首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
基于高分辨率在线观测数据分析上海市城区秋冬季大气有机气溶胶化学特征及污染来源
摘要点击 1506  全文点击 383  投稿时间:2022-08-29  修订日期:2022-09-28
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  高分辨率在线测量  有机分子示踪物  二次有机气溶胶(SOA)  细颗粒物(PM2.5)  来源解析
英文关键词  high time-resolution online measurements  organic molecular markers  secondary organic aerosols (SOA)  fine particulate matters (PM2.5)  source apportionment
作者单位E-mail
朱书慧 上海市环境科学研究院, 上海 200233
国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233 
zhush@saes.sh.cn 
中文摘要
      有机气溶胶(OA)不仅是大气细颗粒物(PM2.5)的重要组成部分,其与臭氧(O3)污染也密切相关.采用气溶胶在线热脱附(TAG)系统对上海市城区秋冬季大气PM2.5中94种有机分子示踪物浓度进行了在线观测,分析了不同气流轨迹影响下有机气溶胶的组成分布特征以及大气氧化性对其生成的影响.结果表明,本地气团影响下的OA组成以饱和脂肪酸、不饱和脂肪酸和正构烷烃等指示一次来源的有机分子示踪物为主,偏北长距离输送影响下的OA则含有较高比例的生物质燃烧示踪物.与本地气团和长距离输送气团不同,海面气团携带的OA主要由二羧酸和羟基羧酸类指示二次来源的有机分子示踪物构成,其生成受光化学和液相氧化过程影响显著.进一步运用正定矩阵因子分解法(PMF)对PM2.5和OA污染来源进行解析,获得7类一次排放源和5类二次生成源,其中,二次硝酸盐对PM2.5浓度贡献率最为突出(25.2%),移动源则对OA浓度贡献率最高(24.0%).污染过程中,燃煤源、移动源和餐饮源等人为源及其相关的二次生成源(二次硝酸盐、二次有机气溶胶2)对PM2.5和OA浓度贡献均有明显上升,因此,加强本地及近周边燃煤源、移动源和餐饮源等人为源前体物排放的管控对削减PM2.5浓度峰值和进一步提升上海市空气质量具有重要意义.
英文摘要
      Organic aerosols (OA) are closely related to the formation of both PM2.5 and O3 in the atmosphere. In this study, a thermal desorption aerosol GC/MS (TAG) online system was adopted to measure hourly concentrations of 94 total organic molecular markers in PM2.5 at an urban site in Shanghai from November 6th to December 31st, 2021. Combined with air mass cluster analysis and other online measurement data, the chemical characteristics of OA under the influence of different air masses, oxidant levels, and relative humidity (RH) levels were investigated. The results showed that OA was characterized by higher mass percentages of primary organic molecular markers (e.g., saturated fatty acids, unsaturated fatty acids, and alkanes) under the influence of local air masses. Further, high loadings of biomass burning tracers were observed in OA under the influence of long-range transported air masses. In contrast, OA impacted by marine air masses was laden with significantly higher fractions of secondary organic molecular markers, such as dicarboxylic acids and hydroxyl dicarboxylic acids, which were formed from a wide range of volatile organic precursors through photochemical and aqueous-phase processing. With the application of the positive matrix factorization (PMF) model, seven total primary source factors and five secondary source factors were resolved for PM2.5 and OA during the observation. Among them, secondary nitrate was the highest contributor to PM2.5 mass with a mass percentage of 25.2%, whereas vehicle emissions were the top contributor (24.0%) to OA mass. Primary source factors, including coal combustion, vehicle emission, and cooking emission as well as their corresponding secondary source factors (e.g., secondary nitrate, secondary organic aerosols 2, etc.) showed elevated contributions in PM2.5 and OA with the increase in PM2.5 masses, indicating that more stringent controls of local emission sources (e.g., coal combustion, vehicle emission, and cooking emission) are needed to further lower PM2.5 pollution and improve air quality in Shanghai.

您是第54228113位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2