环境科学  2022, Vol. 43 Issue (8): 4108-4117   PDF    
太湖草、藻湖区沉积物WSOM组成和分子结构分析
杜瑛珣1, 戴家如1,2, 张巧颖1,3, 刘静静1,3, 黄秀琳1,4, 安世林1,3, 文帅龙1,3     
1. 中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室, 南京 210008;
2. 南京工业大学环境科学与工程学院, 南京 211816;
3. 中国科学院大学, 北京 100049;
4. 重庆三峡学院环境与化学工程学院, 重庆 404020
摘要: 草型湖泊(区)和藻型湖泊(区)是浅水湖泊的两种典型状态,两种湖泊中有机质(OM)的来源和转化存在明显差异.有机质在沉积物上的埋藏是湖泊碳汇功能的重要体现.沉积物中的有机质可能发生后续的转化,影响湖泊碳汇功能;其转化过程与其固有的性质密切相关.目前为止,有关草型和藻型湖泊沉积物中有机质的组成,特别是分子结构差异的信息较少.为此,采集太湖草型湖区(东太湖)和藻型湖区(梅梁湾)沉积物,提取和纯化沉积物中的水溶性有机质(分别记为M-WSOM和A-WSOM),并采用紫外-可见吸收光谱、三维荧光光谱、傅立叶红外光谱和傅里叶变换-离子回旋共振-质谱(FT-ICR MS)对WSOM性质组成和分子结构进行详尽的表征与分析.结果表明:①M-WSOM的相对分子质量比A-WSOM的(E2:E3指标)稍大;FT-ICR MS的数据显示,M-WSOM和A-WSOM的相对分子质量分别为388.9和379.9.②M-WSOM的芳香性略高于A-WSOM的(SUVA254和HIX指标);同样地,FT-ICR MS的结果显示,M-WSOM中稠环芳烃(6.3%,强度加权平均占比,下同)、芳香类物质(7.7%)的含量高于A-WSOM(分别为1.1%和4.4%);③荧光组分结果表明A-WSOM中类蛋白质组分的含量大于M-WSOM;FT-ICR MS的结果与之对应,A-WSOM的多肽含量(35.5%)高于M-WSOM的(15.6%);④质谱数据显示了高分辨的分子信息:M-WSOM和A-WSOM中,沉积物中含杂原子的分子分别占82.9%和91.7%;其中含氮元素的分子占比高达53.5%和78.5%;含磷元素分子占30.4%和41.4%,M-WSOM磷元素主要分布在脂肪烃和高度不饱和低氧物质中,而A-WSOM则主要分布在多肽中.揭示了浅水湖泊两种典型状态沉积物OM的组成和分子结构;有助于研究湖泊沉积物的温室气体排放,及碳、氮、磷元素的生物地球化学过程.
关键词: 吸收光谱      三维荧光光谱      红外光谱      傅里叶变换-离子回旋质谱      水溶性有机质(WSOM)     
Spectroscopic and Molecular Characterization of Water Soluble Organic Matter from Sediments in the Macrophyte-dominated and Algae-dominated Zones of Taihu Lake
DU Ying-xun1 , DAI Jia-ru1,2 , ZHANG Qiao-ying1,3 , LIU Jing-jing1,3 , HUANG Xiu-lin1,4 , AN Shi-lin1,3 , WEN Shuai-long1,3     
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
2. School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China;
3. University of Chinese Academy of Science, Beijing 100049, China;
4. College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
Abstract: Macrophyte- and algae-dominated lakes (zones) are the two typical states of shallow lakes, where the source and composition of organic matter are distinct. The burial of organic matter (OM) in the sediment supports the role of lakes as carbon sinks. However, organic matter in the sediments could be further processed, influencing the carbon cycle. The post-burial metabolism of the sedimentary OM relates closely to its composition. However, information on the differences in composition remains limited, especially the molecular composition of organic matter from sediments in the macrophyte-dominated and algae-dominated lakes. In this study, sediments were collected from the macrophyte-dominated and algae-dominated zones of Taihu Lake (East Taihu Lake and Meiliang Bay, respectively), and the active pool of sedimentary OM (water soluble organic matter, WSOM) was extracted and purified. The composition of the WSOM was characterized in detail via absorption spectroscopy, fluorescent spectroscopy, infrared spectroscopy, and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The optical index of E2: E3 showed that the molecular size of WSOM in the macrophyte-dominated zone (M-WSOM) was slightly larger than that in the algae-dominated zone (A-WSOM). Consistently, the intensity-weighted molecular weights were identified as 388.9 and 379.9, respectively, via FT-ICR MS analysis. M-WSOM was more humified than A-WSOM, as evidenced by the SUVA254 and HIX values. The FT-ICR MS results showed that the relative abundance of the condensed aromatic substance and the aromatics were 6.3% (intensity-weighted) and 7.7% for M-WSOM and 1.1% and 4.4% for A-WSOM, respectively. The excitation-emission matrix fluorescence-parallel factor analysis (EEM-PARAFAC) suggested that the protein-like component was more in A-WSOM than that in M-WSOM, and the FT-ICR MS results showed that the intensity-weighted relative abundances of peptides were 35.6% and 15.6% for A-WSOM and M-WSOM, respectively. The FT-ICR MS results further showed that the heteroatom-containing molecules were abundant in the sedimentary WSOM, i.e., 82.9% and 91.7% for M-WSOM and A-WSOM, respectively. The nitrogen-containing molecules dominated, contributing to 53.5% and 78.5% of M-WSOM and A-WSOM, respectively. There were 30.4% and 41.4% phosphorus-containing molecules in M-WSOM and A-WSOM, respectively. The phosphorus-containing molecules in M-WSOM were mainly aliphatics and highly unsaturated structures with low oxygen, whereas those in A-WSOM were mainly peptides. This study elucidated the detailed molecular composition of WSOM in the macrophyte-dominated and algae-dominated zones of Taihu Lake, which aids understanding of the carbon, nitrogen, and phosphorus biogeochemical cycles in lakes.
Key words: absorption spectroscopy      fluorescent spectroscopy      infrared spectroscopy      Fourier transform-ion cyclotron resonance mass spectrometry      water soluble organic matter (WSOM)     

浅水湖泊存在着两种典型的状态: 以沉水植物为主要初级生产者的清水态湖泊和以浮游植物为主要初级生产者的浊水态湖泊.随着外源营养盐负荷的不断增加, 浮游植物异常繁殖, 水体透明度降低, 沉水植物减少消失, 湖泊生态系统从清水态(草型)转换为浊水态(藻型), 即稳态转换[1~3].湖泊状态的转换使湖泊有机质的来源、转化过程发生改变, 必将使湖泊有机质的结构组成产生差异, 进一步影响有机碳的归趋.

湖泊在碳循环过程中起重要作用[4], 有机质在沉积物上的埋藏是湖泊的碳汇功能的重要体现[5, 6].但需要注意的是, 有机质沉积后会发生进一步的代谢, 特别是水溶性有机质容易参与反应.沉积物中的有机质(OM)在早期的成岩过程中可能被微生物代谢, 部分被矿化为CO2或CH4[7, 8].另外, OM在沉积物上的输入还会影响金属物质的循环.例如: 有机质与沉积物中Cd的络合作用导致藻华暴发期间水体中Cd浓度的大幅度增加[9].

草、藻湖区中, 沉水植物和浮游植物来源的OM组成性质有较大的差异: 从元素组成来看, 沉水植物和浮游植物的C/N范围分别为10~30和3~8; 碳13同位素(δ13C)值的范围为-28‰~-18‰和-24‰~-42‰[10, 11].从物质组成来看, 藻类来源的有机质含有较多的多糖物质, 而沉水植物来源的有机质含有较多的多酚物质, 芳香性较强[12, 13].姚昕等[14]采用三维荧光光谱-平行因子分析法对太湖草(马来眼子菜)和藻(蓝藻)来源的溶解性有机质(DOM)进行表征, 结果发现藻源DOM以类色氨酸组分为主, 而草源DOM的荧光物质则主要以类络氨酸组分为主.OM的组成决定了其归趋: C/N较低的有机质更容易被微生物利用[15]; 含苯环或芳香性结构的物质更容易和铁(氢)氧化物等矿物结合[16], 但也有研究说明, 蛋白质能通过与矿物的结合在沉积物中保存下来[17].目前为止, 有关草型和藻型湖泊沉积物中有机质的组成, 特别是分子结构还没有得到系统地研究.

本文选取东太湖(草型湖区)和梅梁湾(藻型湖区)为研究地点, 采集两个湖区沉积物, 进行水溶性有机质(water soluble organic matter, WSOM)的提取和纯化, 并采用紫外-可见光谱、三维荧光光谱、傅立叶红外光谱和傅里叶变换离子回旋共振质谱(FT-ICR MS)对提取的WSOM的组成和分子结构进行详尽的分析.近年来发展的FT-ICR MS具有超高分辨率, 能精确判定物质的准确分子式, 是研究水体有机质结构组成的重要手段[18~20].本研究通过揭示浅水湖泊两种典型状态沉积物OM的组成结构, 以期为湖泊沉积物的温室气体排放和有机质参与的其他物质的生物地球化学过程提供依据.

1 材料与方法 1.1 沉积物采集

于2019年5月25日, 在太湖典型草型湖区(东太湖, 31°02′03″N, 120°25′47″E, 可见生长的水草)和藻型湖区(梅梁湾, 31°26′03″N, 120°11′18″E, 水华暴发初期)用抓泥器各抓取沉积物(0~10 cm), 放入保温箱带回实验室分批进行冷冻干燥.将冷冻干燥后的沉积物样品进行混合研磨, 过400目筛备用.

1.2 WSOM提取和纯化

WSOM提取: 将草、藻湖泊沉积物和水以1∶10的比例(100 g∶1 000 mL)混合置于1 L烧杯中(烧杯外用锡箔纸包裹以消除光照影响), 搅拌24 h后离心, 上清液过0.22 μm膜(Millex-GP), 即得草、藻型湖区沉积物水溶性有机质(分别记为M-WSOM和A-WSOM).

采用PPL柱子固相萃取法对上述得到的DOM溶液进行纯化[21~23]: 将WSOM水溶液按5 mL·min-1的速度通过柱子, 用甲醇洗脱固相萃取柱中吸附的有机质, 得到的洗脱液经氮吹后得到固体M-WSOM和A-WSOM样品.将M-WSOM和A-WSOM固体配置成DOC浓度为6 mg·L-1的水溶液样品, 进行紫外-可见吸收光谱和三维荧光光谱分析; 固体样品进行红外光谱分析; 少量样品溶于甲醇∶水=1∶1(体积比)溶液中, 进行FT-ICR MS分析.

1.3 DOM性质和组成分析

(1) DOC浓度的测定依托南京地理与湖泊研究所湖泊与环境国家重点实验室, 采用总有机碳分析仪(Torch, TELEDYNE TEKMAR公司)进行测定.

(2) 三维荧光光谱(EEM) 利用日立F-7000荧光光谱仪(Hitachi High-Technologies)进行测定.激发波长设置为200到450 nm, 设置间隔5 nm; 发射波长设置为250~550 nm, 设置间隔1 nm.依据日立F-7000说明书对仪器进行校正[24].首先对需要测定的三维荧光光谱进行校正: ①利用紫外-可见吸收光谱获得的数据进行内滤效应修正[25]; ②用Milli-Q纯水进行空白扣除; ③利用Milli-Q水的拉曼单位归一化(Raman unit, R.U.)来校准日常的荧光强度的变化.本研究的样品个数有限, 结合基于这两种WSOM和Fe(Ⅲ)、P共沉淀反应得到的上清液的EEM(总样品数75个, 该实验研究OM组成对OM与Fe、P共沉淀反应的影响)[26], 进行平行因子分析: 通过DOMFluor工具箱在软件MATLAB R2008a中得到4种荧光组分模型(C1~C4), 利用折半分析(split-half analysis)与随机初始化(random initialization)方法进行验证.

(3) 紫外-可见光全波扫描光谱(UV-Vis Spectra) 使用Lambda 35(Perkin Elmer)紫外可见分光光度计测定, 测试范围为200~800 nm, 参比为Milli-Q水.根据式(1)和(2), 通过一定波长下的吸光度计算得到该波长下的吸收系数[27].

(1)

式中, a′(λ)为波长λ下未校正的吸收系数(m-1); A(λ)为吸光度; λ为波长(nm); r为光程路径(0.01 m).由于过滤清液可能残留细小颗粒会引起散射, 为此作如下散射效应订正[15]:

(2)

式中, a(λ)为校正后波长λ下的吸收系数(m-1).

利用SUVA254[A254/DOC, L·(mg·m)-1]表征DOM中芳香烃结构复杂度[28], 其数值与DOM的腐殖性正相关; E2∶E3(a250a365)表征有机质的芳香性、相对分子质量大小和腐殖化程度[29]. HIX(humification index)为腐殖化指数, 是激发波长为254 nm, 发射波长435~480 nm范围荧光强度的平均值与300~345 nm范围荧光强度平均值的比值[30]; FI为荧光指数, 是激发波长为370 nm, 发射波长520 nm荧光强度与470 nm荧光强度的比值[31]; 自生源指数(BIX), 是激发波长为310 nm, 发射波长380 nm荧光强度与430 nm荧光强度的比值[31].

(4) 傅里叶变换红外光谱依托南京地理与湖泊研究所湖泊与环境国家重点实验室, 采用傅里叶变换红外光谱仪(iS50, Thermo Fisher)进行测定.

(5) 傅里叶变换-离子回旋共振-质谱采用的高分辨质谱为美国布鲁克(Bruker) 公司的Solarix 9.4T FT-ICR MS; ESI电离源为Apollo II ESI电离源(负离子模式).

根据修正的芳香性指数[AImod, 式(3)][32]和分子式的化学计量特征, 将得到的分子式分成以下几大类: 稠环芳烃(CAS, AImod>0.67), 芳香类物质(AS, 0.5 < AImod≤0.67), 不饱和低氧类物质(HUSLO, AImod < 0.5, H/C < 1.5, O/C < 0.5), 不饱和高氧类物质(HUSHO, AImod < 0.5, H/C < 1.5, 0.5≤O/C≤0.9), 脂肪烃(1.5≤H/C≤2, O/C < 0.9, N=0), 多肽类(1.5≤H/C≤2, O/C < 0.9, N>0), 糖类(O/C>0.9)[19, 33, 34].

(3)
2 结果与分析 2.1 草、藻湖区沉积物元素组成比较

草型湖区沉积物样品中ω(C)、ω(N)和ω(P)分别是3.26%、0.43%和0.061%; 藻型湖区沉积物样品中ω(C)、ω(N)和ω(P)为1.8%、0.28%和0.046%.草、藻湖区沉积物样品的C∶N分别为7.58和6.42.

2.2 草、藻湖区沉积物WSOM的吸收光谱和荧光光谱分析

草、藻湖区沉积物WSOM样品的光谱指标见表 1.草、藻湖区沉积物WSOM的SUVA254分别是3.58和3.20; 说明东太湖WSOM的芳香化程度略高于梅梁湾, 而腐殖化指数HIX分别为2.16和1.78, 也印证了东太湖WSOM的芳香化程度较高.

表 1 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM的光谱指标 Table 1 Optical index of WSOM samples from sediments of East Taihu Lake (macrophyte- dominated zone) and Meiliang Bay (algae-dominated zone)

东太湖和梅梁湾的沉积物WSOM的E2∶E3值分别为4.57和4.80, 也说明了东太湖沉积物WSOM的相对分子量比梅梁湾的高.但两者均大于3.5, 说明提取的WSOM以富里酸为主[35].

东太湖和梅梁湾湖区沉积物样品WSOM的BIX值分别为0.86与0.97, 说明两个湖区沉积物WSOM均有明显的自生源特征, 生物可利用性较高, 其中梅梁湾沉积物WSOM的自生源特征更强.东太湖和梅梁湾沉积物样品WSOM的FI值分别为2.12和2.17, 都大于1.9, 说明两个湖区沉积物WSOM的主要来源为微生物产生, 与BIX指标的结论一致.

PARAFAC模型鉴定出4种荧光组分(图 1): C1(component 1)组分出现一个激发波长峰值(Ex=295 nm), 其对应相同的发射波长峰值为Em=410 nm, 推断是UVA类腐殖质, 该类腐殖质分子量比较低, 海洋中较常见并与生物活动有关, 但在废水、湿地和农业环境中也有发现[36]; C2(component 2)组分出现一个荧光峰值, 所对应的激发波长和发射波长分别为Ex=275 nm、Em=346 nm, 荧光特征类似于游离或结合在蛋白质中的色氨酸, 推测为类色氨酸物质; 与传统的T峰对应[37].C3(component 3)出现两个激发波长峰值(Ex为265 nm和365 nm), 对应的发射波长峰值为Em=458 nm, 推断为类腐殖质; 其中, 265 nm激发峰对应传统的A峰, 365 nm激发峰对应传统的C峰, 分别指示紫外光区和可见光区的类富里酸荧光[37].C4(component 4)在Ex=270 nm, Em=306 nm处出现一个较强的荧光峰, 在Ex=270 nm, Em=416 nm附近出现一个小峰, 荧光特征更类似于游离或结合在蛋白质中的酪氨酸, 因此推测其为类酪氨酸物质[36, 38].

图 1 东太湖(草型湖区)和梅梁湾(藻型湖区)WSOM中EEM-PARAFAC组分(C1~C4)激发-发射光谱特征 Fig. 1 Excitation-emission spectra of the four PARAFAC components in WSOM samples from sediments of East Taihu Lake (macrophyte-dominated zone) and Meiliang Bay (algae-dominated zone)

草型湖泊沉积物提取的WSOM溶液[ρ(DOC)=6 mg·L-1]中C1~C4的荧光强度分别为0.79、0.65、0.46和0.41 R.U., 各组分对总荧光强度的贡献率分别为34.2%、28.2%、19.9%和17.7%(表 1); 类腐殖质(C1和C3)贡献率(54.06%)略高于类蛋白质(C2和C4)的(45.94%).藻型湖区沉积物提取的WSOM溶液[ρ(DOC)=6 mg·L-1]中C1~C4的荧光强度分别为0.73、0.83、0.44和0.49 R.U., 各组分对总荧光强度的贡献率分别为29.48%、33.27%、17.49%和19.76%;与东太湖沉积物WSOM相反, 梅梁湾沉积物WSOM类腐殖质贡献率(46.97%)略低于类蛋白质的(53.03%).

2.3 傅里叶红外光谱分析

图 2为东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物样品中WSOM的红外光谱图, 两个湖区沉积物WSOM的吸收峰位置接近, 包括1 030、1 230、1 370、1 450、1 550、1 640、2 930和3 300 cm-1.这些峰可能对应的基团和物质见表 2.由此可见, 两个湖区沉积物中均含有醇、酚、脂肪类物质、芳香族物质和蛋白质.对比两个湖区沉积物WSOM的红外光谱, 发现两个波长范围(图 2蓝色椭圆)相近波数处的峰强度存在较大的差异, 特别地, A-WSOM中1 640 cm-1和1 550 cm-1的峰较M-WSOM更为明显, 推测A-WSOM中可能含有更多的含羧基物质和蛋白质.

蓝色虚线框表示草型湖区和藻型湖区沉积物WSOM红外光谱差异较大之处 图 2 东太湖(草型湖区)和梅梁湾(藻型湖区) 沉积物WSOM的红外光谱特征 Fig. 2 Infrared spectra characteristics of WSOM samples from sediments of East Taihu Lake (macrophyte-dominated zone) and Meiliang Bay (algae-dominated zone)

表 2 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM红外光谱特征峰指征 Table 2 Assignment of infrared spectra characteristic peaks for WSOM samples from sediments of East Taihu Lake and Meiliang Bay

2.4 傅里叶变换-离子回旋共振-质谱(FT-ICR MS)

草、藻湖区沉积物WSOM分子的范式图[O/C vs. H/C, 并按所含N原子的个数(0~4)进行划分]显示(图 3), 草型湖区沉积物WSOM的分子数更多: 草、藻湖区沉积物WSOM中分子数分别为3 276和1 476.表 3列出了草、藻湖区沉积物WSOM中的各种组分和不同元素组成分子的强度加权平均占比和分子数占比.草、藻湖区沉积物中, 仅含C、H和O这3种元素的分子数少, 按分子数平均来看, 仅分别占了19.1%和20.1%; 而大部分分子中含有N元素, M-WSOM和A-WSOM中分别有64.5%和66.9%(分子数占比), 或53.5%和78.5%(强度加权平均占比); 而含P和S杂原子的分子数也占到20%左右.

图 3 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM分子的范式图 Fig. 3 Van Krevelen diagrams of WSOM samples from sediments of East Taihu Lake (macrophyte-dominated zone) and Meiliang Bay (algae-dominated zone)

表 3 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM分子元素组成和物质组成占比 Table 3 Percentage of molecular composition of WSOM from sediments of East Taihu (macrophyte-dominated zone) and Meiliang Bay (algae-dominated zone)

从物质的组成(强度加权平均)看, 两个湖区沉积物WSOM中物质占比最高的为HUSLO物质(高度不饱和, 低氧物质; M-WSOM和A-WSOM分别为33.7%和38.8%); 随后, 依次是脂肪烃(23.6%和12.3%)和多肽(15.6%和35.5%).对比两个湖区沉积物WSOM, M-WSOM含有更多的含苯环物质: 稠环芳烃(6.3% vs. 1.1%)、芳香类物质(7.7% vs. 4.4%)和更多的脂肪烃(23.6% vs. 12.3%), 更少的多肽(15.6% vs. 35.5%)和HUSLO (33.7% vs. 38.8%).

由于含有杂原子的分子较多, 笔者对含不同元素的分子(分别是仅含C、H和O原子的分子、含1~4个N原子的分子、含P原子的分子和含S原子的分子)进行组分判定, 并计算各组分的强度加权平均百分比, 结果见图 4表 4.在仅含CHO的分子中, HUSLO的占比最大, M-WSOM和A-WSOM分别为49.8%和62.4%, 其次为脂肪烃(14.2%和15.8%)和芳香烃(12.6%和11.8%).含有N元素的物质主要是多肽和HUSLO; 其中含1~3个N原子的物质中多肽物质占主导.对于M-WSOM, 含1~3个N原子物质中, 多肽占比分别是39.2%、31.3%和32.3%; 而A-WSOM含1~3个N原子物质中, 多肽占比更高, 达到54.4%、74.6%和53.6%.而对于含4个N原子的物质中, HUSLO占比最高; M-WSOM和A-WSOM两种样品含4个N原子物质中HUSLO占比分别是55.8%和69.0%.P原子在草藻湖区沉积物WSOM各物质中的分布出现了较大的差异: 在A-WSOM中, P主要是分布在多肽和HUSLO中, 分别占所有含P物质的67.8%和16.3%.而在M-WSOM中, P主要分布在脂肪烃、HUSLO和多肽中, 分别占所有含P物质的30.5%、27.1%和23.0%.含硫元素的分子主要分布在脂肪烃中, M-WSOM和A-WSOM中含S的脂肪烃占所有含S分子的56.3%和65.2%, 其次为多肽(9.8%, 15.2%)和HUSLO(14.2%和8.8%).值得注意的是, 稠环芳烃中含有部分N、P和S.与黑碳(black carbon)对应, 这部分的N、P和S被认为是黑氮、黑磷和黑硫(black nitrogen, black phosphorus和black sulfur).其中M-WSOM中黑氮、黑磷和黑硫分别占含N、P和S分子的6.9%、3.9%和2.4%; 而在A-WSOM中则分别占2.0%、0.7%和0.3%.

按不同元素组成划分: 所有分子、仅含C、H、O原子的分子、含1 ~4个N原子的分子、含Р原子的分子和含S原子的分子 图 4 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM物质组成强度加权平均占比 Fig. 4 Intensity-weighted percentage of molecular composition of WSOM from sediments of East Taihu Lake (macrophyte-dominated zone) and Meiliang Bay

表 4 东太湖(草型湖区)和梅梁湾(藻型湖区)沉积物WSOM物质组成强度加权平均占比1) Table 4 Intensity-weighted percentage of molecular composition of WSOM from sediments of East Taihu Lake (macrophyte-dominated zone) and Meiliang Bay (algae-dominated zone)

沉积物WSOM的吸收光谱、三维荧光光谱、红外光谱和FT-ICR MS互相印证, 结果统一. ①吸收光谱指标E2∶E3说明M-WSOM比A-WSOM的相对分子量稍大, FT-ICR MS的数据也显示, M-WSOM和A-WSOM的相对分子量分别为388.9和379.9, 印证了吸收光谱表征的结果; ②M-WSOM的芳香性略高于A-WSOM的(SUVA254和HIX指标), 同样地, FT-ICR MS的结果也显示, M-WSOM中稠环芳烃和芳香烃物质的含量高于A-WSOM; ③PARAFAC组分结果表明A-WSOM中类蛋白质组分的含量大于M-WSOM的, FT-ICR MS的结果与之对应, A-WSOM中多肽含量大于M-WSOM, A-WSOM中含N元素的物质高于M-WSOM; ④红外光谱显示, A-WSOM中含有更多的蛋白质类, 这与荧光光谱结果和FT-ICR MS结果一致.

3 讨论

湖泊有机质的来源包括外源(流域输入)和内源(湖泊中浮游植物、沉水植物和微生物等各生物体生长衰亡过程产生).与金属矿物的结合使水体中DOM沉降到沉积物.另外, 一些有机碎屑在沉积物上的沉降和后续分解也是沉积物OM的一个来源.草藻湖区中内源有机质存在着明显的差异: 对太湖中沉水植物(马来眼子菜)和藻类(蓝藻)衰亡(部分经微生物改造)的DOM的研究表明, 马来眼子菜产生的OM分子量较大[13], 藻源DOM以类色氨酸组分为主, 而草源DOM的荧光物质则主要以类酪氨酸组分为主[14, 46], 且藻源DOM更容易被生物降解; 相对于蓝藻, 沉水植物产生的有机质含有更多的苯环类物质[47].其次, 草藻湖区中生物群落和生物多样性的差异, 也可能导致两个湖区有机质性质的不同.在高等水生植物为主的湖泊中, 属于β变形菌门的细菌占有优势; 而在微囊藻占优势的湖泊(湖区)中, 占优势的为放线菌门的浮游细菌[48].不同微生物对有机质的利用转化可能导致有机质性质的差异.

FT-ICR MS的数据显示, 草型沉积物WSOM中含有比藻型沉积物WSOM更多的分子数(分别为3 280和1 480), 这可能与两个湖区中的生物多样性有关: 草型湖区的生物多样性高于藻型湖区[49]; 其次, FT-ICR MS测试的前处理和测试方法也需要考虑: 本研究采用的负电离模式的测定更有利于含羧基和酚羟基基团的分子, 而对含NH2基团物质的检出不利[18].

本研究的结果显示, 两个湖区沉积物WSOM中高度不饱和低氧物质(HUSLO)均具有很大的丰度.有研究报道, 随着DOM被改造时间的延长, 还原性(O/C比例低)的物质丰度增加, 这可能与高O/C比物质更容易被生物降解有关[50].He等[33]研究的河流沉积物有机质的组成也以高度不饱和物质为主, 含量接近一半, 其中低氧物质占优势.从元素组成来看, 本研究的沉积物WSOM中仅含CHO的物质含量较低(草型: 17.1%; 藻型: 8.3%); 大部分(53.5%和78.5%)含有N元素; 这与一些淡水水体的OM中仅含CHO分子百分比较高不同, 例如, Champlain湖的湖湾中含60%~70%的CHO[51], 西藏地区冰川和湖泊DOM含40%左右的CHO分子[52].相对于水体, 沉积物OM可能含有更多的杂原子: She等[53]研究了一个深水湖泊中DOM的分层分布, 发现较表层水, 底层水OM含杂原子的丰度较大, 并认为是由于底层水和沉积物的物质交换引起的; 沉积物样品中含有较多的含N分子可能是沉积物-水界面微生物活动引起的[54].本研究结果显示, 藻型湖泊中含1~3个N原子分子有50%~70%是多肽类; 这类物质(C/N比例较低)较容易被微生物利用, 且处于沉积物厌氧环境, 可增强温室气体CH4的释放[55, 56].

太湖草藻湖区沉积物WSOM分子中含S元素的分子占比达到22.2%(草型湖区)和15.9%(藻型湖区); 相对于水中的DOM, 沉积物中S的含量较大, 可能是在缺氧的沉积物中, 微生物利用S为电子受体[57, 58], 产生了含硫有机物.与文献报道的河流沉积物中碱提的OM相似[33], 脂肪烃中较其他物质富含S原子, 这些物质可能含有一些硫基团如磺酸、噻吩和砜类.值得注意的是, 太湖草藻湖区沉积物WSOM中, 稠环芳烃中含有N和S, 说明了有黑氮(black nitrogen)和黑硫(black sulfur)的存在; 这些物质不容易被利用, 因此, 它们可能被用来指示物质的来源和相应元素的归趋[33, 50].由于内源磷负荷是富营养化湖泊修复的主要障碍, 有机磷通常被认为是具有活性的磷, 是内源磷负荷的组成部分.本研究的结果表明, 藻型湖泊沉积物WSOM中含P元素多数为多肽物质, 这些物质容易被微生物利用, 可能加速磷物质的循环.而相对地, 草型湖区沉积物WSOM中P更多集中在脂肪烃和HUSLO; 这两类物质相对来讲不容易被循环利用, 有利于减少草型湖区的内源磷负荷.

4 结论

(1) 较A-WSOM而言, M-WSOM相对分子量(E2∶E3指标)更大, 芳香性(SUVA254和HIX指标)更高; EEM-PARAFAC组分组成表明, M-WSOM中, 类腐殖质组分占比(54.06%)略高于类蛋白质组分的占比(45.94%); 而A-WSOM中, 类腐殖质组分和类蛋白组分的占比分别是46.97%和53.09%.

(2) 红外光谱表明, 两个湖区沉积物WSOM中含有的基团较类似, 均含有醇、酚、脂肪类物质、芳香族物质和蛋白质, 但A-WSOM中含羧基物质和蛋白质略高于M-WSOM.

(3) FT-ICR MS结果提供了详细的、高分辨的分子组成信息: 草、藻湖区沉积物WSOM的相对分子量分别为388.8和379.9, M-WSOM中稠环芳烃(6.3%, 强度加权平均百分比, 下同)和芳香类物质(7.7%)的含量高于A-WSOM的(1.1%和4.4%), 印证了吸收光谱的表征; A-WSOM多肽含量(15.2%)大于M-WSOM(9.8%), 与三维荧光表征结果相对应.

(4) 值得注意的是, 草、藻湖区沉积物WSOM中含杂原子的分子分别占82.9%和91.7%; 其中含N分子占比高达53.5%和78.5%; 含P分子占30.4%和41.4%, M-WSOM中P元素主要分布在脂肪烃和高度不饱和低氧物质中, 而A-WSOM中主要分布在多肽中.草、藻湖区中P元素存在形式的不同预示着藻型湖区沉积物中内源有机磷的利用性较强, 容易被利用循环, 可能对湖泊富营养化产生正反馈.

参考文献
[1] Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596. DOI:10.1038/35098000
[2] Scheffer M, Hosper S H, Meijer M L, et al. Alternative equilibria in shallow lakes[J]. Trends in Ecology & Evolution, 1993, 8(8): 275-279.
[3] 张晨雪, 徐敏, 董一凡, 等. 硅藻群落指示的近50年来大理西湖湖泊生态系统演变规律[J]. 环境科学, 2020, 41(10): 4572-4580.
Zhang C X, Xu M, Dong Y F, et al. Sedimentary diatom records reveal the succession of ecosystem in Lake Xihu, Dali over the past 50 years[J]. Environmental Science, 2020, 41(10): 4572-4580.
[4] Tranvik L J, Cole J J, Prairie Y T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle[J]. Limnology and Oceanography Letters, 2018, 3(3): 41-48. DOI:10.1002/lol2.10068
[5] Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6): 535-538. DOI:10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2
[6] Drake T W, Raymond P A, Spencer R G M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty[J]. Limnology and Oceanography Letters, 2018, 3(3): 132-142. DOI:10.1002/lol2.10055
[7] Burdige D J. Preservation of organic matter in marine sediments: ? controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485. DOI:10.1021/cr050347q
[8] Gudasz C, Bastviken D, Premke K, et al. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments[J]. Limnology and Oceanography, 2012, 57(1): 163-175. DOI:10.4319/lo.2012.57.1.0163
[9] Chen M S, Ding S M, Li C, et al. High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide[J]. Water Research, 2021, 190. DOI:10.1016/j.watres.2020.116711
[10] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13 C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1-4): 29-57. DOI:10.1016/j.earscirev.2005.10.003
[11] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261-289. DOI:10.1016/S0146-6380(02)00168-7
[12] Torremorell A, Pérez G, Lagomarsino L, et al. Microbial pelagic metabolism and CDOM characterization in a phytoplankton-dominated versus a macrophyte-dominated shallow lake[J]. Hydrobiologia, 2015, 752(1): 203-221. DOI:10.1007/s10750-014-2057-4
[13] Zhang Y L, Liu X H, Wang M Z, et al. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes[J]. Organic Geochemistry, 2013, 55: 26-37. DOI:10.1016/j.orggeochem.2012.11.007
[14] 姚昕, 张运林, 朱广伟, 等. 湖泊草、藻来源溶解性有机质及其微生物降解的差异[J]. 环境科学学报, 2014, 34(3): 688-694.
Yao X, Zhang Y L, Zhu G W, et al. Different degradation mechanism of dissolved organic matter derived from phytoplankton and macrophytes in Lake Taihu, China[J]. Acta Scientiae Circumstantiae, 2014, 34(3): 688-694.
[15] Schallenberg M, Kalff J. The ecology of sediment bacteria in lakes and comparisons with other aquatic ecosystems[J]. Ecology, 1993, 74(3): 919-934. DOI:10.2307/1940816
[16] Sowers T D, Holden K L, Coward E K, et al. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2019, 53(8): 4295-4304.
[17] Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1): 9-24. DOI:10.1007/s10533-007-9103-5
[18] Kim S, Kim D, Jung M J, et al. Analysis of environmental organic matters by ultrahigh-resolution mass spectrometry-A review on the development of analytical methods[J]. Mass Spectrometry Reviews, 2021. DOI:10.1002/mas.21684
[19] Kellerman A M, Dittmar T, Kothawala D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J]. Nature Communications, 2014, 5. DOI:10.1038/ncomms4804
[20] Koch B P, Dittmar T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. DOI:10.1002/rcm.2386
[21] Dittmar T, Koch B, Hertkorn N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography-Methods, 2008, 6(6): 230-235. DOI:10.4319/lom.2008.6.230
[22] 王威, 窦文渊, 何晨, 等. 多步洗脱固相萃取-傅立叶变换离子回旋共振质谱表征地表水可溶有机质[J]. 分析试验室, 2020, 39(5): 521-526.
Wang W, Dou W Y, He C, et al. Characterization of surface water dissolved organic matter by stepwise elution solid phase extraction followed by fourier transform ion cyclotron resonance mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 521-526.
[23] Zhou L, Zhou Y Q, Yao X L, et al. Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients[J]. Environment International, 2020, 134. DOI:10.1016/j.envint.2019.105330
[24] Zhang Y L, Zhang E L, Yin Y, et al. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude[J]. Limnology and Oceanography, 2010, 55(6): 2645-2659. DOI:10.4319/lo.2010.55.6.2645
[25] McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48. DOI:10.4319/lo.2001.46.1.0038
[26] 张巧颖. 草/藻湖区可溶性有机质和铁、磷的共沉淀作用研究[D]. 北京: 中国科学院大学, 2020.
[27] Del Vecchio R, Blough N V. Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling[J]. Marine Chemistry, 2002, 78(4): 231-253. DOI:10.1016/S0304-4203(02)00036-1
[28] Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[29] Peuravuori J, Pihlaja K. Molecular size distribution and spectroscopic properties of aquatic humic substances[J]. Analytica Chimica Acta, 1997, 337(2): 133-149. DOI:10.1016/S0003-2670(96)00412-6
[30] Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38(1): 45-50. DOI:10.1016/S0045-6535(98)00166-0
[31] 吕伟伟, 姚昕, 张保华, 刘延龙, 等. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 2018, 39(5): 2056-2066.
Lü W W, Yao X, Zhang B H, et al. Fluorescent characteristics and environmental significance of particulate organic matter in Lake Taihu, China[J]. Environmental Science, 2018, 39(5): 2056-2066.
[32] Koch B P, Dittmar T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2016, 30(1): 250. DOI:10.1002/rcm.7433
[33] He W, Chen M L, Park J E, et al. Molecular diversity of riverine alkaline-extractable sediment organic matter and its linkages with spectral indicators and molecular size distributions[J]. Water Research, 2016, 100: 222-231. DOI:10.1016/j.watres.2016.05.023
[34] Lu Y H, Li X P, Mesfioui R, et al. Use of ESI-FTICR-MS to characterize dissolved organic matter in headwater streams draining forest-dominated and pasture-dominated watersheds[J]. PLoS One, 2015, 10(12). DOI:10.1371/journal.pone.0145639
[35] Strobel B W, Hansen H C B, Borggaard O K, et al. Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type[J]. Biogeochemistry, 2001, 56(1): 1-26. DOI:10.1023/A:1011934929379
[36] Yamashita Y, Boyer J N, Jaffé R. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy[J]. Continental Shelf Research, 2013, 66: 136-144. DOI:10.1016/j.csr.2013.06.010
[37] 黄健, 凌玲, 张华, 等. ASBR处理食品废水中DOM转化过程的荧光光谱[J]. 中国环境科学, 2016, 36(6): 1746-1751.
Huang J, Ling L, Zhang H, et al. Fluorescence spectra of dissolved organic matter in food wastewater treatment by ASBR process[J]. China Environmental Science, 2016, 36(6): 1746-1751. DOI:10.3969/j.issn.1000-6923.2016.06.021
[38] Murphy K R, Hambly A, Singh S, et al. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model[J]. Environmental Science & Technology, 2011, 45(7): 2909-2916.
[39] Artz R R E, Chapman S J, Robertson A H J, et al. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands[J]. Soil Biology and Biochemistry, 2008, 40(2): 515-527. DOI:10.1016/j.soilbio.2007.09.019
[40] Cocozza C, D'Orazio V, Miano T M, et al. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties[J]. Organic Geochemistry, 2003, 34(1): 49-60. DOI:10.1016/S0146-6380(02)00208-5
[41] Niemeyer J, Chen Y, Bollag J M. Characterization of humic acids, composts, and peat by diffuse reflectance fourier-transform infrared spectroscopy[J]. Soil Science Society of America Journal, 1992, 56(1): 135-140. DOI:10.2136/sssaj1992.03615995005600010021x
[42] Ibarra J V, Muñoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6-7): 725-735. DOI:10.1016/0146-6380(96)00063-0
[43] Zaccheo P, Cabassi G, Ricca G, et al. Decomposition of organic residues in soil: experimental technique and spectroscopic approach[J]. Organic Geochemistry, 2002, 33(3): 327-345. DOI:10.1016/S0146-6380(01)00164-4
[44] Parker F S. Applications of infrared spectroscopy in biochemistry, biology, and medicine[M]. London: Adam Hilger, 1971.
[45] Grube M, Lin J G, Lee P H, et al. Evaluation of sewage sludge-based compost by FT-IR spectroscopy[J]. Geoderma, 2006, 130(3-4): 324-333. DOI:10.1016/j.geoderma.2005.02.005
[46] 章奇, 居琪, 李健欣, 等. 针铁矿对湖泊草、藻来源可溶有机质的非均质吸附[J]. 湖泊科学, 2020, 32(4): 1041-1049.
Zhang Q, Ju Q, Li J X, et al. Heterogeneous adsorption of macrophyte-and algae-derived dissolved organic matter on goethite in freshwater lakes[J]. Journal of Lake Sciences, 2020, 32(4): 1041-1049.
[47] Riedel T, Zak D, Biester H, et al. Iron traps terrestrially derived dissolved organic matter at redox interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 10101-10105. DOI:10.1073/pnas.1221487110
[48] 吴庆龙, 邢鹏, 李化炳, 等. 草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响[J]. 微生物学通报, 2013, 40(1): 87-97.
Wu Q L, Xing P, Li H B, et al. Impacts of regime shift between phytoplankton and macrophyte on the microbial community structure and its carbon cycling in lakes[J]. Microbiology China, 2013, 40(1): 87-97.
[49] 陈美军, 孔繁翔, 陈非洲, 等. 太湖不同湖区真核微型浮游生物基因多样性的研究[J]. 环境科学, 2008, 29(3): 769-775.
Chen M J, Kong F X, Chen F Z, et al. Genetic diversity of eukarytic microplankton in different areas of Lake Taihu[J]. Environmental Science, 2008, 29(3): 769-775. DOI:10.3321/j.issn:0250-3301.2008.03.038
[50] Chen M L, Li C L, Zeng C, et al. Immobilization of relic anthropogenic dissolved organic matter from alpine rivers in the Himalayan-Tibetan Plateau in winter[J]. Water Research, 2019, 160: 97-106.
[51] Kurek M R, Harir M, Shukle J T, et al. Seasonal transformations of dissolved organic matter and organic phosphorus in a polymictic basin: implications for redox-driven eutrophication[J]. Chemical Geology, 2021, 573. DOI:10.1016/J.CHEMGEO.2021.120212
[52] Spencer R G M, Guo W D, Raymond P A, et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2014, 142: 64-74. DOI:10.1016/j.gca.2014.08.006
[53] She Z X, Wang J, He C, et al. The stratified distribution of dissolved organic matter in an AMD Lake revealed by multi-sample evaluation procedure[J]. Environmental Science & Technology, 2021, 55(12): 8401-8409.
[54] Wagner S, Jaffé R, Cawley K, et al. Associations between the molecular and optical properties of dissolved organic matter in the florida everglades, a model coastal wetland system[J]. Frontiers in Chemistry, 2015, 3. DOI:10.3389/fchem.2015.00066
[55] Praetzel L S E, Plenter N, Schilling S, et al. Organic matter and sediment properties determine in-lake variability of sediment CO2 and CH4 production and emissions of a small and shallow lake[J]. Biogeosciences, 2020, 17(20): 5057-5078. DOI:10.5194/bg-17-5057-2020
[56] Zhou Y W, Song K, Han R M, et al. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes[J]. Environmental Pollution, 2020, 265. DOI:10.1016/j.envpol.2020.114919
[57] Hodgkins S B, Tfaily M M, Podgorski D C, et al. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland[J]. Geochimica et Cosmochimica Acta, 2016, 187: 123-140.
[58] Yekta S S, Gonsior M, Schmitt-Kopplin P, et al. Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: a qualitative overview[J]. Environmental Science & Technology, 2012, 46(22): 12711-12719.