白洋淀作为我国华北地区最大的淡水湖泊, 目前存在的主要环境问题是富营养化[1], 同时, 沉积物中赋存大量氮磷营养盐等污染物[2], 由于水-沉积物界面环境因素的变化, 导致氮磷污染物向上覆水扩散[3, 4], 因此对沉积物中污染物的治理也应重视.天然水体大多呈现好氧状态, 其中氮素作为富营养化的主要污染物, 因此, 如何在好氧条件下实现生物脱氮是白洋淀水体实现自我修复的关键问题.
由于白洋淀地区冬季漫长而寒冷的气候特征, 导致白洋淀水体微生物活性降低、水生植物代谢减弱和自净脱氮效果降低, 同时上游受纳污水厂尾水的河流因低温影响会有总氮偏高的特征; 由于实现低温条件下高效稳定的生物脱氮较为困难, 因此部分好氧反硝化菌可在低温条件下脱氮的特征引起了关注.有研究分别从冬水田[5]、养殖水体[6]、松花江[7]和水稻土壤[8]等系统中分离出耐冷好氧反硝化菌.比如, 蔡茜等[5]的研究在冬水田中分离出1株耐冷碱蒙氏假单胞菌H97, 在15℃下总氮去除速率达0.81 mg·(L·h)-1; Yang等[9]的研究在实验室生物反应器中分离出1株紫色杆菌M-11, 在2℃下硝氮去除率达89%; Kou等[10]的研究在低温条件下混合培养好氧反硝化菌处理微污染水体, 硝酸盐氮去除率高于65%.但目前大多研究仅处于实验室培养基环境下, 针对天然环境下的研究却鲜见报道, 可能是由于天然环境下高效菌筛选困难且对天然环境的认识不足, 因此进一步进行天然环境下该时期好氧反硝化菌的群落结构以及关键物种的研究十分必要.群落构建过程的研究对如何维持群落稳定[11]和调节群落结构[12]发挥着重要作用, 目前大多研究依据16S rRNA技术进行微生物群落的研究, 但针对功能菌群落结构与群落构建过程的研究还较少[13], 因此明确该时期好氧反硝化菌群落构建过程[14]十分重要.此研究不仅有助于进一步认识冬季天然环境下的氮循环微生物特征和群落构建过程, 还有助于为将来适用于低温环境的高效菌筛选策略的制定和白洋淀周边污水厂污水脱氮的研究提供理论支持.
本文选取白洋淀冬季冰封期的沉积物样品, 结合好氧反硝化菌功能基因(napA)的高通量测序技术分析该时期沉积物好氧反硝化菌群垂向分布特征; 同时分析好氧反硝化菌群落差异和关键物种, 明确该时期群落构建过程, 以期为定向筛选适合白洋淀冬季冰封期水体特征的低温好氧反硝化菌提供技术支持.
1 材料与方法 1.1 样品采集及测定白洋淀是华北地区最大的淡水湖泊, 位于河北省雄安新区, 地理位置为38°43′~39°02′N、115°38′~116°07′E, 总面积为366 km2.结合前期研究[1, 4]和现场调研, 本文选取15个采样点, 分别为藻苲淀(S1)、烧车淀(S2)、文化苑(S3)、鸳鸯岛(S4)、枣林庄(S5)、平阳淀(S6)、涝王淀(S7)、鲥鯸淀(S8)、端村(S9)、白沟引河(S10)、瀑河(S11)、萍河(S12)、唐河(S13)、府河(S14)和潴笼河(S15), 具体采样点如图 1所示, 依据历史承载功能, 白洋淀被划分为5个典型淀区, S1为自然区(AN), S2~S4为旅游区(TA), S5~S7为生活区(LA), S8和S9为养殖区(BA), S10~S15为入淀区(EA). 2019年1月采集沉积物样品, 每个采样点分别采集表层(0~2 cm, S)、中层(2~4 cm, M)和底层(4~6 cm, B)的沉积物样品, 进行冬季沉积物好氧反硝化菌垂向分布特征分析及群落构建过程的研究.
![]() |
图 1 白洋淀冬季沉积物采样点示意 Fig. 1 Sampling sites of Baiyangdian Lake sediments during winter |
提取沉积物样品中DNA并采用NanoDrop进行定量, 用1.2%琼脂糖凝胶电泳检测DNA提取质量, 并进行高通量测序.有研究表明, 可通过napA功能基因来研究好氧反硝化菌群落特征[15], 因此利用提取的总DNA样本对沉积物的napA基因进行PCR扩增[16], 并由派森诺生物科技有限公司进行高通量测序, 进而分析好氧反硝化菌群落垂向分布特征.PCR扩增后进行测序工作, 并采用QIIME得到有效数据.
1.3 微生物生物信息分析利用R语言QIIME2软件对微生物群落的α多样性进行分析, 菌群丰富度[17]选用Chao1指数来评估, 菌群的多样性[18]选用辛普森指数(Simpson指数)和香农指数(Shannon指数)来表征, 菌群的均匀度以Pielou指数来表征, 测序深度[19]以覆盖率指数(Coverage)来表征; 利用R语言进行主成分分析(principal component analysis, PCA)[20]和Venn图来研究采样点垂向沉积物的好氧反硝化菌群落的差异, 并利用Adonis分析来研究垂向间菌群群落在统计学上的差异; 利用QIIME2软件选用随机森林[21]算法确定垂向各分组间标志物种, 利用R语言igraph包完成网络分析[22]进一步确定垂向各分组间关键物种.利用R语言完成中性群落模型(NCM)[23]和标准化随机率(NST)[24], 明确确定性和随机过程在好氧反硝化菌群落构建中的相对重要性.
1.4 统计分析由R和Origin软件完成本文所需绘图, 由SPSS 23完成数据统计分析.其中P<0.05以“*”表示, 说明存在显著差异; 0.001<P<0.01以“**”表示, 说明存在极显著差异; P<0.001以“***”表示, 说明存在极其显著差异.
2 结果与讨论 2.1 微生物群落组成为更深入分析冬季好氧反硝化菌群落组成, 此部分将进行垂向和水平两方面的分析.结果显示该时期好氧反硝化菌属于13 845个OTUs, 10个门类163个属, 图 2分别展示了菌群丰度较高门、纲和属的占比, 菌群丰度低于0.1%的物种归类为others.
![]() |
(a1)门水平-表层, (a2)门水平-中层, (a3)门水平-底层; (b1)纲水平-表层, (b2)纲水平-中层, (b3)纲水平-底层; (c1)属水平-表层, (c2)属水平-中层, (c3)属水平-底层 图 2 白洋淀冬季沉积物好氧反硝化菌群门、纲和属组成分析 Fig. 2 Phyla, classes, and genera compositions of aerobic denitrification bacteria from sediments of Baiyangdian Lake during winter |
在门水平上, 10个门类分别为变形菌门、放线菌门、拟杆菌门、厚壁菌门、蓝藻菌门、浮霉菌门、硝化螺旋菌门、异常球菌-栖热菌门、脊索动物和节肢动物.如图 2(a1)~2(a3)所示, 第一大门类为变形菌门(Protebacterice), 占比为29.03%~94.46%, 变形菌门占比随着沉积物层深增加呈下降趋势, 其中旅游区各层深变形菌门占比明显高于其他淀区, 自然区减少最多, 从表层处的83.22%降低到底层处的29.03%, 这与周石磊等[25]关于白洋淀春季沉积物变形菌门的变化趋势一致.有研究发现, 变形菌门在碳和氮代谢过程中具有重要作用[26], 放线菌门在降解有机物过程中起到主要作用[27, 28], 拟杆菌门主要参与硝化反应过程[29], 厚壁菌门主要促进植物残留物的降解[30].综上, 在门水平上, 变形菌门占比从表层到底层呈下降趋势, 其中旅游区减少缓慢, 自然区减少快速, 且各典型淀区间变形菌门占比存在差异.
图 2(b1)~2(b3)为沉积物纲水平的菌群结构, β-Proteobacteria是第一大纲, 占比为16.78%~63.67%, 且随着沉积物层深增加呈下降趋势, 其中生活区占比减少最快, 入淀区减少最缓慢, 有研究发现β-Proteobacteria大多具有脱氮特性[31]; γ-Proteobacteria为第二大纲, 占比为2.31%~34.23%, 自然区和入淀区占比随着沉积物层深增加呈下降趋势, 其余淀区呈现下降后增加的趋势, 且研究发现γ-Proteobacteria在反硝化过程中发挥关键作用[32]; α-Proteobacteria为第三大纲, 占比为1.31%~15.43%, 其在氮磷代谢过程中发挥着重要作用[33].综上, 在纲水平上, β-Proteobacteria和γ-Proteobacteria占比从表层到底层呈下降趋势, 各典型淀区在纲水平的占比各不相同, 水平和垂向分组间均存在一定差异.
图 2(c1)~2(c3)为沉积物属水平的菌群结构, 其中占比前10的属包括:Cupriavidus、Aermonas、Thauera、Sulfuritortus、Pseudomonas、Magnetospirillum、Serratia、Azospirillum、Azoarcus和Sulfuricella, 未分类的占比也较高, 可能与白洋淀沉积物中微生物研究较少有关. Cupriavidus是第一大属, 在表层自然区占比最高, 表、中和底层养殖区和入淀区占比均较低; Cupriavidus属于β-Proteobacteria纲且具有脱氮特性[31]. Aeromonas在表层自然区和养殖区占比最大, 且从表到底层占比减少快速, 生活区各层Aeromonas占比最低; 研究表明其可在低温条件下进行高效异养硝化-好氧反硝化[34]. Thauera在表层自然区占比最高, 其余淀区各层深占比相差较小, 且研究表明其能够利用芳烃作为碳源进行反硝化[35].同时研究发现Pseudomonas作为典型的好氧反硝化菌广泛存在于污废水系统和自然环境中[36], 且具有耐冷嗜碱好氧反硝化作用[5, 34].综上, 在属水平上, 各典型淀区间好氧反硝化菌群差异性明显高于纲水平, 但在水平和垂向间好氧反硝化菌群的差异并不显著.
2.2 微生物α多样性分析图 3为各采样点沉积物垂向分组的好氧反硝化菌群α多样性指数.Chao1指数反映微生物群落的丰富度, 表层Chao1指数值最大为3 327.67±621.28, 表明表层微生物群落最丰富, 菌群丰度最高; 且Chao1指数从表层到底层呈现随着采样深度增加而降低的趋势, 并且在垂向间均存在极其显著差异(P < 0.001).Simpson指数和Shannon指数反映微生物群落的多样性, 中层Simpson指数和Shannon指数值最大为0.97±0.013和6.59±0.325, 表明中层微生物群落多样性最高, 表层Simpson指数和Shannon指数值最小为0.94±0.029和6.09±0.619; Simpson指数和Shannon指数从表层到底层呈现先升后降的趋势, 并且Simpson指数在垂向间存在极显著差异(P < 0.01), 而Shannon指数无显著差异.Pielou指数反映菌群的均匀度, 底层菌群的均匀度最大为0.62±0.022, Pielou指数从表层到底层呈现随着采样点深度增加而增大趋势, 且在垂向间均存在极其显著差异(P < 0.001).采样点覆盖率指数变化范围为0.983~0.995, 表明有足够测序深度, 且从表到底覆盖率指数不断增大.综上, 白洋淀垂向上好氧反硝化菌群α多样性存在差异, 且表层沉积物微生物丰富度明显高于底层, 中层沉积物微生物多样性明显高于表层.
![]() |
*表示组间存在显著差异; ** 表示组间存在极显著差异; *** 表示组间存在极其显著差异 图 3 白洋淀冬季不同层沉积物好氧反硝化菌群生物多样性指数 Fig. 3 Microbial community diversity of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
通过主成分分析该时期垂向及典型淀区间沉积物好氧反硝化菌的差异, 如图 4(a)所示, PCA1和PCA2分别解释了总体变化的51.15%和46.96%, 总共解释了整体变化的98.11%.根据垂向分组显示, 表、中和底层在4个象限均有分布, 但表层多数采样点分布于三、四象限, 中层多数采样点分布于二、三象限, 底层多数采样点分布于一、三、四象限, 表、中和底层间存在一定差异, 可能是由于不同层存在的环境差异引起的.根据淀区分组显示, 生活区采样点主要集中于第三象限, 旅游区采样点主要分布于第二、三象限, 自然区主要分布于一、四象限, 入淀区主要分布于一、三、四象限, 养殖区采样点主要分布于第三、四象限, 5个典型淀区存在显著差异, 可能是由于不同淀区环境因素的差异引起的[37].通过Adonis分析各采样点的好氧反硝化菌群落结构的差异性, 结果显示P < 0.001, 表明了白洋淀冬季冰封期好氧反硝化菌群落结构在垂向间存在极其显著差异.
![]() |
(b) : 括号中数值为此部分占全部OTUs种类的百分数 图 4 白洋淀冬季不同层沉积物好氧反硝化菌的主坐标分析和韦恩图 Fig. 4 PCoA and Venn analysis of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
使用Venn图分析该时期垂向间沉积物好氧反硝化菌群的差异, 图 4(b)每个椭圆代表不同层深, 椭圆间的重叠区域指示分组间共有的OTUs, 每个区块的数字指示该区所包含的OTUs数目.图 4(b)所示共存在的OTUs种类有4 335个, 表、中和底层独有的OTUs种类分别为2 461、1 509和1 222个, 表层OTUs种类明显高于中、底层; 结合α多样性分析结果, 微生物丰富度越高, OTUs种类越多, 这一结论与寇文伯等[38]对鄱阳湖菌群研究结果一致, 但微生物多样性指数越高, OTUs种类越少, 这一结果与其结论相反.相邻两层共有OTUs数目高于非相邻层, 其中表层和中层共有的OTUs种类最多(2 679个), 表层和底层共有的OTUs种类最少(694个), 由于各分层间环境状况的差异引起OTUs种类存在较大差异, 与靳燕等[39]关于北运河浮游细菌研究中环境因子对OTUs种类有较大影响的结论一致.综上, 该时期沉积物的好氧反硝化菌群在垂向上存在显著差异.
2.4 微生物标志物种分析 2.4.1 随机森林分析通过随机森林分析出垂向分组间的标志物种, 图 5分别为沉积物表层、中层、底层和整个淀区属水平重要性前20的菌群, 重要性越强的物种对组间差异的贡献越大, 此物种即为组间差异的标志物种.表层中, Dechloromonas贡献最高, 其次为Sulfuricurvum; 中层、底层和整个淀区中, Ferrimonas贡献最高, 最新研究表明Ferrimonas在对变化环境的适应性反应中发挥相关作用[40]; 中层中Desulfosaricina贡献次之, 底层中Campylobacter贡献次之.表、中和底层与整个淀区相同的标志物种有6个, 分别为Ferrimonas、Achromobacter、Azoarcus、Bordetella、Sulfuritortus和Azospirillum, 其中所占比例前10的菌属有3个, 分别为Azoarcus、Sulfuritortus和Azospirillum, 因此菌属所占比例对标志物种存在明显影响.结果表明Ferrimonas对组间差异贡献最大.
![]() |
a1. Dechloromonas, a2. Sulfuricurvum, a3. Aeromonas, a4. Ferrimonas, a5. Bordetella, a6. Edwardsiella, a7. Terasakiella, a8. Citrobacter, a9. Sulfuricella, a10. Burkholderia, a11. Saccharophagus, a12. Bradyrhizobium, a13. Azospirillum, a14. Azoarcus, a15. Sulfuritortus, a16. Achromobacter, a17. Magnetospirillum, a18. Chelatococcus, a19. Sulfuritalea, a20. Paracoccus; b1. Ferrimonas, b2. Desulfosarcina, b3. Comamonas, b4. Chelatococcus, b5. Achromobacter, b6. Sulfurivermis, b7. Paracoccus, b8. Oceanimonas, b9. Azospirillum, b10. Sulfuritortus, b11. Dechloromonas, b12. Sulfuricurvum, b13. Thauera, b14. Pseudomonas, b15. Bordetella, b16. Rhodobacter, b17. Burkholderia, b18. Homo, b19. Azoarcus, b20. Aminobacter; c1. Aminobacter, c2. Campylobacter, c3. Aeromonas, c4. Bradyrhizobium, c5. Sulfuritortus, c6. Bordetella, c7. Achromobacter, c8. Sulfuricurvum, c9. Thauera, c10. Azoarcus, c11. Agrobacterium, c12. Thioalkalivibrio, c13. Homo, c14. Arcobacter, c15. Pseudomonas, c16. Shewanella, c17. Azospirillum, c18. Sinorhizobium, c19. Rhizobium, c20. Oceanithermus; d1. Ferrimonas, d2. Aeromonas, d3. Achromobacter, d4. Azoarcus, d5. Bordetella, d6. Sulfurivermis, d7. Sulfuritortus, d8. Bradyrhizobium, d9. Pseudomonas, d10. Azospirillum, d11. Chelatococcus, d12. Rhodobacter, d13. Paracoccus, d14. Edwardsiella, d15. Dechloromonas, d16. Sinorhizobium, d17. Thioalkalivibrio, d18. Comamonas, d19. Yersinia, d20. Rhizobium 图 5 白洋淀冬季不同层沉积物好氧反硝化菌随机森林分析重要性前20的属 Fig. 5 Top 20 genera of random forest analysis of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
依据Zi值和Pi值将所有节点划分为4类:普通节点、模块核心、网络核心和连接点, 当Zi < 2.5, Pi≤0.62时为普通节点, 其余均为网络中的关键节点.图 6所示, 表层关键物种有35个, 其中unassigned占比为80%, 其余为变形菌门, 分别属于Saccharophagus、Thauera、Bordetella和unclassified.中层关键物种有9个, unassigned占比为88.9%, 其余为unclassified.底层关键物种有10个, unassigned占比为90%, 其余为unclassified.组间共有关键物种有8个, 表层独有关键物种最多为27个, 中层无独有关键物种.整个淀区关键物种有9个, 与中层关键物种完全相同.其中Thauera为第三大菌属, 为表层独有关键物种, 可能与其所占比例远高于中层和底层有关, Wang等[41]最新分离的Thauera菌属具有同时去除铵、亚硝酸盐和硝酸盐的能力.综上, unassigned对空间分组差异性贡献最大, Saccharophagus、Thauera和Bordetella对空间分组差异性贡献最小, Bordetella与随机森林分析的标志物种相同, 属于β-Proteobacteria且具有脱氮特性[42].
![]() |
图 6 白洋淀冬季不同层沉积物好氧反硝化菌关键物种散点图 Fig. 6 A scatter diagram of key species of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
应用Erdos-Renyi模型建立随机网络, 进一步验证微生物网络的拓扑特征是否有意义.以图密度、平均路径长度、聚类系数等指标作为衡量标准[43], 可评估网络之间拓扑特征的差异程度, 以反映微生物互作的频率、复杂性以及环境异质性等.如表 1所示, 表、中和底层的节点数和边数均小于或等于整个淀区的, 因此整个淀区物种完全包含各层深所含的沉积物物种.表层、中层、底层和整个淀区的微生物网络节点数、边数和图密度与随机网络相同, 且其余微生物网络的拓扑指数值均大于随机网络的拓扑指数值[44].因此, 微生物网络的拓扑特征是有意义的.
![]() |
表 1 白洋淀冬季不同层沉积物好氧反硝化菌网络分析拓扑指数 Table 1 Topological index of network analysis of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
2.5 微生物群落构建
为了明确确定性和随机过程在好氧反硝化菌群落构建中的相对重要性, 同时通过中性群落模型(NCM)和标准化随机率(NST)进行分析.如图 7所示, 使用NCM预测了该时期表层、中层、底层和整个淀区数据集相结合的亚群落中OTU出现频率与其相对丰度之间的关系, 表、中和底层的解释率(R2)逐渐变大, 整个淀区中解释率最高, R2=0.655, 表明随机过程在不同水文机制下对好氧反硝化菌群落的形成都非常重要; 并且好氧反硝化菌群在表层的N×m值最高, N×m值为11 207(其中N=14 587, m=0.768), 表明表层好氧反硝化菌群的物种扩散高于中层和底层[45], 可能是由于表层直接与上覆水接触, 增强了表层物种扩散程度, 这与Wan等[46]的研究指出疏浚后细菌群落受随机性过程影响更大的结果一致.如图 8所示, 使用NST评估确定性和随机过程在群落构建中的相对重要性[47], 表层好氧反硝化菌的NST值为0.29±0.31, 分布在50%边界线以下, 表明表层确定性选择过程主导着该时期好氧反硝化菌群落构建; 底层好氧反硝化菌的NST值为0.88±0.21, 分布在50%边界线以上, 表明底层随机性选择过程主导着该时期好氧反硝化菌群落构建; 中层好氧反硝化菌的NST值为0.56±0.35, 大部分分布在50%边界线以上, 表明中层随机性选择过程对该时期好氧反硝化菌群落的影响更大, 且表、中和底层呈现极其显著差异(P < 0.001).
![]() |
图 7 白洋淀冬季不同层沉积物好氧反硝化菌的中性群落模型 Fig. 7 NCM analysis of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
![]() |
虚线表示50%分界线; *** 表示组间存在极其显著差异; 圆点为底层的异常值 图 8 白洋淀冬季不同层沉积物好氧反硝化菌的标准化随机率分析 Fig. 8 NST analysis of aerobic denitrification bacteria from sediments of different layers of Baiyangdian Lake during winter |
综上, 中性群落模型和标准化随机率结果均显示从表层到底层好氧反硝化菌群落构建确定性选择影响逐渐减小, 随机性选择影响逐渐增大.这可能由于表层与上覆水接触, 因而导致表层可变性变强, 受确定性选择影响更大; 而中层和底层所接触的间隙水可变性较小, 因而随机性选择占主导.一方面, 微生物多样性讨论表明, 从表层到底层微生物丰富度逐渐减小(S: 3 327.67±621.28; M: 2 861.95±635.78; B: 2 193.96±45.57), 更高的物种丰富度促进了菌群间的相互作用[48], 增加了从底层到表层群落构建过程确定性选择的影响, 因而从表层到底层随机性选择影响逐渐增大.另一方面, 与随机网络相比, 微生物网络结构的存在暗示了群落构建中确定性过程的存在, 从表层到底层模块度逐渐减小(S: 0.382; M: 0.374; B: 0.373)与随机性选择逐渐加强相吻合.Li等[49]关于土壤真菌的研究结果表明随土层深度增加, 确定性过程减少, 随机性过程增加, 这与本文结论相一致.因此, 微生物多样性和网络分析结果与中性群落模型和标准化随机率分析结果相一致, 从表层到底层群落构建过程随机性选择影响逐渐增大.
3 结论(1) 白洋淀冬季冰封期沉积物中好氧反硝化菌群属于10个门类163个属, 属于13 845个OTUs, 第一大门类为变形菌门, 占比为29.03%~94.46%, 随着沉积物层深增加呈下降趋势; 第一大纲为β-Proteobacteria, 占比为16.78%~63.67%; 占比前三的属分别为Cupriavidus、Aermonas和Thauera.
(2) 白洋淀冬季冰封期好氧反硝化菌群α多样性在垂向上存在差异, 且沉积物表层微生物丰富度明显高于底层, 沉积物中层微生物多样性指数明显高于表层.主成分分析和Venn分析表明, 表层和中层存在差异较小, 表层和底层差异最明显, 且非相邻层沉积物的差异显著高于相邻层沉积物.通过Adonis分析表明该时期好氧反硝化菌群垂向间存在极其显著差异(P < 0.001).
(3) 随机森林分析表明, Ferrimonas在垂向分组间贡献程度最高; 网络分析表明, unassigned对垂向分组差异性贡献最大, Saccharophagus、Thauera和Bordetella对垂向分组差异性贡献最小.随机森林分析和网络分析的标志物种有交叉相同的物种(Bordetella), 但差异贡献程度最高的物种不同.
(4) 通过中性群落模型(NCM)和标准化随机率(NST)分析, 表明表层确定性选择过程主导着该时期好氧反硝化菌群落构建, 而底层随机性选择过程占主导, 从表层到底层随机性选择过程主导程度逐渐增强, 且表层好氧反硝化菌群的物种扩散高于中层和底层.标准化随机率结果表明, 表、中和底层呈现极其显著差异(P < 0.001).
[1] |
孙悦, 李再兴, 张艺冉, 等. 雄安新区-白洋淀冰封期水体污染特征及水质评价[J]. 湖泊科学, 2020, 32(4): 952-963. Sun Y, Li Z X, Zhang Y R, et al. Water pollution characteristics and water quality evaluation during the freezing period in Lake Baiyangdian of Xiong'an New Area[J]. Journal of Lake Sciences, 2020, 32(4): 952-963. |
[2] |
汪敬忠, 刘卓, 魏浩, 等. 白洋淀表层沉积物元素的空间特征、风险评价及来源分析[J]. 环境科学, 2020, 41(1): 224-231. Wang J Z, Liu Z, Wei H, et al. Spatial characteristics, risk assessment, and source analysis of elements in surface sediments from the Baiyangdian Lake[J]. Environmental Science, 2020, 41(1): 224-231. |
[3] |
杜奕衡, 刘成, 陈开宁, 等. 白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学, 2018, 30(6): 1537-1551. Du Y H, Liu C, Chen K N, et al. Occurrence and internal loadings of nitrogen and phosphorus in the sediment of Lake Baiyangdian[J]. Journal of Lake Sciences, 2018, 30(6): 1537-1551. |
[4] |
张甜娜, 周石磊, 陈召莹, 等. 白洋淀夏季入淀区沉积物间隙水-上覆水水质特征及交换通量分析[J]. 环境科学, 2021, 42(7): 3176-3185. Zhang T N, Zhou S L, Chen Z Y, et al. Analysis of water quality and exchange flux of interstitial water-overlying water in sediments of Baiyangdian Entrance Area in summer[J]. Environmental Science, 2021, 42(7): 3176-3185. DOI:10.3969/j.issn.1000-6923.2021.07.020 |
[5] |
蔡茜, 何腾霞, 冶青, 等. 耐冷嗜碱蒙氏假单胞菌H97的鉴定及其好氧反硝化特性[J]. 环境科学, 2018, 39(7): 3314-3320. Cai X, He T X, Ye Q, et al. Identification and characterization of a hypothermic alkaliphilic aerobic denitrifying bacterium Pseudomonas monteilii strain H97[J]. Environmental Science, 2018, 39(7): 3314-3320. |
[6] | Xu Y, He T X, Li Z L, et al. Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature[J]. Biomed Research International, 2017, 2017. DOI:10.1155/2017/1429018 |
[7] | Zheng Z J, Zhang D Y, Li W G, et al. Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7T at 2℃[J]. Bioresource Technology, 2018, 259: 286-293. DOI:10.1016/j.biortech.2018.03.065 |
[8] |
何腾霞, 李振轮, 徐义. 耐冷亚硝酸盐型反硝化细菌Pseudomonas putida Y-12脱氮特性[J]. 环境科学学报, 2015, 35(10): 3071-3077. He T X, Li Z L, Xu Y. Denitrification characteristics of a hypothermia nitrite-denitrifier Pseudomonas putida Y-12[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3071-3077. |
[9] | Yang M, Lu D W, Qin B D, et al. Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11[J]. Bioresource Technology, 2018, 256: 366-373. DOI:10.1016/j.biortech.2018.02.049 |
[10] | Kou L Q, Huang T L, Zhang H H, et al. Mix-cultured aerobic denitrifying bacterial communities reduce nitrate: novel insights in micro-polluted water treatment at lower temperature[J]. Science of the Total Environment, 2021, 796. DOI:10.1016/j.scitotenv.2021.148910 |
[11] | Huber P, Metz S, Unrein F, et al. Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system[J]. The ISME Journal, 2020, 14(12): 2951-2966. DOI:10.1038/s41396-020-0723-2 |
[12] | Jiao S, Lu Y H. Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields[J]. Global Change Biology, 2020, 26(8): 4506-4520. DOI:10.1111/gcb.15130 |
[13] | Li X, Wan W J, Zheng L X, et al. Community assembly mechanisms and co-occurrence patterns of nitrite-oxidizing bacteria communities in saline soils[J]. Science of the Total Environment, 2021, 772. DOI:10.1016/j.scitotenv.2021.145472 |
[14] | Wan W J, Zhang Y N, Cheng G J, et al. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: shifts in associations between the bacterioplankton community and sediment biogeochemistry[J]. Environmental Research, 2020, 188. DOI:10.1016/j.envres.2020.109799 |
[15] | Feng W W, Liu J F, Gu J D, et al. Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA)[J]. International Biodeterioration & Biodegradation, 2011, 65(7): 1081-1086. |
[16] | Zhou S L, Zhang Y R, Huang T L, et al. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir[J]. Science of the Total Environment, 2019, 651: 998-1010. DOI:10.1016/j.scitotenv.2018.09.160 |
[17] | Rogers M B, Firek B, Shi M, et al. Disruption of the microbiota across multiple body sites in critically ill children[J]. Microbiome, 2016, 4(1). DOI:10.1186/s40168-016-0211-0 |
[18] | Chen B S, Teh B S, Sun C, et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis[J]. Scientific Reports, 2016, 6(1). DOI:10.1038/srep29505 |
[19] | Xin X D, He J G, Wang Y F, et al. Role of aeration intensity on performance and microbial community profiles in a sequencing batch reaction kettle (SBRK) for wastewater nutrients rapid removal[J]. Bioresource Technology, 2016, 201: 140-147. DOI:10.1016/j.biortech.2015.11.053 |
[20] | Demir S, AtçƖ E B. Sensitivity analysis and principal component analysis for the determination of the most influential kinetic parameters in activated sludge modeling[J]. Journal of Environmental Chemical Engineering, 2021, 9(5). DOI:10.1016/j.jece.2021.105872 |
[21] | Song M J, Choi S, Bae W B, et al. Identification of primary effecters of N2 O emissions from full-scale biological nitrogen removal systems using random forest approach[J]. Water Research, 2020, 184. DOI:10.1016/j.watres.2020.116144 |
[22] |
周石磊, 孙悦, 岳哿丞, 等. 雄安新区-白洋淀冬季冰封期水体好氧反硝化菌群落空间分布特征及驱动因素[J]. 环境科学, 2020, 41(5): 2177-2187. Zhou S L, Sun Y, Yue G C, et al. Spatial distribution characteristics and driving factors of aerobic denitrification bacterial community structure from Baiyangdian Lake in Xiong'an New Area during the winter freezing period[J]. Environmental Science, 2020, 41(5): 2177-2187. |
[23] | Sloan W T, Lunn M, Woodcock S, et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental Microbiology, 2006, 8(4): 732-740. DOI:10.1111/j.1462-2920.2005.00956.x |
[24] | Ning D L, Deng Y, Tiedje J M, et al. A general framework for quantitatively assessing ecological stochasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 16892-16898. DOI:10.1073/pnas.1904623116 |
[25] |
周石磊, 孙悦, 岳哿丞, 等. 白洋淀养殖区春季沉积物垂向微生物群落特征及驱动因素[J]. 环境科学学报, 2020, 40(5): 1722-1733. Zhou S L, Sun Y, Yue G C, et al. Vertical distribution characteristics and driving factors of microbial community of spring culture area sediments in Baiyangdian Lake[J]. Acta Scientiae Circumstantiae, 2020, 40(5): 1722-1733. |
[26] | Hou L F, Zhou Q, Wu Q P, et al. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant[J]. Science of the Total Environment, 2018, 625: 449-459. DOI:10.1016/j.scitotenv.2017.12.301 |
[27] | Droppo I G, Krishnappan B G, Lawrence J R. Microbial interactions with naturally occurring hydrophobic sediments: influence on sediment and associated contaminant mobility[J]. Water Research, 2016, 92: 121-130. DOI:10.1016/j.watres.2016.01.034 |
[28] | Ou D, Li H, Wu X, et al. Salt-tolerance aerobic granular sludge: formation and microbial community characteristics[J]. Bioresource Technology, 2018, 249: 132-138. DOI:10.1016/j.biortech.2017.07.154 |
[29] | Wu D, Zhang Z M, Yu Z D, et al. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge[J]. Bioresource Technology, 2018, 252: 150-156. DOI:10.1016/j.biortech.2017.12.094 |
[30] | Kielak A M, Barreto C C, Kowalchuk G A, et al. The ecology of Acidobacteria: moving beyond genes and genomes[J]. Frontiers in Microbiology, 2016, 7. DOI:10.3389/fmicb.2016.00744 |
[31] | Gao J, Duan Y, Liu Y, et al. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge[J]. Journal of Environmental Sciences, 2019, 78: 53-62. DOI:10.1016/j.jes.2018.06.022 |
[32] | Miao Y, Liao R H, Zhang X X, et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal, 2015, 277: 116-123. DOI:10.1016/j.cej.2015.04.125 |
[33] | Zhu L J, Zhou H X, Xie X Y, et al. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis[J]. Science of the Total Environment, 2018, 631-632: 1311-1320. DOI:10.1016/j.scitotenv.2018.03.134 |
[34] | Yasin N H M, Sanchez-Torres V, Maeda T. Enhanced reduction of waste activated sludge at a low temperature by locally isolated strains Pseudomonas sp. VNT and Aeromonas sp. VNT[J]. Bioresource Technology, 2014, 174: 134-141. DOI:10.1016/j.biortech.2014.10.005 |
[35] | Callaghan A V, Davidova I A, Savage-Ashlock K, et al. Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures[J]. Environmental Science & Technology, 2010, 44(19): 7287-7294. |
[36] | Yang L, Wang X H, Cui S, et al. Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5[J]. Bioresource Technology, 2019, 285. DOI:10.1016/j.biortech.2019.121360 |
[37] |
薛银刚, 刘菲, 江晓栋, 等. 太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018, 38(2): 719-728. Xue Y G, Liu F, Jiang X D, et al. The diversity of bacterial communities in the sediment of different lake zones of Lake Taihu in winter[J]. China Environmental Science, 2018, 38(2): 719-728. DOI:10.3969/j.issn.1000-6923.2018.02.037 |
[38] |
寇文伯, 黄正云, 张杰, 等. 鄱阳湖湖泊细菌群落组成及结构——以松门山为例[J]. 生态学报, 2015, 35(23): 7608-7614. Kou W B, Huang Z Y, Zhang J, et al. Bacterial community structure and composition in Lake Poyang: a case study in the Songmenshan region, China[J]. Acta Ecologica Sinica, 2015, 35(23): 7608-7614. |
[39] |
靳燕, 邱莹, 董志, 等. 北运河浮游细菌集合群落空间变化的环境解释[J]. 中国环境科学, 2021, 41(3): 1378-1386. Jin Y, Qiu Y, Dong Z, et al. Environmental interpretation of spatial variation of planktonic bacterial communities in the North Canal River[J]. China Environmental Science, 2021, 41(3): 1378-1386. DOI:10.3969/j.issn.1000-6923.2021.03.041 |
[40] | Valdespino-Castillo P M, Bautista-García A, Favoretto F, et al. Interplay of microbial communities with mineral environments in coralline algae[J]. Science of the Total Environment, 2021, 757. DOI:10.1016/j.scitotenv.2020.143877 |
[41] | Wang Q K, He J Z. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5[J]. Water Research, 2020, 185. DOI:10.1016/j.watres.2020.116300 |
[42] | Sun H H, Narihiro T, Ma X Y, et al. Diverse aromatic-degrading bacteria present in a highly enriched autotrophic nitrifying sludge[J]. Science of the Total Environment, 2019, 666: 245-251. DOI:10.1016/j.scitotenv.2019.02.172 |
[43] | Zhang Y T, Liu J, Wang H Y, et al. Suitability of the DNDC model to simulate yield production and nitrogen uptake for maize and soybean intercropping in the North China Plain[J]. Journal of Integrative Agriculture, 2018, 17(12): 2790-2801. DOI:10.1016/S2095-3119(18)61945-8 |
[44] | Sun H, Pan B Z, He H R, et al. Assembly processes and co-occurrence relationships in the bacterioplankton communities of a large river system[J]. Ecological Indicators, 2021, 126. DOI:10.1016/j.ecolind.2021.107643 |
[45] | Chen W D, Ren K X, Isabwe A, et al. Correction to: stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1). DOI:10.1186/s40168-019-0763-x |
[46] | Wan W J, Gadd G M, Gu J D, et al. Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of bacterioplankton community[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117449 |
[47] | Li C C, Wang L F, Ji S P, et al. The ecology of the plastisphere: microbial composition, function, assembly, and network in the freshwater and seawater ecosystems[J]. Water Research, 2021, 202. DOI:10.1016/j.watres.2021.117428 |
[48] | Czárán T L, Hoekstra R F, Pagie L, et al. Chemical warfare between microbes promotes biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 786-790. DOI:10.1073/pnas.012399899 |
[49] | Li P F, Li W T, Dumbrell A J, et al. Spatial variation in soil fungal communities across paddy fields in subtropical China[J]. mSystems, 2020, 5(1). DOI:10.1128/mSystems.00704-19 |