首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
反硝化-高效部分亚硝化-厌氧氨氧化工艺处理老龄垃圾渗滤液
摘要点击 2172  全文点击 794  投稿时间:2019-06-21  修订日期:2019-08-19
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  老龄垃圾渗滤液  前置反硝化  部分亚硝化  厌氧氨氧化(ANAMMOX)  沸石曝气生物滤池
英文关键词  mature landfill leachate  pre-denitrification  partial nitritation  anaerobic ammonium oxidation(ANAMMOX)  zeolite biological aerated filter
作者单位E-mail
陈小珍 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
1061211355@qq.com 
汪晓军 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
cexjwang@scut.edu.cn 
Karasuta Chayangkun 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
 
周松伟 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
 
钟中 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
 
陈振国 华南理工大学化学与化工学院, 广州 510665
佛山市化尔铵生物科技有限公司, 佛山 528300 
 
陈晓坤 华南理工大学环境与能源学院, 广州 510006
工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006 
 
中文摘要
      采用反硝化-沸石曝气生物滤池(ZBAF)部分亚硝化-厌氧氨氧化组合工艺处理老龄垃圾渗滤液,探究ZBAF部分亚硝化特性以及组合工艺的脱氮除碳性能.结果表明,通过游离氨(FA)对亚硝酸盐氧化菌(NOB)的选择性抑制,ZBAF可以实现老龄垃圾渗滤液稳定高效部分亚硝化,平均亚硝氮积累率(NAR)为93.8%,亚硝氮产率(NPR)最高达1.659 kg·(m3·d)-1;在进水中投加葡萄糖700 mg·L-1后,当回流比为2.0,HRT为2.2 d时,由于反硝化与厌氧氨氧化的协同作用,组合工艺脱氮效果最佳,平均氨氮去除率(ARE)、总氮去除率(NRE)和总氮去除负荷(NRR)分别达97.2%、90.0%和0.585 kg·(m3·d)-1,平均COD去除率为45.3%,其中厌氧氨氧化平均NRRANA为1.060 kg·(m3·d)-1,最高达1.268 kg·(m3·d)-1.利用高通量测序技术分析各装置中的微生物群落结构.结果显示,反硝化细菌(ParacoccusComamonas)、氨氧化细菌(AOB)(Nitrosomonas)和厌氧氨氧化菌(Candidatus KueneniaCandidatus Anammoxoglobus)分别为反硝化、ZBAF和厌氧氨氧化装置中的优势菌,这与组合工艺稳定的脱氮性能相吻合.
英文摘要
      A combined process of denitrification-partial nitritation-ANAMMOX based on a zeolite biological aerated filter (ZBAF) was applied to treat mature landfill leachate. We investigate the partial nitritation characteristics of the ZBAF and the nitrogen removal performance as well as the carbon removal performance of the combined process. Results showed that, based on the selective inhibition of nitrite oxidizing bacteria (NOB) by free ammonia (FA), the ZBAF could successfully achieve stable and efficient partial nitrification of mature landfill leachate, with an average nitrite accumulation rate (NAR) of 93.8% and a maximum nitrite production rate (NPR) of 1.659 kg·(m3·d)-1. After adding 700 mg·L-1 glucose to the influent, due to the synergistic effect of denitrification and anammoxidation, the combined process achieved its best nitrogen removal performance at a reflux ratio of 2.0 and hydraulic retention time (HRT) of 2.2 days. The average ammonia removal efficiency (ARE), total nitrogen removal efficiency (NRE), total nitrogen removal loading rate (NRR), and average chemical oxygen demand (COD) removal efficiency were 97.2%, 90.0%, 0.585 kg·(m3·d)-1, and 45.3%, respectively. Furthermore, the NRR of the anaerobic ammonium oxidation (ANAMMOX) process (NRRANA) reached 1.268 kg·(m3·d)-1. High-throughput sequencing technology was used to analyze the microbial community structure in each device. Results showed that denitrifiers (Paracoccus and Comamonas), ammonia-oxidizing bacteria (AOB) (Nitrosomonas), and ANAMMOX bacteria (Candidatus Kuenenia and Candidatus Anammoxoglobus) were the dominant bacteria in the UASB, ZBAF, and ANAMMOX reactor, respectively, which corresponded to the stable nitrogen removal performance of the combined process.

您是第54251357位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2