.1007/s11356-016-6473-z
[20] González-Castanedo Y, Moreno T, Fernández-Camacho R, et al. Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter[J]. Atmospheric Environment, 2014, 98: 271-282. DOI:10.1016/j.atmosenv.2014.08.057
[21] 李强, 曹莹, 何连生, 等. 典型冶炼行业场地土壤重金属空间分布特征及来源解析[J]. 环境科学, 2021, 42(12): 5930-5937.
Li Q, Cao Y, He L S, et al. Spatial distribution characteristics and source analysis of soil heavy metals at typical smelting industry sites[J]. Environmental Science, 2021, 42(12): 5930-5937. DOI:10.13227/j.hjkx.202104313
[22] Wang G Y, Zhang S R, Xiao L Y, et al. Heavy metals in soils from a typical industrial area in Sichuan, China: spatial distribution, source identification, and ecological risk assessment[J]. Environmental Science and Pollution Research, 2017, 24(20): 16618-16630. DOI:10.1007/s11356-017-9288-7
[23] Xiao X, Zhang J X, Wang H, et al. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: a global meta-analysis[J]. Science of the Total Environment, 2020, 713. DOI:10.1016/j.scitotenv.2019.135292
[24] Sahoo P K, Equeenuddin S M, Powell M A. Trace elements in soils around coal mines: current scenario, impact and available techniques for management[J]. Current Pollution Reports, 2016, 2(1): 1-14. DOI:10.1007/s40726-016-0025-5
[25] Sahoo P K, Powell M A, Martins G C, et al. Occurrence, distribution, and environmental risk assessment of heavy metals in the vicinity of Fe-ore mines: a global overview[J]. Toxin Reviews, 2022, 41(2): 675-698. DOI:10.1080/15569543.2021.1919903
[26] Abliz A, Shi Q D, Keyimu M, et al. Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China[J]. Arabian Journal of Geosciences, 2018, 11(24). DOI:10.1007/s12517-018-4152-8
[27] Xiao R, Guo D, Ali A, et al. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: a case study in Hanzhong, Shaanxi, China[J]. Environmental Pollution, 2019, 248: 349-357. DOI:10.1016/j.envpol.2019.02.045
[28] USEPA. Regional Screening Levels (RSLs) - generic tables[EB/OL]. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables, 2022-01-05.
[29] Peng C, Ouyang Z Y, Wang M E, et al. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators[J]. Environmental Pollution, 2013, 178: 426-432. DOI:10.1016/j.envpol.2013.03.058
[30] Kříbek B, Majer V, Knésl I, et al. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt[J]. Journal of African Earth Sciences, 2014, 99: 713-723. DOI:10.1016/j.jafrearsci.2014.02.009
[31] Shen F, Liao R M, Ali A, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China[J]. Ecotoxicology and Environmental Safety, 2017, 139: 254-262. DOI:10.1016/j.ecoenv.2017.01.044
[32] 樊蕾, 梁可, 张春生, 等. 某高铜难处理硫化金精矿火法冶炼与湿法冶炼工艺对比[J]. 黄金, 2016, 37(1): 65-67.
Fan L, Liang K, Zhang C S, et al. Contrast of pyro-metallurgy and hydro-metallurgy processes of one high copper content refractory sulfide gold concentrate[J]. Gold, 2016, 37(1): 65-67.
[33] Martley E, Gulson B L, Pfeifer H R. Metal concentrations in soils around the copper smelter and surrounding industrial complex of Port Kembla, NSW, Australia[J]. Science of the Total Environment, 2004, 325(1-3): 113-127. DOI:10.1016/j.scitotenv.2003.11.012
[34] Kierczak J, Potysz A, Pietranik A, et al. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland)[J]. Journal of Geochemical Exploration, 2013, 124: 183-194. DOI:10.1016/j.gexplo.2012.09.008
[35] Medynska-Juraszek A, Kabała C. Heavy metal pollution of forest soils affected by the copper industry[J]. Journal of Elementology, 2012, 17(3): 441-451.
[36] Kabala C, Singh B R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter[J]. Journal of Environmental Quality, 2001, 30(2): 485-492. DOI:10.2134/jeq2001.302485x
[37] Tatsy Y G. Assessment of the distribution of heavy metals around a Cu smelter town, Karabash, South Urals, Russia[J]. E3S Web of Conferences, 2013, 1. DOI:10.1051/e3sconf/20130119010
[38] Michálková Z, Komárek M, Šillerová H, et al. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils[J]. Journal of Environmental Management, 2014, 146: 226-234.
[39] Derome J, Lindross A J. Copper and nickel mobility in podzolic forest soils subjected to heavy metal and sulphur deposition in western Finland[J]. Chemosphere, 1998, 36(4-5): 1131-1136. DOI:10.1016/S0045-6535(97)10184-9
[40] Shutcha M N, Faucon M P, Kissi C K, et al. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo)[J]. Ecological Engineering, 2015, 82: 81-90. DOI:10.1016/j.ecoleng.2015.04.062
[41] Hou X, Parent M, Savard M M, et al. Lead concentrations and isotope ratios in the exchangeable fraction: tracing soil contamination near a copper smelter[J]. Geochemistry: Exploration, Environment, Analysis, 2006, 6(2-3): 229-236. DOI:10.1144/1467-7873/05-092
[42] Henderson P J, McMartin I, Hall G E, et al. The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada[J]. Environmental Geology, 1998, 34(1): 39-58. DOI:10.1007/s002540050255
[43] Anand M, Ma K M, Okonski A, et al. Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient[J]. Science of the Total Environment, 2003, 311(1-3): 247-259. DOI:10.1016/S0048-9697(03)00058-5
[44] Adamo P, Dudka S, Wilson M J, et al. Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada)[J]. Water, Air, and Soil Pollution, 2002, 137(1-4): 95-116.
[45] Pope J M, Farago M E, Thornton I, et al. Metal enrichment in Zlatna, a Romanian copper smelting town[J]. Water, Air, and Soil Pollution, 2005, 162(1-4): 1-18. DOI:10.1007/s11270-005-5989-5
[46] Chakraborty S, Man T, Paulette L, et al. Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging[J]. Geoderma, 2017, 306: 108-119. DOI:10.1016/j.geoderma.2017.07.003
[47] Burt R, Wilson M A, Keck T J, et al. Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA[J]. Advances in Environmental Research, 2003, 8(1): 51-67. DOI:10.1016/S1093-0191(02)00140-5
[48] Félix O I, Csavina J, Field J, et al. Use of lead isotopes to identify sources of metal and metalloid contaminants in atmospheric aerosol from mining operations[J]. Chemosphere, 2015, 122: 219-226. DOI:10.1016/j.chemosphere.2014.11.057
[49] Villalobos M, García-Payne D G, López-Zepeda J L, et al. Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: I. Wet chemical and thermodynamic evidences[J]. Aquatic Geochemistry, 2010, 16(2): 225-250. DOI:10.1007/s10498-009-9065-4
[50] Carrizales L, Razo I, Téllez-Hernández J I, et al. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children[J]. Environmental Research, 2006, 101(1): 1-10. DOI:10.1016/j.envres.2005.07.010
[51] Klaminder J, Bindler R, Rydberg J, et al. Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils?[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 703-712. DOI:10.1016/j.gca.2007.10.030
[52] Pejović M, Bajat B, Gospavić Z, et al. Layer-specific spatial prediction of As concentration in copper smelter vicinity considering the terrain exposure[J]. Journal of Geochemical Exploration, 2017, 179: 25-35. DOI:10.1016/j.gexplo.2017.05.004
[53] Bigalke M, Weyer S, Kobza J, et al. Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6801-6813. DOI:10.1016/j.gca.2010.08.044
[54] Chopin E I B, Alloway B J. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain[J]. Science of the Total Environment, 2007, 373(2-3): 488-500. DOI:10.1016/j.scitotenv.2006.11.037
[55] Forghani G, Kelm U, Mazinani V. Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu Smelter, SE Iran[J]. Journal of Geochemical Exploration, 2019, 196: 66-80. DOI:10.1016/j.gexplo.2018.09.012
[56] Khorasanipour M, Esmaeilzadeh E. Environmental characterization of Sarcheshmeh Cu-smelting slag, Kerman, Iran: Application of geochemistry, mineralogy and single extraction methods[J]. Journal of Geochemical Exploration, 2016, 166: 1-17. DOI:10.1016/j.gexplo.2016.03.015
[57] Clemente R, Dickinson N M, Lepp N W. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity[J]. Environmental Pollution, 2008, 155(2): 254-261. DOI:10.1016/j.envpol.2007.11.024
[58] Ettler V, Kříbek B, Majer V, et al. Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia)[J]. Journal of Geochemical Exploration, 2012, 113: 68-75. DOI:10.1016/j.gexplo.2011.08.001
[59] Parra S, Bravo M A, Quiroz W, et al. Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile)[J]. Chemosphere, 2014, 111: 513-521. DOI:10.1016/j.chemosphere.2014.03.127
[60] 王广林, 刘昌利, 刘昌平, 等. 土壤-丁香蓼系统重金属Cu、Zn积累特征的研究[J]. 皖西学院学报, 2008, 24(2): 81-84.
Wang G L, Liu C L, Liu C P, et al. Study on accumulative characteristics of heavy melts in soil-ludwigia prostrate roxb system[J]. Journal of West Anhui University, 2008, 24(2): 81-84.
[61] 王斐, 黄益宗, 王小玲, 等. 江西某铜矿冶炼厂周边土壤重金属生态风险评价[J]. 环境化学, 2014, 33(7): 1066-1074.
Wang F, Huang Y Z, Wang X L, et al. Ecological risk assessment of heavy metals in surrounding soils of a copper smelting plant in Jiangxi Province[J]. Environmental Chemistry, 2014, 33(7): 1066-1074.
[62] 段德超, 戴露莹, 徐劼, 等. 某冶炼厂周边土壤碳组分与铜形态的相关性[J]. 环境科学学报, 2016, 36(8): 3027-3032.
Duan D C, Dai L Y, Xu J, et al. Relationship between organic carbon fractions and copper speciation in soil around the smelting area[J]. Acta Scientiae Circumstantiae, 2016, 36(8): 3027-3032.
[63] Liu L, Wu L H, Luo Y M, et al. The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon[J]. Journal of Soils and Sediments, 2010, 10(5): 808-817.
[64] Wang Y P, Shi J Y, Wang H, et al. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter[J]. Ecotoxicology and Environmental Safety, 2007, 67(1): 75-81.
[65] 夏芳, 王秋爽, 蔡立梅, 等. 有色冶金区土壤-蔬菜系统重金属污染特征及健康风险分析[J]. 长江流域资源与环境, 2017, 26(6): 865-873.
Xia F, Wang Q S, Cai L M, et al. Contamination and health risk for heavy metals via consumption of vegetables grown in non-ferrous metals smelting area[J]. Resources and Environment in the Yangtze Basin, 2017, 26(6): 865-873.
[66] Cai L M, Wang Q S, Luo J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019, 650: 725-733.
[67] 晁雷, 周启星, 陈苏, 等. 沈阳某冶炼厂废弃厂区的人类健康风险评价[J]. 应用生态学报, 2007, 18(8): 1807-1812.
Chao L, Zhou Q X, Chen S, et al. Human health risk assessment of an abandoned metal smelter site in Shenyang, China[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1807-1812.
[68] 张强, 贾振宏, 饶田. 世界铜及铜材生产、消费与贸易状况综述[J]. 有色金属加工, 2014, 43(3): 9-13, 33.
Zhang Q, Jia Z H, Rao T. Review on production, consumption and trade of copper and copper product in the World[J]. Nonferrous Metals Processing, 2014, 43(3): 9-13, 33.
[69] Xing W Q, Yang H, Ippolito J A, et al. Atmospheric deposition of arsenic, cadmium, copper, lead, and zinc near an operating and an abandoned lead smelter[J]. Journal of Environmental Quality, 2020, 49(6): 1667-1678.
[70] Ding Q, Cheng G, Wang Y, et al. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions[J]. Science of the Total Environment, 2017, 578: 577-585.
[71] Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China[J]. Chemosphere, 2017, 170: 17-24.
[72] Chrastny V, Vaněk A, Teper L, et al. Geochemical position of Pb, Zn and Cd in soils near the olkusz mine/smelter, south Poland: Effects of land use, type of contamination and distance from pollution source[J]. Environmental Monitoring and Assessment, 2012, 184(4): 2517-2536.
[73] Szopka K, Karczewska A, Jezierski P, et al. Spatial distribution of lead in the surface layers of mountain forest soils, an example from the karkonosze national park, poland[J]. Geoderma, 2013, 192: 259-268.
[74] 王锐, 邓海, 严明书, 等. 重庆市酉阳县南部农田土壤重金属污染评估及来源解析[J]. 环境科学, 2020, 41(10): 4749-4756.
Wang R, Deng H, Yan M S, et al. Assessment and source analysis of heavy metal pollution in farmland soils in southern Youyang county, Chongqing[J]. Environmental Science, 2020, 41(10): 4749-4756.
[75] 陈家乐, 相满城, 唐林茜, 等. 运积型地质高背景稻田土壤重金属污染和人体健康风险评价[J]. 生态学杂志, 2021, 40(8): 2334-2340.
Chen J L, Xiang M C, Tang L X, et al. Assessing heavy metal pollution and human health risk of paddy soil with high geological background of transportation and deposition[J]. Chinese Journal of Ecology, 2021, 40(8): 2334-2340.
[76] 林承奇, 蔡宇豪, 胡恭任, 等. 闽西南土壤-水稻系统重金属生物可给性及健康风险[J]. 环境科学, 2021, 42(1): 359-367.
Lin C Q, Cai Y H, Hu G R, et al. Bioaccessibility and health risks of the heavy metals in soil-rice system of southwest Fujian province[J]. Environmental Science, 2021, 42(1): 359-367.