首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
郑州市冬夏季污染过程中大气VOCs污染特征、来源解析及活性分析
摘要点击 1651  全文点击 311  投稿时间:2023-01-19  修订日期:2023-04-21
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  挥发性有机物(VOCs)  源解析  光化学烟雾产量模型  二次反应活性  郑州
英文关键词  volatile organic compounds (VOCs)  source resolution  smog production model  secondary reaction activity  Zhengzhou
作者单位E-mail
赖梦洁 郑州大学生态与环境学院, 郑州 450001 laimengjie1998@163.com 
张栋 郑州大学化学学院, 郑州 450001  
于世杰 郑州大学化学学院, 郑州 450001  
宋鑫帅 郑州大学生态与环境学院, 郑州 450001  
李晓 郑州大学生态与环境学院, 郑州 450001  
张瑞芹 郑州大学生态与环境学院, 郑州 450001
郑州大学化学学院, 郑州 450001 
rqzhang@zzu.edu.cn 
中文摘要
      为了研究挥发性有机物(VOCs)的污染特征,于2021年6月和12月在郑州市对两个污染过程中的VOCs进行了连续监测.结合气象条件,对比分析了VOCs冬夏季污染过程的污染特征、来源贡献和活性差异.结果显示,两个污染过程φ(VOCs)分别为(27.92±12.68)×10-9和(24.30±5.93)×10-9.冬季雾-霾污染过程相较于夏季O3污染过程,VOCs体积分数变化范围更大.冬季污染过程源解析结果:工业源(27.0%)、机动车源(22.5%)、燃烧源(20.1%)、溶剂使用源(16.3%)和油气挥发源(14.1%);夏季污染过程源解析结果:机动车源(24.8%)、工业源(24.1%)、溶剂使用源(17.4%)、油气挥发源(14.2%)、燃烧源(11.2%)和植物源(8.4%).光化学烟雾产量模型结果显示,两个污染过程中夏季臭氧生成处于VOCs控制区的天数占比(66.7%)小于冬季(100.0%).二次反应活性结果显示,冬季和夏季污染过程·OH自由基反应活性(L·OH)均值分别为4.12 s-1和4.76 s-1.夏季污染过程臭氧生成潜势(OFP)均值108.36 μg·m-3L·OH和OFP贡献率排名前10名物种夏季污染过程以烯烃为主.郑州市冬季污染过程的总二次有机气溶胶生成潜势(SOAFP)为54.38 μg·m-3,冬季污染过程SOAFP贡献率前10名物种中芳香烃占9个.
英文摘要
      In order to study the pollution characteristics of volatile organic compounds (VOCs), continuous monitoring of VOCs in two pollution processes was conducted in June and December 2021 in Zhengzhou. Combined with meteorological conditions, the pollution characteristics, source contributions, and reactivity of VOCs in winter and summer were compared and analyzed. The results showed that the volume fraction of atmospheric VOCs in two episodes were (27.92±12.68)×10-9 and (24.30±5.93)×10-9, respectively. The volume fraction of atmospheric VOCs in the haze pollution process in winter was larger than that in the ozone pollution process in summer. The analysis results of winter sources were as follows: industrial source (27.0%), motor vehicle source (22.5%), combustion source (20.1%), solvent use source (16.3%), and oil and gas volatilization source (14.1%). The analysis results of summer sources were as follows: motor vehicle source (24.8%), industrial source (24.1%), solvent source (17.4%), oil and gas volatilization source (14.2%), combustion source (11.2%), and plant source (8.4%). The results of the smog production model showed that the proportion of days in the synergistic control zone of VOCs during the two pollution processes in summer (66.7%) was smaller than that in winter (100.0%). The secondary reaction activity results showed that the average ·OH loss rate (L·OH) values in winter and summer were 4.12 s-1 and 4.75 s-1, respectively. The average ozone formation potential (OFP) values in summer were 108.36 μg·m-3. The olefins were dominant in the top ten species due to L·OH and OFP contributions in summer. The total SOAFP values in winter in Zhengzhou were 54.38 μg·m-3. Among the top ten species contributing to SOAFP in winter, nine were aromatic hydrocarbons.

您是第54718286位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2