环境科学  2022, Vol. 43 Issue (6): 2996-3004   PDF    
长江中游典型饮用水水源中药物的时空分布及风险评价
武俊梅1, 魏琳2, 彭晶倩2, 何鹏1,3, 施鸿媛1,3, 汤冬梅1,4, 吴振斌1     
1. 中国科学院水生生物研究所, 淡水生态与生物技术国家重点实验室, 武汉 430072;
2. 武汉市生态环境科技中心, 武汉 430015;
3. 中国地质大学环境学院, 武汉 430074;
4. 武汉理工大学资源与环境工程学院, 武汉 430070
摘要: 采用固相萃取-高效液相色谱/串联质谱方法, 分析长江中游典型饮用水水源中药物的季节变化和空间分布; 结合风险熵方法, 评价其对水生生物的生态风险.结果表明, 80%的目标药物在饮用水水源中检出, 浓度平均值在0.07~13.00 ng ·L-1之间, 与国内报道的其他饮用水水源相比, 检出浓度处于中等偏低水平.不同药物表现出不同的时空分布, 一般冬季的检出水平高于夏季, 上下游之间没有显著性差异, 可能与药物的季节性/区域性使用排放、流量对稀释作用的影响和温度对生物降解的影响有关.与新冠肺炎疫情前相比, 长江中游典型饮用水水源中药物检出浓度较低, 原因可能在于疫情防控一定程度上减少药物的使用排放, 以及较高的降水量和径流量加强水流的稀释作用.目标药物特别是抗生素对水生生物(特别是藻类)具有中等或低风险, 考虑到药物的生态风险、遗传毒性以及抗生素抗性基因的潜在风险, 建议加强水环境中药物的调查、评估、治理和管控.
关键词: 饮用水水源      抗生素      抗炎药      季节变化      空间分布      生态风险     
Spatiotemporal Distribution and Risk Assessment of Pharmaceuticals in Typical Drinking Water Sources in the Middle Reaches of the Yangtze River
WU Jun-mei1 , WEI Lin2 , PENG Jing-qian2 , HE Peng1,3 , SHI Hong-yuan1,3 , TANG Dong-mei1,4 , WU Zhen-bin1     
1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2. Wuhan Science and Technology Center of Ecology and Environment, Wuhan 430015, China;
3. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
4. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract: The seasonal variation and spatial distribution of pharmaceuticals in typical drinking water sources in the middle reaches of the Yangtze River were analyzed using the solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry methods. Combined with the risk entropy method, the corresponding ecological risks for aquatic organisms were evaluated. The results showed that 80% of the target pharmaceuticals were detected in the drinking water sources, with average concentrations of 0.07-13.00 ng·L-1. The concentrations of the target pharmaceuticals were lower than or comparable with those in other drinking water sources reported in China. The spatiotemporal distribution of different pharmaceuticals varied. Generally, the detection level in winter was higher than that in summer, and there was no significant difference between that upstream and that downstream. This might be mainly attributed to seasonal/regional use and emissions of the pharmaceuticals, the impact of flow rate on dilution, and the impact of temperature on biodegradation. Compared with those before the COVID-19 epidemic, the detection concentrations of the target pharmaceuticals were relatively low. The reason for this might be that the prevention and control of the epidemic reduced the use and emission of the pharmaceuticals to a certain extent, and the high rainfall and runoff strengthened the dilution of water flow. The target pharmaceuticals, especially antibiotics, posed medium or low risks to aquatic organisms (especially algae). Considering the ecological risks and genotoxicity of pharmaceuticals and the potential risks of antibiotic-resistant genes, it is suggested to strengthen the investigation, evaluation, treatment, and control of pharmaceuticals in the water environment.
Key words: drinking water sources      antibiotics      anti-inflammatory drugs      seasonal variation      spatial distribution      ecological risk     

药物广泛应用于人类医疗健康和养殖疾控增产, 由于不能被人或动物完全吸收, 因此大部分药物在使用后通过污水处理和水产养殖尾水、污泥粪肥还田渗滤等进入水环境.虽然药物可以不同程度地自然降解, 但是由于持续使用, 导致呈现“假持续性”现象.药物在水系统中残留及抗生素残留诱导抗性基因对水生态系统和人类健康具有潜在风险[1~4].我国是全球第二大药物市场[5], 其中抗生素生产和使用量全球最大[6].现有研究表明, 至少有155种药物和个人护理用品在我国地表水和沉积物中检出[4], 其中有94种抗生素在水环境中检出, 且大多数浓度与其他国家相似或略高[2].

长江是我国5亿多人的饮用水水源地, 也是我国水环境中药物研究的热点区域之一[3, 4].目前大部分关于饮用水水源中药物的研究集中在长江上游或下游, 如重庆段水源[7]、南京水源地[8~11]、江苏省某市水源[12]、江苏省骆马湖流域水源地[13]、南京至苏州段水源地[14]、华东地区某水源地[15]、长江三角洲某水源地[16]和上海水源地[17, 18]等, 然而长江中游饮用水水源中药物研究较少.本研究根据我国产(用)量高、水环境检出率和浓度高以及生态环境风险大等原则, 结合现有研究数据和建议优先污染物[2~4, 6, 19~22], 筛选8种抗生素和2种抗炎药作为目标药物, 分析长江中游典型饮用水水源中药物的季节变化和空间分布, 评价其对水生生物的生态风险, 以期为我国饮用水水源中药物残留提供基础数据, 并为药物残留风险防控提供可靠信息.

1 材料与方法 1.1 研究区域与样品采集

根据供水能力大于20万t ·d-1筛选10个饮用水水源(图 1), 代表长江中游某市75%以上的集中式饮用水水源, 服务850多万人, 其中6个位于长江干流(以支流汇入口为界, S1~S4为干流上游, S5~S6为干流下游), 4个位于长江支流(S7~S10).于2020年5月至2021年1月采集饮用水水源季节性水样4次.每次采用有机玻璃采水器采集4 L水样, 采集深度为0.5 m左右, 置于清洗干净并用水样润洗3次的棕色玻璃瓶中, 低温避光保存, 12 h内运回实验室4℃保存, 并于3 d内完成水样预处理.

图 1 长江中游典型饮用水水源采样点示意 Fig. 1 Sampling sites in typical drinking water sources in the middle reaches of the Yangtze River

1.2 仪器与试剂

超高效液相色谱-三重四级杆质谱联用仪(ACQUITY UPLC H-class-Xevo TQ MS, Waters, USA); 固相萃取装置(VisiprepTM DL, SPUELCO, USA); 可视孔氮吹仪(NK200-1B, 杭州米欧仪器有限公司); 玻璃纤维滤膜(GF/F, 0.7 μm, Whatman, UK); 固相萃取小柱(Oasis HLB cartridge, 6 cc/500 mg, Waters, USA); 有机相针式滤器(0.22 μm, 上海安谱实验科技股份有限公司).

药物标准品均购自德国Dr. Ehrenstorfer GmbH(表 1), 包括2种大环内酯类抗生素: 红霉素(erythromycin, ERY)和罗红霉素(roxithromycin, RTM); 2种喹诺酮类抗生素: 环丙沙星(ciprofloxacin, CPX)和氧氟沙星(ofloxacin, OFX); 2种磺胺类抗生素: 磺胺嘧啶(sulfadiazine, SDZ)和磺胺甲唑(sulfamethoxazole, SMX); 2种四环素类抗生素: 氧四环素(oxytetracycline, OTC)和四环素(tetracycline, TC); 2种抗炎药: 布洛芬(ibuprofen, IBF)和萘普生(naproxen, NPX).甲酸、甲醇和乙腈均为色谱纯, 购自美国Tedia公司; 乙二胺四乙酸四钠和乙酸铵均为分析纯, 购自上海国药集团化学试剂有限公司; 本实验用超纯水取自Milli-Q纯水仪(Millipore, USA).

表 1 药物的理化性质、检出限、定量限和回收率 Table 1 Physicochemical properties, limits of detections, limits of quantifications, and recoveries of the pharmaceuticals

1.3 样品预处理与分析

水样预处理采用固相萃取方法[23].首先水样经过0.7 μm玻璃纤维滤膜进行过滤, 取1 L过滤后的水样加入0.5 g乙二胺四乙酸四钠充分溶解, 用甲酸调节pH至3.0左右.然后HLB小柱用12 mL甲醇和12 mL超纯水分两次进行活化, 水样以5 mL ·min-1的流速进行富集, HLB小柱分两次加入10 mL超纯水淋洗, 抽真空干燥0.5 h.接着用10 mL甲醇洗脱, 收集的洗脱液氮气吹干, 用有机试剂(体积比为80 ∶20的0.1%甲酸和甲醇)复溶至1 mL, 涡旋混匀2 min后用0.22 μm有机相针式滤器转移到进样瓶, 仪器分析前-20℃保存.

水样分析采用超高效液相色谱-三重四级杆质谱联用仪[23].药物在ACQUITY UPLC BEH C18(1.7 μm, 2.1 mm×50 mm)色谱柱进行分离, 柱温为40℃, 流速为0.25 mL ·min-1, 进样体积为20 μL.正离子模式的流动相A为0.1%甲酸, 流动相B为0.1%甲酸甲醇.负离子模式的流动相A为10 mmol ·L-1乙酸铵, 流动相B为5 ∶95(体积比)的10 mmol ·L-1乙酸铵和乙腈.不同离子模式下的洗脱梯度见表 2.药物的质谱检测在多反应检测模式下进行, 其中抗生素采用正离子模式, 抗炎药采用负离子模式, 其毛细管电压分别为3.0 kV和2.5 kV, 离子源温度为150℃, 脱溶剂温度为350℃, 脱溶剂流量为650 L ·h-1, 氩碰撞气体流量为0.12 mL ·min-1.

表 2 不同离子模式下的洗脱梯度 Table 2 Elution gradient in different ion modes

1.4 质量控制

药物定量采用外标法[7~11, 17], 定量曲线在0.05(或者0.50)~500 μg ·L-1范围内线性关系良好, 相关系数在0.997 5~0.999 9之间.以3倍和10倍信噪比计算药物的方法检出限和定量限, 其范围分别为0.06~5.54 ng ·L-1和0.19~16.63 ng ·L-1(表 1).将50、100和200 ng ·L-1药物标准品加入1 L超纯水中, 按药物计算平均回收率范围为72.75% ~118.10%(表 1).另外, 水样测定时添加空白对照和空白回收, 并设置3个平行提高质量控制[9, 11].

1.5 生态风险评价

采用风险熵方法对长江中游典型饮用水水源中药物进行生态风险评价[9~11, 13, 14, 16], 风险熵(RQ)计算公式如下:

(1)
(2)

式中, MEC为药物的环境实测浓度, ng ·L-1, 根据最大风险控制原理, 本研究选用药物的最高浓度. PNEC为预测无效应浓度, ng ·L-1, 本研究以3类水生生物为测试物种进行生态风险评价, 包括藻类、无脊椎动物和鱼类.NOEC为最大无影响浓度, LOEC为最低有影响浓度, IC50为半抑制浓度, EC50为半效应浓度, LC50为半致死浓度, 这些数据来源于文献中急性毒理实验或ECOSAR模型; 由于不同测试物种、不同实验过程和ECOSAR模型得到的数据不同, 本研究选用最低毒理学数据以评价3类水生生物最敏感物种的生态风险(表 3)[23]. AF为评估因子, 其值设定为1 000.生态风险分级标准如下: RQ≤0.01时, 生态风险可忽略; 0.01 < RQ≤0.1时, 低生态风险; 0.1 < RQ≤1时, 中等生态风险; RQ>1时, 高生态风险.

表 3 药物对水生生物的最低预测无效应浓度1) Table 3 Minimum PNEC of the pharmaceuticals for aquatic organisms

1.6 统计分析

实验数据采用SPSS 23.0(IBM, USA)进行统计分析, 药物之间的相关性采用Spearman检验, 季节差异性采用Friedman相关样本检验, 空间差异性采用Kruskal-Wallis H独立样本检验, 新冠肺炎疫情前后药物的差异性采用Wilcoxon相关样本检验.

2 结果与讨论 2.1 饮用水水源中药物的检出水平

在长江中游典型饮用水水源中检出8种目标药物, 浓度平均值在0.07~13.00 ng ·L-1之间, 浓度最大值布洛芬最高(112.03 ng ·L-1), 氧四环素次之(19.03 ng ·L-1), 其他在 < LOD~9.10 ng ·L-1之间.与国内报道的其他饮用水水源相比, 检出浓度处于中等偏低水平(表 4).大环内酯类抗生素应用于人类医疗和畜禽养殖, 红霉素和罗红霉素检出浓度最大值低于检出限.喹诺酮类抗生素环丙沙星主要应用于畜禽养殖, 而氧氟沙星在食品动物中停止使用[36], 这可能是环丙沙星(5.13%)和氧氟沙星(66.67%)检出率差别较大的原因.磺胺嘧啶和磺胺甲唑是应用较早的抗生素, 目前常应用于人类医疗和水产养殖; 由于稳定性较高, 迁移性较强, 在我国水环境中检出率和检出浓度较高[9, 12, 15, 16, 23]; 本研究中磺胺甲唑的检出率为100%.四环素类抗生素由于价格低廉, 广泛应用于人类医疗和畜禽养殖; 由于容易水解、光解和吸附到沉积物中, 检出水平一般不是很高[7, 9, 13, 23, 37]; 本研究中四环素类抗生素的检出率均为5.13%, 氧四环素和四环素的浓度平均值分别为0.58 ng ·L-1和0.30 ng ·L-1; 然而, 长江南京段和三角洲水源地四环素类抗生素检出水平较高[10, 16, 38], 可能与地域性的用药习惯有关; 值得注意的是, 四环素由于副作用比较明显, 已经较少使用.抗炎药用于治疗疼痛和炎症, 布洛芬主要应用于人类医疗, 萘普生应用于人类医疗和畜禽养殖; 据中国医药统计年报显示, 2019年我国布洛芬和萘普生的产量/消耗量分别为11 039 t/2 127 t和561 t/176 t[39]; 本研究中布洛芬和萘普生的检出率分别为87.18%和48.72%, 布洛芬浓度最大值远高于萘普生(4.32 ng ·L-1), 可能与产(用)量有关[17].

表 4 饮用水水源中药物的检出水平及国内比较1) Table 4 Detection frequencies and concentrations of the pharmaceuticals in drinking water sources and the comparison in China

Spearman检验结果表明, 环丙沙星、氧四环素和四环素极强相关(r=1.0, P < 0.01), 磺胺甲唑和磺胺嘧啶强相关(0.6 < r < 0.8, P < 0.01), 表明同类抗生素由于相似的理化特性, 检出水平具有一定的相似性, 这与已有的研究结果一致[10, 23].总体而言, 药物在饮用水水源中的检出水平取决于它们在人类医疗健康和养殖疾控增产方面的使用以及在水环境中的持久性.

2.2 饮用水水源中药物的时空分布

在长江中游饮用水水源中, 红霉素、罗红霉素、环丙沙星、氧四环素和四环素没有显著性季节差异, 可能是由于检出率较低; 其他药物存在显著性季节差异(氧氟沙星P < 0.05, 其他药物P < 0.01, 图 2).秋季磺胺甲唑的浓度平均值(3.02 ng ·L-1)显著高于春夏季(1.05 ng ·L-1和0.35 ng ·L-1), 冬季(1.60 ng ·L-1)显著高于夏季.冬季氧氟沙星和布洛芬的浓度平均值高于其他季节.总体而言, 冬季药物的检出水平高于夏季, 这与报道的研究结果(或者为旱季高于雨季)一致[12, 14~18, 38], 一般而言, 夏季温度高, 处于丰水期; 生物降解快, 稀释作用大.然而, 不同药物表现出不同的季节分布[8, 11, 23, 37], 本研究中磺胺嘧啶和磺胺甲唑秋季浓度平均值最高, 萘普生春季最高, 一方面可能与不同药物的季节性使用不同有关, 另一方面丰水期降雨也可能增加雨污溢流和农业径流中药物的排放量.

图 2 饮用水水源中药物的时空分布 Fig. 2 Spatiotemporal distribution of the pharmaceuticals in drinking water sources

布洛芬在长江中游干流和支流之间存在显著性差异(P < 0.01, 图 2), 干流浓度平均值(1.23 ng ·L-1)低于支流(29.91 ng ·L-1), 然而, 支流汇入干流后, 下游和上游之间没有显著性差异.可能的解释是布洛芬在支流排放量较高, 而长江中游干流的流量远高于支流, 据长江泥沙公报显示, 2020年长江中游干流的年径流量是支流的22倍[41].Wen等[17]的研究发现布洛芬在黄浦江从上游到下游浓度逐渐升高, 解释为消耗量较多; 而萘普生相反, 解释为萘普生可能更广泛用于畜禽养殖, 未经处理的废水直接排入黄浦江上游支流.因此, 不同药物的空间分布可能主要与区域排放和水流流量有关.其他药物在长江中游干流上下游和支流之间没有显著性差异(P>0.05), 这与报道的研究结果一致[11, 14, 23], 表明沿河分散药物污染负荷可能比研究区域上游背景污染负荷的影响更大[14, 23], 以及河流的自净作用可能在药物的自然衰减中发挥重要作用[23].

2.3 新冠肺炎疫情前后对比分析

与2019年相比(表 4)[23], 2020年长江中游典型饮用水水源中药物检出率无显著性差异, 浓度平均值显著较低(P < 0.05).其中罗红霉素、磺胺嘧啶和萘普生检出水平较低, 氧氟沙星和磺胺甲唑检出浓度较低, 而布洛芬检出水平较高.新冠肺炎疫情的流行并未加剧长江中游典型饮用水水源中药物污染, 这与报道的研究结果一致[42]; 相反, 2020年药物检出浓度较低.原因可能在于: 一方面受新冠肺炎疫情影响, 养殖业暂停3个月产量降低, 药品管控加强一定程度上减少药物的使用和排放; 另一方面据武汉市水资源公报显示2020年降水量(1 928.3 mm)远大于2019年(1 003.3 mm)[43, 44], 2020年长江中游干流的年径流量比2019年多23%[41], 水流的稀释作用降低了药物的检出浓度[14, 16, 17].

2.4 饮用水水源中药物的生态风险评价

水生生物中, 藻类对抗生素最敏感, PNEC在5~183 ng ·L-1之间; 无脊椎动物对萘普生最敏感, 鱼类对布洛芬最敏感(表 3图 3).对于藻类, 四季的红霉素及罗红霉素、春季的环丙沙星, 氧氟沙星, 氧四环素及四环素、秋季的磺胺甲唑和冬季的氧氟沙星具有中等风险, 春、夏、秋三季的磺胺甲唑和秋季的氧氟沙星及磺胺嘧啶具有低风险.冬季的布洛芬对鱼类具有低风险.表明我国饮用水水源中药物特别是抗生素对水生生物(特别是藻类)具有不同程度的生态风险[10, 13, 38, 40].另外, 一方面药物的慢性生态毒性很可能高于急性生态毒性[28, 29], 水环境中不同药物可能存在相加/协同效应[24, 26, 31], 氧氟沙星、磺胺甲唑和布洛芬等药物还具有遗传毒性[29, 45]; 另一方面, 即使非常低水平抗生素的选择压力也会显著增加抗性基因丰度[46], 其潜在风险不容忽视, 建议加强水环境中药物的调查、评估、治理和管控.

白色表示未检出或无数据; 1.藻类, 2.无脊椎动物, 3.鱼类 图 3 饮用水水源中药物对水生生物的生态风险熵 Fig. 3 Ecological risk entropy of the target pharmaceuticals in drinking water sources for three classes of aquatic organisms

3 结论

(1) 长江中游典型饮用水水源中检出80%的目标药物, 布洛芬浓度最高(112.03 ng ·L-1), 与国内报道的其他饮用水水源相比, 检出浓度处于中等偏低水平.药物的检出水平取决于它们在人类医疗健康和养殖疾控增产方面的使用以及在水环境中的持久性.

(2) 不同药物表现出不同的时空分布, 一般冬季的检出水平高于夏季, 上下游之间没有显著性差异, 可能与药物的季节性/区域性使用排放和流量对稀释作用的影响有关.另外, 季节分布还与温度对生物降解的影响有关, 空间分布受沿河分散污染的影响大于上游背景负荷.

(3) 与新冠肺炎疫情前相比, 长江中游典型饮用水水源中药物检出率无显著性差异, 检出浓度较低.原因可能在于疫情防控一定程度上减少药物的使用和排放, 以及较高的降水量和径流量加强水流的稀释作用.

(4) 目标抗生素对藻类具有中等或低风险, 布洛芬对鱼类具有低风险, 考虑到药物的生态风险、遗传毒性以及抗生素抗性基因的潜在风险, 建议加强水环境中药物的调查、评估、治理和管控.

参考文献
[1] 王琦, 武俊梅, 彭晶倩, 等. 饮用水系统中药物和个人护理用品的研究进展[J]. 环境化学, 2018, 37(3): 453-461.
Wang Q, Wu J M, Peng J Q, et al. Research advances in pharmaceuticals and personal care products in drinking water system[J]. Environmental Chemistry, 2018, 37(3): 453-461.
[2] Li Z, Li M, Zhang Z Y, et al. Antibiotics in aquatic environments of China: a review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2020, 199. DOI:10.1016/j.ecoenv.2020.110668
[3] Lyu J, Yang L S, Zhang L, et al. Antibiotics in soil and water in China-a systematic review and source analysis[J]. Environmental Pollution, 2020, 266. DOI:10.1016/j.envpol.2020.115147
[4] Xiang Y, Wu H H, Li L, et al. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China[J]. Ecotoxicology and Environmental Safety, 2021, 213. DOI:10.1016/j.ecoenv.2021.112044
[5] Aruvian Research. Market for active pharmaceutical ingredients in China-forecast and analysis 2018[EB/OL]. https://www.marketresearch.com/Aruvian-s-R-search-v3456/Active-Pharmaceutical-Ingredients-China-Forecast-11908632/(2018), 2021-08-08.
[6] Li Y, Zhang L Y, Liu X S, et al. Ranking and prioritizing pharmaceuticals in the aquatic environment of China[J]. Science of the Total Environment, 2019, 658: 333-342. DOI:10.1016/j.scitotenv.2018.12.048
[7] Feng L, Cheng Y R, Zhang Y Y, et al. Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River[J]. Environmental Research, 2020, 185. DOI:10.1016/j.envres.2020.109386
[8] 胡冠九, 穆肃, 赵永刚, 等. 南京典型县区饮用水源抗生素含量特征[J]. 环境化学, 2015, 34(1): 192-193.
[9] 封梦娟, 张芹, 宋宁慧, 等. 长江南京段水源水中抗生素的赋存特征与风险评估[J]. 环境科学, 2019, 40(12): 5286-5293.
Feng M J, Zhang Q, Song N H, et al. Occurrence characteristics and risk assessment of antibiotics in source water of the Nanjing reach of the Yangtze River[J]. Environmental Science, 2019, 40(12): 5286-5293.
[10] 李辉, 陈瑀, 封梦娟, 等. 南京市饮用水源地抗生素污染特征及风险评估[J]. 环境科学学报, 2020, 40(4): 1269-1277.
Li H, Chen Y, Feng M J, et al. Pollution characteristics and risk assessment of antibiotics in Nanjing drinking water sources[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1269-1277.
[11] Liu Y H, Feng M J, Wang B, et al. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China[J]. Environmental Science and Pollution Research, 2020, 27(17): 21429-21441. DOI:10.1007/s11356-020-08516-7
[12] 胡冠九, 陈素兰, 穆肃, 等. 江苏省某市典型饮用水水源中抗生素质量浓度特征[J]. 水资源保护, 2016, 32(3): 84-88.
Hu G J, Chen S L, Mu S, et al. Characteristics of concentrations of antibiotics in typical drinking water sources in a city in Jiangsu Province[J]. Water Resources Protection, 2016, 32(3): 84-88.
[13] Kong M, Bu Y Q, Zhang Q, et al. Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water, China[J]. Journal of Environmental Management, 2021, 280. DOI:10.1016/j.jenvman.2020.111738
[14] Wang Z Y, Chen Q W, Zhang J Y, et al. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the lower Yangtze River[J]. Journal of Environmental Management, 2019, 244: 13-22. DOI:10.1016/j.jenvman.2019.04.070
[15] 金磊, 姜蕾, 韩琪, 等. 华东地区某水源水中13种磺胺类抗生素的分布特征及人体健康风险评价[J]. 环境科学, 2016, 37(7): 2515-2521.
Jin L, Jiang L, Han Q, et al. Distribution characteristics and health risk assessment of thirteen sulfonamides antibiotics in a drinking water source in east China[J]. Environmental Science, 2016, 37(7): 2515-2521.
[16] Cui C Z, Han Q, Jiang L, et al. Occurrence, distribution, and seasonal variation of antibiotics in an artificial water source reservoir in the Yangtze River delta, East China[J]. Environmental Science and Pollution Research, 2018, 25(20): 19393-19402. DOI:10.1007/s11356-018-2124-x
[17] Wen Z H, Chen L, Meng X Z, et al. Occurrence and human health risk of wastewater-derived pharmaceuticals in a drinking water source for Shanghai, East China[J]. Science of the Total Environment, 2014, 490: 987-993. DOI:10.1016/j.scitotenv.2014.05.087
[18] Cao S S, Duan Y P, Tu Y J, et al. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China: occurrence and human health risk assessment[J]. Science of the Total Environment, 2020, 721. DOI:10.1016/j.scitotenv.2020.137624
[19] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[20] Li Y, Zhang L Y, Ding J, et al. Prioritization of pharmaceuticals in water environment in China based on environmental criteria and risk analysis of top-priority pharmaceuticals[J]. Journal of Environmental Management, 2020, 253. DOI:10.1016/j.jenvman.2019.109732
[21] Guo J H, Liu S, Zhou L, et al. Prioritizing pharmaceuticals based on environmental risks in the aquatic environment in China[J]. Journal of Environmental Management, 2021, 278. DOI:10.1016/j.jenvman.2020.111479
[22] 周力, 刘珊, 郭家骅, 等. 基于生态风险的我国水环境高风险抗生素筛选排序[J]. 环境科学, 2021, 42(6): 2748-2757.
Zhou L, Liu S, Guo J H, et al. Screening and sequencing high-risk antibiotics in China's water environment based on ecological risks[J]. Environmental Science, 2021, 42(6): 2748-2757.
[23] He P, Wu J M, Peng J Q, et al. Pharmaceuticals in drinking water sources and tap water in a city in the middle reaches of the Yangtze River: occurrence, spatiotemporal distribution, and risk assessment[J]. Environmental Science and Pollution Research, 2022, 29(2): 2365-2374. DOI:10.1007/s11356-021-15363-7
[24] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 2004, 57(11): 1733-1738. DOI:10.1016/j.chemosphere.2004.07.017
[25] Sanderson H, Johnson D J, Wilson C J, et al. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening[J]. Toxicology Letters, 2003, 144(3): 383-395. DOI:10.1016/S0378-4274(03)00257-1
[26] Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208. DOI:10.1897/07-471.1
[27] Halling-Sørensen B, Holten Lützhøft H C, Andersen H R, et al. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin[J]. Journal of Antimicrobial Chemotherapy, 2000, 46(S1): 53-58.
[28] Ferrari B, Mons R, Vollat B, et al. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?[J]. Environmental Toxicology and Chemistry, 2004, 23(5): 1344-1354. DOI:10.1897/03-246
[29] Isidori M, Lavorgna M, Nardelli A, et al. Toxic and genotoxic evaluation of six antibiotics on non-target organisms[J]. Science of the Total Environment, 2005, 346(1-3): 87-98. DOI:10.1016/j.scitotenv.2004.11.017
[30] Holten Lützhøft H C, Halling-Sørensen B, Jørgensen S E. Algal toxicity of antibacterial agents applied in Danish fish farming[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6. DOI:10.1007/s002449900435
[31] De Liguoro M, Fioretto B, Poltronieri C, et al. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim[J]. Chemosphere, 2009, 75(11): 1519-1524. DOI:10.1016/j.chemosphere.2009.02.002
[32] Kim Y, Choi K, Jung J, et al. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea[J]. Environment International, 2007, 33(3): 370-375. DOI:10.1016/j.envint.2006.11.017
[33] Park S, Choi K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems[J]. Ecotoxicology, 2008, 17(6): 526-538. DOI:10.1007/s10646-008-0209-x
[34] Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000, 40(7): 731-739. DOI:10.1016/S0045-6535(99)00445-2
[35] Kim J W, Ishibashi H, Yamauchi R, et al. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes)[J]. The Journal of Toxicological Sciences, 2009, 34(2): 227-232. DOI:10.2131/jts.34.227
[36] 农业农村部. 中华人民共和国农业部公告第2292号[EB/OL]. http://www.moa.gov.cn/nybgb/2015/jiuqi/201712/t20171219_6103873.htm, 2021-11-09.
[37] Sun J, Luo Q, Wang D H, et al. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China[J]. Ecotoxicology and Environmental Safety, 2015, 117: 132-140. DOI:10.1016/j.ecoenv.2015.03.032
[38] 廖杰, 魏晓琴, 肖燕琴, 等. 莲花水库水体中抗生素污染特征及生态风险评价[J]. 环境科学, 2020, 41(9): 4081-4087.
Liao J, Wei X Q, Xiao Y Q, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua reservoir[J]. Environmental Science, 2020, 41(9): 4081-4087.
[39] 工业和信息化部. 2019中国医药统计年报[M]. 北京: 工业和信息化部, 2020.
[40] 谢全模, 陈云, 万金泉, 等. 东莞市饮用水源地中抗生素分布特征及风险评价[J]. 环境科学学报, 2020, 40(1): 166-178.
Xie Q M, Chen Y, Wan J Q, et al. Occurrence, distribution and risk assessment of antibiotics in drinking water source in Dongguan[J]. Acta Scientiae Circumstantiae, 2020, 40(1): 166-178.
[41] 水利部长江水利委员会. 长江泥沙公报2020[M]. 武汉: 长江出版社, 2021.
[42] Chen X P, Lei L, Liu S T, et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China[J]. Science of the Total Environment, 2021, 792. DOI:10.1016/j.scitotenv.2021.148352
[43] 徐照彪, 王沫. 2019年武汉市水资源公报[R]. 武汉: 武汉市水务局, 2020.
[44] 徐照彪, 王沫. 2020年武汉市水资源公报[R]. 武汉: 武汉市水务局, 2021.
[45] 刘娜, 金小伟, 王业耀, 等. 我国地表水中药物与个人护理品污染现状及其繁殖毒性筛查[J]. 生态毒理学报, 2015, 10(6): 1-12.
Liu N, Jin X W, Wang Y Y, et al. Pharmaceuticals and personal care products (PPCPs) caused reproducetive toxicity in surface water of China: a review[J]. Asian Journal of Ecotoxicology, 2015, 10(6): 1-12.
[46] 苗荪, 陈磊, 左剑恶. 环境中抗生素抗性基因丰度与抗生素和重金属含量的相关性分析: 基于Web of Science数据库检索[J]. 环境科学, 2021, 42(10): 4925-4932.
Miao S, Chen L, Zuo J E. Correlation analysis among environmental antibiotic resistance genes abundance, antibiotics concentrations, and heavy metals concentrations based on Web of Science searches[J]. Environmental Science, 2021, 42(10): 4925-4932.