首页  |  本刊简介  |  编委会  |  投稿须知  |  订阅与联系  |  微信  |  出版道德声明  |  Ei收录本刊数据  |  封面
不锈钢电极对重金属污染土壤的强化电动修复及电极腐蚀结晶现象与机制
摘要点击 1943  全文点击 780  投稿时间:2016-08-29  修订日期:2016-09-27
查看HTML全文 查看全文  查看/发表评论  下载PDF阅读器
中文关键词  重金属污染土壤  电动修复  不锈钢电极  腐蚀  结晶  聚天冬氨酸  柠檬酸
英文关键词  heavy metal contaminated soil  electrokinetic remediation  stainless steel electrodes  corrosion  crystallization  polyaspartic acid  citric acid
作者单位E-mail
温东东 华东理工大学资源与环境工程学院, 上海 200237 Chris_wdd@163.com 
付融冰 同济大学环境科学与工程学院, 上海 200092 rongermmfu@163.com 
张卫 华东理工大学资源与环境工程学院, 上海 200237 wzhang@ecust.edu.cn 
顾莹莹 中国石油大学(华东)化学工程学院, 青岛 266580  
中文摘要
      电极腐蚀和盐分结晶是制约土壤电动修复技术工程化应用的重要难题.本研究选择不锈钢作为电极,采用去离子水(DW)、柠檬酸(CA)和聚天冬氨酸(PASP)作为电解液,对Pb、Cu污染土壤进行强化电动修复,考察了重金属去除作用及影响因素,探讨了电极腐蚀和盐分结晶现象与机制.结果表明,在电场作用下,土壤中的Ca会迁向阴极在碱性条件下形成CaCO3和Ca(OH)2晶体,降低了电极的导电性;PASP对不锈钢电极有明显的缓蚀作用,CA和PASP都能明显地破坏CaCO3晶体的形成,但无法对Ca(OH)2晶体形成有效的破坏;CA和PASP都能促进土壤中Pb的去除,但PASP对Cu去除强化作用不明显,而CA对Cu的去除强化作用非常显著;不锈钢配合不同的缓蚀剂、增强剂联合使用,可以作为电动修复技术工程化应用的电极选择.
英文摘要
      Electrode corrosion and salt crystallization are important challenges that restrict the engineering application of electrokinetic technology. In the present study, using stainless steel as an electrode, and deionized water (DW), citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Pb/Cu-contaminated soil was remediated by electrokinetic. All of the EK experiments were conducted in a 2 L soil cell reactor with a moisture level of about 35% blended with 1000 mg·g-1 of Pb and 778 mg·g-1 of Cu under a constant voltage gradient (1 V·cm-1, 2 V·cm-1) for 150 h. The removal efficiency of heavy metals and influencing factors, as well as the phenomenon and mechanism of electrode corrosion and salt crystallization were explored. The experimental results showed under the action of electric field, the Ca in the test soil would move to the cathode, and the crystal was formed in the alkaline condition. Additionally, the conductivity of the electrode was reduced. During the EK process, water at the anode was primarily oxidized, undergoing a reduction reaction at the cathode. Because H+ and OH- were transported through the soil by electromigration and electro-osmotic flow (EOF), changes in soil pH could occur. The concentrations distribution of Pb-Cu appeared to be related to the distribution of soil pH in the cell, which might be associated with the desorption and hydroxide precipitation of Pb-Cu. PASP resulted in obvious inhibitory effect on the corrosion of stainless steel electrode, CA and PASP could clearly destroy the formation of CaCO3 crystal, while barely effectively disrupted the formation of Ca (OH)2 crystal. Both CA and PASP could promote the removal of Pb, but the influence of PASP on the removal of Cu was not obvious, and the effect of CA was very significant. Combined with different corrosion inhibitor and reinforcing agent, stainless steel can be chosen as the engineering application electrode in electrokinetic remediation.

您是第54740237位访客
主办单位:中国科学院生态环境研究中心 单位地址:北京市海淀区双清路18号
电话:010-62941102 邮编:100085 E-mail: hjkx@rcees.ac.cn
本系统由北京勤云科技发展有限公司设计  京ICP备05002858号-2