环境科学  2022, Vol. 43 Issue (1): 93-101   PDF    
粤港澳大湾区大气中硝基多环芳烃污染特征与风险评估
李彦希, 谢丹平, 黎玉清, 金梦, 丁紫荣, 闫雅楠, 赵波     
生态环境部华南环境科学研究所, 广州 510655
摘要: 为探究粤港澳大湾区硝基多环芳烃(NPAHs)污染特征与来源,利用大气主动采样技术采集44个环境空气样品,并使用气相色谱-三重四级杆串联质谱测定NPAHs浓度.结果表明,同时使用滤膜、PUF和XAD-2树脂,可以更高效采集到气态和颗粒态的NPAHs,准确表征环境空气中NPAHs的污染状况.粤港澳大湾区环境空气中ρ(Σ18NPAHs)范围为162~2094 pg·m-3,夏季和冬季的平均ρ(Σ18NPAHs)分别为(675±430)pg·m-3和(637±349)pg·m-3.NPAHs广泛存在于粤港澳大湾区环境空气中,以1-硝基萘(220 pg·m-3)、2-硝基萘(146 pg·m-3)、9-硝基蒽(105 pg·m-3)和2-硝基荧蒽(72 pg·m-3)为主,夏季和冬季的族谱特征相似.NPAHs的气/粒分配特征表现为:2环和3环NPAHs倾向于赋存在气相,4环NPAHs倾向于吸附在颗粒相;颗粒相NPAHs在总NPAHs中的占比随分子量增大而增大;冬季NPAHs倾向于吸附在颗粒相中,夏季NPAHs倾向于赋存在气相中.基于特征污染物比值判断,粤港澳大湾区大气中NPAHs在夏季和冬季的主要来源是二次生成,二次生成源以·OH反应生成的贡献为主.呼吸暴露致癌风险值计算结果显示,粤港澳大湾区人群的呼吸暴露致癌风险处于可控范围.
关键词: 硝基多环芳烃(NPAHs)      粤港澳大湾区(GBA)      大气污染特征      气/粒分配      来源分析      致癌风险     
Pollution Characteristics and Risk Assessment of Nitrated Polycyclic Aromatic Hydrocarbons in the Atmosphere of Guangdong-Hong Kong-Macao Greater Bay Area
LI Yan-xi , XIE Dan-ping , LI Yu-qing , JIN Meng , DING Zi-rong , YAN Ya-nan , ZHAO Bo     
South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
Abstract: To investigate the pollution characteristics and sources of nitrated polycyclic aromatic hydrocarbons (NPAHs) in Guangdong-Hong Kong-Macao Greater Bay Area (GBA), 44 ambient air samples were collected using the active sampling method, which were then determined via gas chromatography-triple quadrupole tandem mass spectrometry. The main results showed that filters, polyurethane foam, and XAD-2 resin were the essential materials for sampling NPAHs in ambient air in order to characterize the pollution status accurately. The levels of ρ18NPAHs) in ambient air at GBA ranged from 162 pg·m-3 to 2094 pg·m-3, and the average levels of ρ18NPAHs) were (675±430) pg·m-3 in summer and (637±349) pg·m-3 in winter. NPAHs were widely found in the ambient air of GBA and were dominated by 1-nitronaphthalene (220 pg·m-3), 2-nitronaphthalene (146 pg·m-3), 9-nitroanthracene (105 pg·m-3), and 2-nitrofluoranthene (72 pg·m-3). The congener profile characteristics of NPAHs in summer and winter were similar. The gas/particle partitioning characteristics of NPAHs revealed that dicyclic and tricyclic NPAHs tend to occur in the gas phase, and tetracyclic NPAHs tend to be adsorbed in the particle phase. The fraction of NPAHs concentrations in the particulate fraction of their total atmospheric concentrations increased with the increase in their molecular weight. In winter, NPAHs tend to be adsorbed in the particle phase, whereas in summer, NPAHs tend to exist in the gas phase. Based on the ratios of characteristic pollutants, in both the summer and winter season, photochemical reactions were the main source of NPAHs in the atmosphere of GBA and were primarily generated by the reaction of the hydroxyl radical in the daytime. The carcinogenic risk value calculation showed that the current carcinogenic risk of NPAHs in the ambient air of GBA was controllable.
Key words: nitrated polycyclic aromatic hydrocarbons (NPAHs)      Guangdong-Hong Kong-Macao Greater Bay Area (GBA)      atmospheric pollution characteristics      gas/particle partitioning      source appointment      carcinogenic risk     

硝基多环芳烃(nitrated polycyclic aromatic hydrocarbons, NPAHs)是一类重要的多环芳烃(polycyclic aromatic hdrocarbons, PAHs)衍生物, 已被公认为有毒空气污染物[1~5].NPAHs在大气中的浓度一般比母体PAHs低1~2数量级[6~8], 但部分NPAHs的致突变性和致癌性比PAHs更强[9, 10], 因而引起了持续地关注.NPAHs在环境中污染广泛, 在所有环境介质和食物中均有检出, 并且可以在生物体内积累[11~14].此外还发现NPAHs具有持久性, 在远离排放源的南极大气颗粒物中也有检出[15~17].大气中NPAHs的来源主要为一次排放和二次生成, 一次排放的NPAHs来自生物质和化石燃料的不完全燃烧, 二次生成的NPAHs主要由PAHs与大气中的· OH、· NO3和O3等氧化剂发生光化学反应生成[18~21].

粤港澳大湾区(Guangdong-Hong Kong-Macao Greater Bay Area, GBA)是中国经济活力最强和人口最多的区域之一, 在国家发展大局中具有重要战略地位, 但过去的快速发展导致了较严重的大气污染问题[22~24].粤港澳大湾区监测数据表明, 近年来O3浓度呈现增高趋势并成为首要大气污染物, 导致区域性大气光化学反应的发生[25, 26].在粤港澳大湾区高温和高紫外线强度的气象条件下, 有利于大气光化学反应发生, 促成PAHs向NPAHs转化, 对当地居民造成一定的潜在健康风险.

目前还缺乏对大气中NPAHs的区域性分析, 且研究介质主要集中在大气颗粒物, 对大气气相NPAHs的报道相对较少.本研究同时采集了粤港澳大湾区大气气相和颗粒相中的NPAHs, 使用气相色谱-三重四极杆串联质谱检测NPAHs的浓度水平, 分析NPAHs的气粒分布特征, 识别NPAHs的主要来源, 评估呼吸致癌风险, 以期为政府部门管控粤港澳大湾区大气污染提供数据支撑.

1 材料与方法 1.1 仪器、试剂与材料

大流量采样器为MEGA X1(Hornet, 美国), 石英纤维滤膜为90 mm×90 mm(Whatman, 英国), XAD-2树脂为20~60目(Sigma, 美国), 聚氨酯泡沫(polyurethane foam, PUF)为50 mm×90 mm(Tisch, 美国), 气相色谱-三重四极杆串联质谱为Trace 1310-TSQ 9000(Thermo, 美国), 旋转蒸发仪为R100(Buchi, 瑞士), 氮吹浓缩仪为MG-2200(Eyela, 日本), 索氏提取装置为500 mL(欣维尔, 中国); 色谱柱为Rxi-dioxin(60 m×0.25 mm×0.25 μm, Restek, 美国).

正己烷为色谱纯(Honeywell, 美国), 二氯甲烷为色谱纯(Honeywell, 美国). 18种NPAHs标准品均购自Accustandard(美国), 9种氘代NPAHs标准品均购自Accustandard(美国)和Chiron(挪威).

1.2 点位布设和样品采集

本研究选取粤港澳大湾区覆盖的广州、深圳、珠海、东莞、佛山、中山、惠州、江门和肇庆等九市, 参照文献[27]布设点位(n=22), 如图 1所示.每个点位冬、夏季各采集一个样品, 冬季采样时间为2019年12月2~7日, 夏季采样时间为2020年8月12~28日.采用进口大流量采样器以250 L ·min-1的流量持续24 h采集样品, 使用石英纤维滤膜采集悬浮态颗粒相中NPAHs, 使用XAD-2树脂和PUF吸附气相中的NPAHs.

图 1 采样点位示意 Fig. 1 Schematic of sampling site location

1.3 样品前处理

索氏抽提器和500 mL平底烧瓶用二氯甲烷索氏抽提4 h.抽提完成后, 将抽提装置中二氯甲烷移除并自然晾干, 待用.将滤膜单独放入索氏提取器, 将玻璃采样筒中的PUF和树脂用镊子分离, 分别单独放入另外两个索氏抽提器中. 3个索氏提取器均添加20 ng提取内标(9种氘代NPAHs), 使用正己烷+二氯甲烷(1+1)连续抽提24 h, 抽提结束后将抽提器中的溶剂完全转移至平底烧瓶, 并旋转蒸发浓缩至约2 mL, 转换溶剂为正己烷浓缩至约1 mL, 备份样品.由于部分NPAHs容易在前处理过程中降解或者光解, 因此不对样品进行净化, 样品浓缩至约200 μL, 添加20 ng进样内标(氘代芘), 上机测试.

1.4 仪器分析 1.4.1 色谱条件

采用Rxi-dioxin(60 m×0.25 mm×0.25 μm)色谱柱对NPAHs进行分离.色谱柱升温程序: 初温70℃, 保持2 min, 以25℃ ·min-1升至200℃, 保持1 min, 再以2.5℃ ·min-1升温至265℃后, 保持10 min, 以25℃ ·min-1升至320℃, 保持16 min.进样口温度280℃, 采用不分流进样, 进样量为1 μL.

1.4.2 质谱条件

传输线温度300℃, 增强型离子源(AEI源)温度300℃, 扫描方式为选择反应离子扫描(selected reaction monitoring, SRM)模式, 每个单体的定量离子对与碰撞能量由仪器自动优化获得, 相关参数见表 1.

表 1 NPAHs的保留时间、定量离子对和碰撞能量 Table 1 Retention time, quantitative ion pairs, and collision energy for each NPAHs

1.5 质量保证/质量控制(QA/QC)

每批样品至少准备一个运输空白和实验室空白, 以判断采样运输过程和实验室分析过程的污染状况.每批样品至少准备一个空白加标, 以判断实验室分析过程的准确度和精密度是否符合要求.质控结果: 所有NPAHs的运输空白和实验室空白均小于检出限, 空白加标回收率范围为103% ~129%. NPAHs的检出限范围为5~62 pg(以10倍信噪比为检出限).

2 结果与讨论 2.1 采样方法与检测方法

已有研究中广泛报道的大气中NPAHs采样方法是使用滤膜采集颗粒物中的NPAHs, 使用PUF吸附气态NPAHs.考虑到环境空气中PAHs的采集需要同时使用滤膜、PUF和XAD-2树脂[28], 本研究使用了类似方法采集大气中的NPAHs.结果表明: 树脂中∑18NPAHs占大气中∑18NPAHs的比例较高, 夏季占比40.9%, 冬季占比37.0%; 树脂中低分子量NPAHs的占比则更高, 比如1-NNap占比为: 树脂(64.9%)>PUF(34.4%)>滤膜(0.8%).这表明树脂是采集大气中NPAHs的必要采样介质之一, 但尚未发现使用树脂采集大气NPAHs的报道.本研究首次提出了同时使用滤膜、PUF和XAD-2树脂采集大气中NPAHs的方法, 以准确表征环境空气中NPAHs的污染状况.

文献[18, 29]中NPAHs的检测仪器通常是气相色谱-质谱联用仪配备负化学离子源, 或高效液相色谱配备紫外或荧光检测器.负化学离子源检测NPAHs时有很好地灵敏度(检出限pg级水平), 但选择性不高, 易造成假阳性干扰.高效液相色谱检测NPAHs可避免部分NPAHs单体在高温下降解, 但在分离某些同分异构体时存在困难.如2-NFlt和3-NFlt, 二者在大气中的污染来源不同, 若检测时无法区分, 可能误导后续的数据分析工作.

本研究采用气相色谱-三重四极杆串联质谱联用仪作为检测仪器, 其优点主要在于: SRM模式下信噪比非常理想, 检出限(5~62 pg)可满足大气样品超痕量NPAHs的检测需求; SRM模式下的选择性非常好, 可有效排除假阳性干扰.实验表明, 本研究中所有大气样品完成萃取和浓缩后, 无需净化可直接上机检测, 从而避免光敏NPAHs单体[30]的损失.此外, 由于2-NFlt和3-NFlt在气相色谱柱上难以分离, 已有研究中通常用2+3-NFlt替代2-NFlt[6, 31~33], 也有研究另用一根专用色谱柱分离2-NFlt和3-NFlt[7, 34].本研究实现了一根气相色谱柱同时检测18种NPAHs并分离2-NFlt和3-NFlt, 如图 2所示, 在SRM模式下2-NFlt和3-NFlt的分离度较好.

图 2 2-NFlt和3-NFlt的色谱图 Fig. 2 Chromatogram of 2-NFlt and 3-NFlt

2.2 大气中NPAHs的浓度水平

本研究中的18中NPAHs单体, 除了3-NFlt、6-NChr和6-NBaP, 其余15种NPAHs均有检出(见表 2表 3).在夏冬两季检出率均为100%的NPAHs有9种, 检出率高于70%的NPAHs数量占据总数的72%, 说明NPAHs普遍存在于粤港澳大湾区的环境空气中.

表 2 夏季大气中NPAHs的检出浓度1)/pg ·m-3 Table 2 Detection concentration of NPAHs in summer atmospheric samples/pg ·m-3

表 3 冬季大气中NPAHs的检出浓度1)/pg ·m-3 Table 3 Detection concentration of NPAHs in winter atmospheric samples/pg ·m-3

22个研究点位环境空气中ρ(∑18NPAHs)范围: 162~2 094 pg ·m-3, 检出浓度最高的单体依次为: 1-NNap[(229±148)pg ·m-3]、2-NNap[(152±108)pg ·m-3]、9-NAnt[(109±68)pg ·m-3]和2-NFlt[(74±59)pg ·m-3].有9种NPAHs的平均浓度小于10 pg ·m-3.本研究中1-NNap和2-NNap的浓度占∑18NPAHs的56.7%, 说明粤港澳大湾区环境空气中的NPAHs以两种硝基萘为主.

夏季和冬季平均ρ(∑18NPAHs)分别为(675±430)pg ·m-3和(637±349)pg ·m-3, 夏季略高于冬季. 15种检出的NPAHs单体中, 除了3-NBip、2-NFlt、1-NPyr和7NBaA, 其余NPAHs单体在夏季的平均浓度均高于冬季. 22个研究点位夏季浓度最低点为深圳S1, 浓度最高点为广州S3; 冬季浓度最低点为广州S4, 浓度最高点为东莞S1.NPAHs在夏季和冬季的族谱特征见图 3, 1-NNap和2-NNap在夏季和冬季的总占比分别为62%和53%, 9-NAnt在夏季和冬季的占比均为16%, 2-NFlt在夏季和冬季占比分别为9%和14%; 1-NNap、2-NNap、9-NAnt和2-NFlt 4种主要NPAHs单体在夏季和冬季的总占比分别为87%和83%.NPAHs在夏季和冬季的族谱特征大致相同, 可能是因为NPAHs在夏季和冬季的来源贡献相似.

图 3 粤港澳大湾区大气中NPAHs的族谱特征 Fig. 3 Congener profile characteristics of NPAHs in the atmosphere of GBA

筛选近年来同时报道颗粒相和气相中NPAHs的研究进行比较发现(见表 4), 同其他研究结果相比, 本研究中检测的1-NNap和2-NNap处于较高的污染水平, 而其余NPAHs单体处于较低的污染水平.与已有报道的珠三角某地区空气中NPAHs浓度相比[7], 1-NNap、2-NNap、5-NAce和9-NPhe基本处于同一水平.而已有报道的西安市地区空气中极高的NPAHs污染水平[33], 反映了当地复杂的NPAHs污染来源, 包括各种工业源、机动车排放和光化学反应源.而本研究的采样点位远离工业区或交通繁忙区域, 这也可能是本研究区域环境空气中多种NPAHs浓度较低的原因.

表 4 粤港澳大湾区大气中NPAHs浓度的比较与国内外城市对比1)/pg ·m-3 Table 4 Concentration comparison of NPAHs in ambient air at GBA with available data for NPAHs domestically and overseas/pg ·m-3

2.3 NPAHs的气/粒分配

NPAHs在不同采样材料中的平均浓度见表 5, 可以发现: 2环和3环NPAHs倾向于赋存在气相, 4环NPAHs倾向于吸附在颗粒相.其中1-NNap和2-NNap在树脂中的浓度最高, 1-NPyr、2-NPyr和7-NBaA在滤膜中的浓度最高, 其余单体在PUF中的浓度最高.

表 5 NPAHs在滤膜、PUF和树脂中的浓度/pg ·m-3 Table 5 Concentration of NPAHs in filters, PUF, and resin/pg ·m-3

颗粒相NPAHs占大气总NPAHs(气相+颗粒相)的比例, 随着NPAHs分子量的增大而增大(如图 4).对比冬季和夏季的Logistic拟合曲线发现, 冬季和夏季的颗粒相NPAHs占比存在显著差异(P=0.005), 冬季NPAHs更倾向于吸附在颗粒相中, 而夏季NPAHs则更倾向于赋存在气相中, 显然是由于不同季节的气温变化导致的, 以往研究中也报道了类似的现象[1, 33].影响NPAHs在气相和颗粒相中分配的因素有很多, 除了其本身的理化性质和气象条件外, 固体颗粒物的粒径、有机碳的比例、含水率、NPAHs的来源等, 都会显著影响这种气/粒分配[1, 8, 40].

P值为夏季和冬季NPAHs配对样本T检验的显著水平 图 4 颗粒相NPAHs占大气总NPAHs的比例 Fig. 4 Fraction of NPAHs concentrations in the particulate fraction of their total atmospheric concentrations

2.4 NPAHs的来源分析

2-NFlt是NPAHs二次生成的标志物, 1-NPyr是NPAHs一次排放的标志物, 已有研究中通常使用2-NFlt/1-NPyr的浓度比值判断大气中NPAHs的来源类别.若比值大于5, 则表明NPAHs的主要来源是光化学反应二次生成; 若比值小于5, 则表明NPAHs的主要来源是燃烧源一次排放[41, 42].图 5展示了22个点位冬季和夏季的2-NFlt/1-NPyr比值, 44个样品中有43个样品的比值大于5, 说明二次生成是粤港澳大湾区夏季和冬季大气中NPAHs的主要来源. 2-NFlt/1-NPyr在夏季和冬季的均值分别为19.6±12.7和19.4±14.2, 季节差异很小, 而大部分研究中报道的比值通常夏季大于冬季.分析可能的原因是: 粤港澳大湾区没有冬季供暖需求, 一次排放贡献的NPAHs不存在明显季节性差异.

图 5 2-NFlt与1-NPyr的浓度比值特征 Fig. 5 Ratio characteristics of concentrations of 2-NFlt and 1-NPyr

2-NFlt主要来自荧蒽与· OH(白天)和· NO3(夜晚)反应所生成, 而2-NPyr则只能来自芘与· OH在白天反应生成.因此2-NFlt/2-NPyr的浓度比值可以用于识别大气中NPAHs的二次生成源, 当该比值小于10时, 二次生成源以· OH反应生成的贡献为主, 而当该比值大于100时, 二次生成源以· NO3反应生成的贡献为主[41, 42].图 6展示了22个点位冬季和夏季的2-NFlt/2-NPyr比值, 44个样品中有31个样品的比值小于10, 说明研究区域大气中二次生成的NPAHs以· OH反应生成的贡献为主.

图 6 2-NFlt与2-NPyr的浓度比值特征 Fig. 6 Ratio characteristics of concentrations of 2-NFlt and 2-NPyr

2.5 NPAHs呼吸暴露风险评估

本研究采用美国环保局推荐的污染物致癌健康风险评估模型, 对NPAHs的呼吸暴露风险进行评价.污染物日均呼吸暴露剂量ADDinh计算公式如下:

式中, c为空气中污染物浓度, mg ·m-3; IR为呼吸速率, m3 ·d-1; EF为暴露频率, d ·a-1; ED为暴露持续时间, a; BW为体重, kg; AT为平均暴露时间, a.本研究的成人呼吸暴露参数选用文献[43]中的平均值, 儿童暴露参数选用6岁儿童的暴露参数[44], 见表 6.

表 6 成人与儿童的呼吸暴露参数 Table 6 Inhalation exposure parameters of adults and children

污染物呼吸暴露致癌风险评估模型公式如下:

式中, Rinh为呼吸暴露致癌风险, 无量纲; SFinh为呼吸致癌斜率因子, kg ·d ·mg-1; ADDinh为污染物日均呼吸暴露剂量, mg ·(kg ·d)-1.依据美国环保署的致癌风险参考限值: 当Rinh<10-6时, 风险可忽略; 当Rinh介于10-6~10-4时, 风险可接受; 当Rinh>10-4时, 具备致癌风险.

本研究涉及的18种目标NPAHs的呼吸致癌斜率因子SFinh数据, 通过查阅加州环境健康危害评估办公室(California Office of Environmental Health Hazard Assessment, OEHHA)的数据库[45]获得, 具体见表 7.

表 7 NPAHs呼吸致癌斜率因子 Table 7 Cancer slope factors of NPAHs through inhalation

图 7为粤港澳大湾区成人和儿童的NPAHs呼吸暴露致癌风险值, 夏季平均风险值(成人2.85×10-7±2.41×10-7, 儿童5.02×10-7±3.87×10-7)高于冬季(成人2.25×10-7±1.04×10-7, 儿童2.66×10-7±1.10×10-7), 22点位儿童的NPAHs呼吸暴露致癌风险值均高于成人.在夏季, 惠州S1儿童、广州S1成人和儿童的NPAHs呼吸致癌风险Rinh介于10-6~10-4, 风险可接受; 其余所有点位的Rinh<10-6, 风险可忽略.在冬季, 所有点位的Rinh<10-6, 风险均可忽略.说明粤港澳大湾区人群的呼吸暴露致癌风险可控.但由于本研究并未覆盖所有的NPAHs, 如二硝基多环芳烃, 大气中的NPAHs致癌风险可能被低估.

图 7 成人和儿童的NPAHs呼吸暴露致癌风险值 Fig. 7 Carcinogenic risk values for NPAHs of adults and children

3 结论

(1) 同时使用滤膜、PUF和XAD-2树脂, 可以更高效采集到气态和颗粒态的NPAHs, 准确表征环境空气中NPAHs的污染状况.

(2) NPAHs普遍存在于粤港澳大湾区的环境空气中, 以1-NNap、2-NNap、9-NAnt和2-NFlt为主, 夏季和冬季的族谱特征相似.

(3) 颗粒相NPAHs占大气总NPAHs的比例, 随分子量的增大而增大; 冬季NPAHs倾向于吸附在颗粒相中, 而夏季NPAHs更倾向于赋存在气相中.

(4) 粤港澳大湾区大气中NPAHs在夏季和冬季的主要来源是二次生成, 二次生成源以· OH反应生成的贡献为主.

(5) 粤港澳大湾区大气NPAHs在夏季的呼吸致癌平均风险值高于冬季, 粤港澳大湾区人群的呼吸暴露致癌风险可控.

参考文献
[1] Albinet A, Leoz-Garziandia E, Budzinski H, et al. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys: part 1:concentrations, sources and gas/particle partitioning[J]. Atmospheric Environment, 2008, 42(1): 43-54. DOI:10.1016/j.atmosenv.2007.10.009
[2] Benbrahim-Tallaa L, Baan R A, Grosse Y, et al. Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes[J]. The Lancet Oncology, 2012, 13(7): 663-664. DOI:10.1016/S1470-2045(12)70280-2
[3] Kawanaka Y, Matsumoto E, Wang N, et al. Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere[J]. Atmospheric Environment, 2008, 42(32): 7423-7428. DOI:10.1016/j.atmosenv.2008.06.032
[4] 刘攀亮, 剧媛丽, 毛潇萱, 等. 宁东能源化工基地大气PM2.5中硝基多环芳烃污染特征及呼吸暴露风险[J]. 环境科学, 2019, 40(6): 2556-2564.
Liu P L, Ju Y L, Mao X X, et al. Pollution characteristics and risk assessment of nitro polycyclic aromatic hydrocarbons in PM2.5 of Nanjing, China[J]. Environmental Science, 2019, 40(6): 2556-2564.
[5] 傅银银, 文浩哲, 王向华, 等. 南京市大气细颗粒物(PM2.5)中硝基多环芳烃污染特征与风险评估[J]. 环境科学, 2021, 42(6): 2626-2633.
Fu Y Y, Wen H Z, Wang X H, et al. Pollution characteristics and risk assessment of nitro polycyclic aromatic hydrocarbons in PM2.5 of Nanjing, China[J]. Environmental Science, 2021, 42(6): 2626-2633.
[6] Wei S L, Huang B, Liu M, et al. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China[J]. Atmospheric Research, 2012, 109-110: 76-83. DOI:10.1016/j.atmosres.2012.01.009
[7] Huang B, Liu M, Bi X H, et al. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China[J]. Atmospheric Pollution Research, 2014, 5(2): 210-218. DOI:10.5094/APR.2014.026
[8] Tomaz S, Shahpoury P, Jaffrezo J L, et al. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): seasonal variations, gas/particle partitioning and cancer risk estimation[J]. Science of the Total Environment, 2016, 565: 1071-1083. DOI:10.1016/j.scitotenv.2016.05.137
[9] Durant J L, Busby W F Jr, Lafleur A L, et al. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols[J]. Mutation Research/Genetic Toxicology, 1996, 371(3-4): 123-157. DOI:10.1016/S0165-1218(96)90103-2
[10] Misaki K, Takamura-Enya T, Ogawa H, et al. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives[J]. Mutagenesis, 2016, 31(2): 205-213. DOI:10.1093/mutage/gev076
[11] Hung C H, Ho H P, Lin M T, et al. Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples[J]. Journal of Chromatography A, 2012, 1265: 1-6. DOI:10.1016/j.chroma.2012.09.084
[12] Chen Y C, Shen G F, Su S, et al. Contamination and distribution of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons in smoked meat[J]. Environmental Science and Pollution Research, 2014, 21(19): 11521-11530. DOI:10.1007/s11356-014-3129-8
[13] Deng K L, Wong T Y, Wang Y N, et al. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products[J]. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3161-3167. DOI:10.1021/acs.jafc.5b00523
[14] Uno S, Tanaka H, Miki S, et al. Bioaccumulation of nitroarenes in bivalves at Osaka Bay, Japan[J]. Marine Pollution Bulletin, 2011, 63(5-12): 477-481. DOI:10.1016/j.marpolbul.2011.02.044
[15] Hayakawa K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons[J]. Chemical and Pharmaceutical Bulletin, 2016, 64(2): 83-94. DOI:10.1248/cpb.c15-00801
[16] Lafontaine S, Schrlau J, Butler J, et al. Relative influence of trans-Pacific and regional atmospheric transport of PAHs in the Pacific Northwest, US[J]. Environmental Science & Technology, 2015, 49(23): 13807-13816.
[17] Tang N, Sato K, Tokuda T, et al. Factors affecting atmospheric 1-, 2-nitropyrenes and 2-nitrofluoranthene in winter at Noto peninsula, a remote background site, Japan[J]. Chemosphere, 2014, 107: 324-330. DOI:10.1016/j.chemosphere.2013.12.077
[18] Bandowe B A M, Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment-a review[J]. Science of the Total Environment, 2017, 581-582: 237-257. DOI:10.1016/j.scitotenv.2016.12.115
[19] Dimashki M, Harrad S, Harrison R M. Measurements of nitro-PAH in the atmospheres of two cities[J]. Atmospheric Environment, 2000, 34(15): 2459-2469. DOI:10.1016/S1352-2310(99)00417-3
[20] Titaley I A, Walden D M, Dorn S E, et al. Evaluating computational and structural approaches to predict transformation products of polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2019, 53(3): 1595-1607.
[21] Yan J P, Wang X P, Gong P, et al. Nitrated polycyclic aromatic compounds in the atmospheric environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(11): 1159-1185. DOI:10.1080/10643389.2020.1748486
[22] 周军芳, 范绍佳, 李浩文, 等. 珠江三角洲快速城市化对环境气象要素的影响[J]. 中国环境科学, 2012, 32(7): 1153-1158.
Zhou J F, Fan S J, Li H W, et al. Impact of urbanization on meteorological factors in Pearl River Delta[J]. China Environmental Science, 2012, 32(7): 1153-1158. DOI:10.3969/j.issn.1000-6923.2012.07.001
[23] 王耀庭, 梁加成, 郑祚芳, 等. 基于地-空观测数据的粤港澳大湾区大气污染调查及时空演变特征[J]. 环境科学, 2020, 41(5): 2075-2086.
Wang Y T, Liang J C, Zheng Z F, et al. Characteristics of spatial and temporal evolution and investigation of air pollution in Guangdong-Hong Kong-Macao Greater Bay Area based on ground-space observation data[J]. Environmental Science, 2020, 41(5): 2075-2086.
[24] 刘建, 吴兑, 范绍佳. 珠江三角洲区域污染分布及其垂直风场特征[J]. 环境科学, 2015, 36(11): 3989-3998.
Liu J, Wu D, Fan S J. Distribution of regional pollution and the characteristics of vertical wind field in the Pearl River Delta[J]. Environmental Science, 2015, 36(11): 3989-3998.
[25] Wang Y H, Gao W K, Wang S, et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017[J]. National Science Review, 2020, 7(8): 1331-1339. DOI:10.1093/nsr/nwaa032
[26] 赵伟, 高博, 卢清, 等. 2006~2019年珠三角地区臭氧污染趋势[J]. 环境科学, 2021, 42(1): 97-105.
Zhao W, Gao B, Lu Q, et al. Ozone pollution trend in the Pearl River Delta region during 2006-2019[J]. Environmental Science, 2021, 42(1): 97-105. DOI:10.3969/j.issn.1006-4427.2021.01.017
[27] 环境保护部. 《国家环境空气监测网(地级以上城市)设置方案》[EB/OL]. http://www.mee.gov.cn/gkml/hbb/bwj/201204/t20120401_250935.htm, 2012-04-01.
[28] HJ 646-2013, 环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法[S].
[29] Zhang Y H, Li R J, Fang J, et al. Simultaneous determination of eighteen nitro-polyaromatic hydrocarbons in PM2.5 by atmospheric pressure gas chromatography-tandem mass spectrometry[J]. Chemosphere, 2018, 198: 303-310. DOI:10.1016/j.chemosphere.2018.01.131
[30] Schlemitz S, Pfannhauser W. Supercritical fluid extraction of mononitrated polycyclic aromatic hydrocarbons from tea-correlation with the PAH concentration[J]. Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 1997, 205(4): 305-310. DOI:10.1007/s002170050170
[31] Ringuet J, Albinet A, Leoz-Garziandia E, et al. Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France)[J]. Science of the Total Environment, 2012, 437: 297-305. DOI:10.1016/j.scitotenv.2012.07.072
[32] Wu S P, Yang B Y, Wang X H, et al. Diurnal variation of nitrated polycyclic aromatic hydrocarbons in PM10 at a roadside site in Xiamen, China[J]. Journal of Environmental Sciences, 2012, 24(10): 1767-1776. DOI:10.1016/S1001-0742(11)61018-8
[33] Wei C, Han Y M, Bandowe B A M, et al. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi'an, central China[J]. Science of the Total Environment, 2015, 505: 814-822. DOI:10.1016/j.scitotenv.2014.10.054
[34] Liu D, Lin T, Syed J H, et al. Concentration, source identification, and exposure risk assessment of PM2.5-bound parent PAHs and nitro-PAHs in atmosphere from typical Chinese cities[J]. Scientific Reports, 2017, 7(1). DOI:10.1038/s41598-017-10623-4
[35] Li W, Wang C, Shen H Z, et al. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China[J]. Environmental Pollution, 2015, 197: 156-164. DOI:10.1016/j.envpol.2014.12.019
[36] Scipioni C, Villanueva F, Pozo K, et al. Preliminary characterization of polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans in atmospheric PM10 of an urban and a remote area of Chile[J]. Environmental Technology, 2012, 33(7): 809-820. DOI:10.1080/09593330.2011.597433
[37] Brorström-Lundén E, Remberger M, Kaj L, et al. Results from the Swedish national screening programme 2008: screening of unintentionally produced organic contaminants[EB/OL]. https://www.ivl.se/webdav/files/Publikationer/B1944.pdf, 2010-10-07.
[38] Barrado A I, García S, Castrillejo Y, et al. Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors[J]. Atmospheric Environment, 2013, 67: 385-393. DOI:10.1016/j.atmosenv.2012.10.030
[39] Barrado A I, García S, Sevillano M L, et al. Vapor-phase concentrations of PAHs and their derivatives determined in a large city: correlations with their atmospheric aerosol concentrations[J]. Chemosphere, 2013, 93(9): 1678-1684. DOI:10.1016/j.chemosphere.2013.05.031
[40] Li W, Shen G F, Yuan C Y, et al. The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of northern China[J]. Atmospheric Research, 2016, 172-173: 66-73. DOI:10.1016/j.atmosres.2015.12.008
[41] Wang W T, Jariyasopit N, Schrlau J, et al. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games[J]. Environmental Science & Technology, 2011, 45(16): 6887-6895.
[42] Keyte I J, Harrison R M, Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons-a review[J]. Chemical Society Reviews, 2013, 42(24): 9333-9391. DOI:10.1039/c3cs60147a
[43] 环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013.
Ministry of Environmental Protection. Exposure factors handbook of Chinese population (adults)[M]. Beijing: China Environmental Science Press, 2013.
[44] 刘军, 赵金平, 杨立辉, 等. 南方典型生活垃圾焚烧设施环境呼吸暴露风险评估[J]. 生态环境学报, 2016, 25(3): 440-446.
Liu J, Zhao J P, Yang L H, et al. Inhalation exposure risk assessment of a typical municipal solid waste incinerator, south China[J]. Ecology and Environmental Sciences, 2016, 25(3): 440-446.
[45] OEHHA. Appendix a: hot spots unit risk and cancer potency values[EB/OL]. https://oehha.ca.gov/media/downloads/crnr/appendixa.pdf, 2020-10-16.