首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
重庆市老龙洞地下河流域硝酸盐来源和生物地球化学过程的识别
摘要点击 1515  全文点击 1012  投稿时间:2021-12-31  修订日期:2022-02-12
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  岩溶地下水  硝酸盐  生物地球化学过程  氮氧同位素  城市地区
英文关键词  karst groundwater  nitrate  biogeochemical process  nitrogen and oxygen isotopes  urban area
作者单位E-mail
王雨旸 西南大学地理科学学院, 重庆金佛山喀斯特生态系统国家野外科学观测研究站, 自然资源部重庆金佛山岩溶生态环境野外科学观测研究站, 重庆 400715 wyuyang_off@163.com 
杨平恒 西南大学地理科学学院, 重庆金佛山喀斯特生态系统国家野外科学观测研究站, 自然资源部重庆金佛山岩溶生态环境野外科学观测研究站, 重庆 400715
联合国教科文组织国际岩溶研究中心, 自然资源部岩溶生态系统与石漠化治理重点实验室, 桂林 541004 
pinghengyang@126.com 
张洁茹 西南大学地理科学学院, 重庆金佛山喀斯特生态系统国家野外科学观测研究站, 自然资源部重庆金佛山岩溶生态环境野外科学观测研究站, 重庆 400715  
中文摘要
      为明确城市地区岩溶地下水系统硝酸盐污染来源和生物地球化学过程,于2019年7月至2020年10月期间,采集了重庆市老龙洞地下河流域内的污水、井水和地下河水,测定其水化学和硝酸盐氮氧双同位素值(δ15 N-NO3-δ18 O-NO3-).结果表明:①污水的δ15 N-NO3-δ18 O-NO3-分别介于-3.3‰~14.6‰和-5.2‰~20.6‰之间,说明污水中的硝酸盐主要来源于生活污水排放及化肥渗漏;井水的δ15 N-NO3-δ18 O-NO3-分别介于3.1‰~12.6‰和2.9‰~8.9‰之间,说明井水中的硝酸盐主要来自于粪肥及土壤有机氮矿化分解;地下河水中的δ15 N-NO3-δ18 O-NO3-分别介于5.6‰~28.6‰和-2.0‰~15.7‰之间,说明市政污水以及农田中施用的粪肥是地下河水中主要的硝酸盐来源.②基于MixSIAR模型计算得出,粪肥污水是地下河水中硝酸盐的主要贡献源,贡献占比为89.1%,土壤有机氮、化肥和大气降水贡献率分别为4.4%、3.4%和3.1%.③流域内的COD :ρ(NO3-)由低到高依次为:井水(0.14~5.15)、地下河水(0.50~9.36)和污水(4.08~89.50).仅有50%井水样品的COD :ρ(NO3-)略高于反硝化发生的化学计量比最低限(0.65),说明COD可能不足以支撑井水中发生反硝化,井水中的硝酸盐氮氧双同位素未发生明显富集,验证了井水中未发生反硝化作用;90%地下河水样品的COD :ρ(NO3-)高于0.65,硝酸盐氮氧双同位素同步富集,δ15 N :δ18 O为1.8,介于反硝化发生时的1.3~2.1,说明地下河水在流动过程中发生了反硝化作用;所有污水样品的COD :ρ(NO3-)远高于0.65,其中25%污水样品的COD :ρ(NO3-)高于发生异化还原为铵(DNRA)的优势化学计量比(29.34),δ15 N-NO3-ρ(NH4+):ρ(NO3-)同步升高,表明污水中可能发生了DNRA.
英文摘要
      Samples of sewage, well water, and underground river water of the urbanized Laolongdong karst underground river basin in Chongqing, China were collected during July 2019 and October 2020 and measured to determine the nitrate origin and biogeochemical processes based on geochemistry and dual nitrate isotope (δ15N-NO3- and δ18O-NO3-) data. The results showed that:① the isotopic nitrate compositions of sewage ranged from -3.3‰ to 14.6‰ for δ15N-NO3- and from -5.2‰ to 20.6‰ for δ18O-NO3-, which indicated that nitrate originated from manure and sewage, fertilizer, and soil organic nitrogen. The δ15N-NO3- and δ18O-NO3- of well water varied from 3.1‰ to 12.6‰ and 2.9‰ to 8.9‰, respectively, suggesting nitrate was mainly from soil organic nitrogen and manure and sewage. For the underground river water, the δ15N-NO3- and δ18O-NO3- ranged from 5.6‰ to 28.6‰ and from -2.0‰ to 15.7‰, respectively, suggesting that municipal sewage and manure were the dominate nitrate sources. ② Based on the MixSIAR model, manure and sewage were the primary nitrate source of the underground river water, accounting for 89.1% of the total contribution, whereas the contributions of soil organic nitrogen, fertilizer, and atmospheric precipitation were 4.4%, 3.4%, and 3.1%, respectively. ③ In the basin, the concentration ratios of COD:ρ(NO3-) from low to high were as follows:well water (0.14-5.15), underground river water (0.50-9.36), and sewage (4.08-89.50). Only 50% of well water samples with COD:ρ(NO3-) were slightly higher than 0.65, which is the minimum stoichiometric ratio for denitrification occurrence. This indicated that there were insufficient COD concentrations to support that denitrification occurred in the well water. This was further verified by no significant enrichment of nitrogen and oxygen isotopes. As much as 90% of underground river water samples had a COD:ρ(NO3-) higher than 0.65, and the dual nitrate isotopes were simultaneously enriched with a δ15N:δ18O of 1.8, which is within the ratios ranging from 1.3 to 2.1, indicating that denitrification occurred. The COD:ρ(NO3-) for all wastewater samples was much higher than 0.65, of which 25% were higher than the stoichiometric ratio (29.34) for the occurrence of dissimilation reduction nitrate to ammonium (DNRA). The δ15N-NO3- and ρ(NH4+):ρ(NO3-) of sewage increased simultaneously, indicating that DNRA may have occurred in the sewage.

您是第54751726位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2