

ENVIRONMENTAL SCIENCE

ISSN 0250-3301 CODEN HCKHDV HUANJING KEXUE

北京城区PM2.5各组分污染特征及来源分析 安欣欣,曹阳,王琴,富佳明,王陈婧,景宽,刘保献

ENVIRONMENTAL SCIENCE

第43卷 第5期 2022年5月15日

目 次

, , , , , , , , , , , , , , , , , , ,	
北京城区 PM	251)
北京城区 PM _{2.5} 各组分污染特征及来源分析 ····································	2231)
基丁时至混合效应模型的京津異 PM _{2.5} 浓度受化模拟 泡丽行,杨晓辉,朱春杰,李梦诗,技继福,土上,李天星,李伟妙(2	2262)
2000~2018年京津冀城市群 PM _{2.5} 时空演变及其与城市扩张的关联····································	2274)
海-陆大气交汇作用下青岛冬季大气 PM、污染特征与来源解析 ····································	
	284)
硫酸盐非均相机制对颗粒物污染的影响:上海典型污染事件的 WRF-Chem 模拟	204)
" 你放益非均相仇刑对,积恒初行案的影响: 上海典型行案事件的 WKF-Chem 侯权	
	2294)
大原市冬季不同污染程度下 PM 的化学组成 消光特征及氧化港热	317)
$\Delta M_{\rm P}(r) \rightarrow r = 10^{1.5} {\rm Art}(Q) = 1$	220
Λ が用いて子人 Γ	2329)
省会城市不同功能区大气 PM2.5 化学组分季节变化及来源分析	
	2336)
承德市 PM、中多环芳烃的季节分布特征、来源解析及健康风险评价 ·······	
双埔文 县宴宴 李仪琳 剪索形 极油 崖建升 瓜亚亚 工帅 侯晓松 (2	2/3)
# Emp FM _{2.5} 中多叶方层的学 17 和存证、不称解析及健康风险计划 贺博文,聂赛赛,李仪琳,郭睿瑶,姚波,崔建升,冯亚平,王帅,侯晓松(2 珠三角大气中二 噻 英污染水平与区域迁移	373)
环二用人气中一噻央行采外于马区项汇修	
·····································	2355)
华北平原南部农村地区黑碳气溶胶浓度及来源 张为、北京、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、	2363)
其干模式计程分析技术天津地区 PM 污染气象成因分析 ···················· 郝囝 蒸子颖 韩麦芹 杨旭 樊文雁 姚青 邱晓定(?	2373)
其三排油量和十年后应活性的 VOC. 污渍面分级烧到	383)
至1 III从里相八(X座们注时 VOG 17末断月次注册	2005)
基丁复采网络的中国吴氧拓扑特值	2395)
基于前体物多情景排放的兰州市 2030 年夏李狊氧预测 陈天雷,吴敏,潘成珂,常莉敏,李泱,刘鹏,高宏,黄韬,马建民(2	2403)
基于源反演和气溶胶同化方法天津空气质量模式预报能力改进 蔡子颖, 唐邈, 肖致美, 杨旭, 朱玉强, 韩素芹, 徐虹, 邱晓滨 (2	2415)
其干穴气质量贮测粉据的钢铁行业污洗源识别方法 石黎聪 胡克南 法肠帐 段善春 胡五禽 卧面娜 已验验(2	127
至于工 (灰里血肉双角甲的水门亚门木体区)刀位 在水内 17年期,则不用,阳为州,仅有谷,则内参,及田州,口之之(五五六州、江京中北连港八加 至日八海校中州南美安市中海田广河中	1426)
里行架大气应对 绩效疗效、差异化官径 宿旭自伏头跋效米后评怕	(436)
黄河流域水污染风险分区	2448)
黄河流域甘肃段工业行业水污染物空间排放特征 李雪迎、杨曦、乔琦、刘丹丹、张玥、赵若楠、白璐(2	2459)
黄河沉积物重全属时空分布与污染评价	2467)
ADCS MID 处去 DMD 特别秘证图门本社验诉郑宏棣宏和畅入民业报	1176
ArUS-MLD 与自 FMF 快至肝机度门首怀得见为加吸机伏彻壶属不源 ··········· 儿辰寸,自证,「牺廷,明孙江,崔廷尹,颇妍,奥丰州(2	4/0)
河流低泥 DOM、宫养盐与重金属空间分异特征及啊应关系 ··································· 肖艳春,寸会彬,宋永会(2	2489)
太原市汾河河岸带土壤重金属分布特征、评价与来源解析 胡杰,赵心语,王婷婷,苟奎贤,王春玲(2	2500)
世泽湖溶解杰有机质与重全属汞的结合特性····································	2510 Ĵ
宣告美化亚马下西宫地方任本史大多公宫化劫流。 如此结	510)
虽自分化驰列下四环侧口十不生态示机偶化机型	2318)
基于 DGT 技术的贞河上游典型水库孔积物氮磷释放与污染源解析	
基于前体物多情景排放的兰州市 2030 年夏季臭氧预测 陈天雷,吴敏,潘成珂,常莉敏,李泱,刘鹏,高宏,黄韬,马建民(2基于源反演和气溶胶同化方法天津空气质量模式预报能力改进	2527)
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 李文刚,吴希思,简敏非,刘淑丽,刘海球,丁惠君(2	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673) 2685) 2779) 2771) 27751) 27751) 27779) 27788)

磁性 Mn_{0.6}Zn_{0.4}Fe₂O₄@ SiO₂催化 H₂O₂降解亚甲基蓝效 能及机制

徐冬莹, 余静*, 郝旗, 杨迎春, 方淑红

(成都信息工程大学资源环境学院,成都 610225)

摘要:为制备易固液分离和稳定性好的高效非均相类 Fenton 催化剂,利用正硅酸乙酯水解对 Mno。Zno 4 Fe,O4 磁性纳米颗粒 (SF-MNPs)进行功能化修饰, 制备得到 Mno SZno Fe,O @ SiO, (MZF@ SiO,) 磁性纳米复合物催化剂, 采用透射电镜、X 射线 光电子能谱和振动样品磁强计等对 MZF@ SiO, 进行了表征, 以难生物降解偶氮染料亚甲基蓝(MB)为目标污染物, 考察了不 同初始 pH 对 MZF@ SiO, 催化效能的影响, 在近中性条件下(pH =6. 5) 研究了 H,O, 用量、MZF@ SiO, 投加量和温度等对 MB 去除率的影响,及 MZF@ SiO, 的稳定性和循环使用性能,推测了催化反应机制. 结果表明,无定形 SiO, 将 SF-MNPs 完全包 裹, MZF@ SiO, 具有"核-壳"结构; 磁核 SF-MNPs 的结晶度好, 具有尖晶石结构; MZF@ SiO, 的饱和磁化强度为 18.6 emu·g-1, 剩磁和矫顽力均较低, 在水中的分散性和固液分离性能均较好. 当反应时间为 120 min, 温度为 303 K, MZF@ SiO, 投加量为 1.0 g·L⁻¹, H,O, 的利用率为 74.50%, MB 的去除率可达 94.76%, 一级反应速率常数为0.046 6 min⁻¹, MZF@ SiO, 具有较好的稳定性和循环使用性能. 该降解过程的速率控制步骤为固液界面反应, MZF@ SiO, + H,O, 体系中的活化氧化物 主要为·OH;包覆层 SiO₂能加速电子传递,与 SF-MNPs 存在正协同作用; SF-MNPs 中存在氧空位,有利于反应过程中的电子 转移. 所制备的 MZF@ SiO, 可磁分离, 催化效率高, 稳定性好, 可重复使用, 在实际印染废水处理中具有很好的应用前景. 关键词:磁性催化剂; 非均相; 类 Fenton; 亚甲基蓝(MB); 降解

中图分类号: X703.1 文献标识码: A 文章编号: 0250-3301(2022)05-2650-12 DOI: 10.13227/j. hjkx. 202108251

Efficiency and Mechanism of Degradation of Methylene Blue with H₂O₂ Catalyzed by $Magnetic \ Mn_{0.6}Zn_{0.4}Fe_2O_4@SiO_2$

XU Dong-ying, YU Jing*, HAO Qi, YANG Ying-chun, FANG Shu-hong

(College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China)

Abstract: To prepare high-efficiency heterogeneous Fenton catalysts with easy solid-liquid separation and good stability, Mn_{0.6} Zn_{0.4} Fe₂O₄ magnetic nanoparticles (SF-MNPs) were functionally modified through hydrolysis of tetraethylorthosilicate, and Mn_{0.6} Zn_{0.4} Fe₂O₄ @ SiO₂ (MZF@ SiO₂) magnetic nanocomposite (MNC) catalysts were prepared, MZF@ SiO2 was characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and a vibrating sample magnetometer. The effect of different initial pH on the catalytic performance of MZF@ SiO2 was investigated using methylene blue (MB) refractory azo dye as the target pollutant. Under the initial nearneutral pH condition (pH = 6.5), the effects of H₂O₂ dosage, MZF@ SiO₂ dosage, and temperature on the removal efficiency of MB were investigated. The stability and recycling performance of MZF@SiO2 were studied, and the catalytic reaction mechanism was speculated. The results showed that SF-MNPs were completely encapsulated by amorphous SiO,, and MZF@SiO, had a "core-shell" structure. Magnetic core SF-MNPs had good crystallinity with a spinel structure. The saturation magnetization of MZF@ SiO, was 18.6 emu·g⁻¹, and the remanence and coercivity were low. The dispersibility and solid-liquid separation performance of MZF@SiO, were excellent in water. Under the condition of neutral pH, the utilization rate of H₂O₂ was 74.50%, and the removal rate of MB reached 94.76%. When the reaction time was 120 min, the temperature was 303 K, and the dosage of MZF@SiO, was 1.0 g·L⁻¹. The first-order reaction rate constant was 0.0466 min⁻¹, and MZF@SiO, had good stability and recycling performance. The solid-liquid interface reaction was the rate control step of the process. The reactive oxygen species in the MZF@SiO₂ + H₂O₂ system were •OH radicles. The coating layer SiO2 could accelerate the electron transfer rate, and there was a positive synergistic effect between SiO2 and SF-MNPs. The existence of oxygen vacancies in SF-MNPs was also conducive to the electron transfer in the heterogeneous Fenton-like reaction. The as-prepared MZF@ SiO, MNC catalysts had a superior catalytic activity with good stability, and they had the advantages of easy magnetic separation and reusability. Thus, MZF@ SiO2 MNC catalysts have a wider range of potential applications in actual printing and dyeing wastewater treatment.

Key words: magnetic catalyst; heterogeneous; Fenton-like; methylene blue (MB); degradation

印染加工包括预处理、染色、印花和整理这4 个工序,每个工序排出的废水混合后即印染废水, 是除漂白之外的综合废水. 印染废水具有碱度高 (pH 常为 6.0~10.0)、水量大、COD 高、色度高和 难降解等特点,是难处理的工业废水之一. 常用的 染料有偶氮染料、蒽醌染料和三苯甲烷类染料等, 其中偶氮染料占整个染料市场的70%,具有较强的 生物毒性和致畸、致癌和致突变等作用[1~4],是典 型的难降解有机物. 偶氮染料对生态平衡与人类 健康造成了极大威胁,如何更好地处理废水中的 偶氮染料是急需解决的问题.

高级氧化技术(advanced oxidation process,

收稿日期: 2021-08-23; 修订日期: 2021-09-28 作者简介: 徐冬莹(1995~), 女, 硕士, 主要研究方向为水污染控

制, E-mail: 171918340@ qq. com

* 通信作者, E-mail:yujing@cuit.edu.cn

AOPs) 能利用活性极强的自由基,例如·OH、 SO₄·、·O₅·和·Cl⁻等,通过电子转移、氢键加成 或取代等反应, 使难生物降解的有机物的化学键 断裂, 甚至将 C 和 H 最终氧化成为 CO₂ 和 H₂O. 因偶氮染料难生物降解,采用 AOPs 进行预处理 能够提高偶氮染料废水的可生化性,有助于提高 后续的生物处理工艺的效果,目前常用的 AOPs 主要有臭氧化技术[5]、Fenton 技术[6]、光催化技 术[7]、电化学技术[8]和过硫酸盐氧化技术[9]等. 基于铁基或非铁基催化剂的非均相类 Fenton 技术 可改善均相 Fenton 技术的不足[10~12], 不易产生铁 泥,催化剂可重复利用,是最常用的 AOPs 之一, 但非均相类 Fenton 技术存在反应速率低, 且大多 数非均相催化剂的回收以过滤法为主, 存在催化 剂分离周期较长和催化剂流失等问题, 大大增加 了生产成本. 因此, 制备可快速固液分离、稳定性 强的高效催化剂是当前非均相类 Fenton 技术研究 的重点之一.

将具有非均相类 Fenton 催化活性的磁性纳米 颗粒(magnetic nanoparticles, MNPs)作为磁核,构 筑具有"核-壳"结构的磁性催化剂可借助磁分离实 现催化剂的快速固液分离,还可提高催化剂的稳定 性. 由于磁性催化剂在实际应用中需要借助于磁稳 定床, 故需研发在磁场中易于磁化且具有适宜的饱 和磁化强度、矫顽力小和去掉磁场时剩磁较低的磁 性催化剂, 使其在使用中易于磁化形成稳定床层、 并在磁场撤去后团聚程度较轻. 而锰锌铁氧体 (Mn_{1-x}Zn_xFe₂O₄) MNPs 分子中所含的 Fe 和 Mn 两 种元素均具有优异的非均相类 Fenton 催化活 性[13, 14]; 且 Mn_{1-x}Zn_xFe₂O₄MNPs 具有可调节的饱和 磁化强度, 其饱和磁化强度随着锌含量 x 的增大而 降低, 当 x = 0.4 时, 即 $Mn_{0.6}Zn_{0.4}Fe_2O_4$ MNPs, 饱和 磁化强度最大[15];此外,Mn_{1-x}Zn_xFe₂O₄MNPs 具有 低矫顽力、低剩磁、极佳的化学稳定性和磁稳定 性,故可用 Mn_{1-x} Zn_xFe₂O₄ MNPs 为磁核构筑"核-壳"型非均相类 Fenton 磁性催化剂.

而选用和 MNPs 具有协同作用的壳层材料,可加速过程的电子传递效率,强化"核-壳"结构磁性催化剂的催化性能,有助于制备高效的"核-壳"型磁性催化剂. SiO₂ 具有稳定的化学性质,而且耐热、抗酸腐蚀和不易溶胀; SiO₂ 具有可靠的生物相容性,对生物机体无毒副作用,对后续生化处理工艺中的微生物影响较小;包覆了 SiO₂ 外壳的磁性材料在水相溶液中分散性良好,不易团聚; SiO₂ 包覆层具有丰富的孔道结构及大量的硅羟基,能富集浓缩污染物,有利于污染物的降解;有研究表明,

 SiO_2 能加速过程的电子传递效率,增强催化剂的活性[16].

本文以自制的锰锌铁氧体Mno.6Zno.4Fe,O4MNPs (SF-MNPs)为磁核,利用正硅酸乙酯水解对 SF-MNPs 进行了功能化修饰, 制备得到"核-壳"型 Mn_{0.6}Zn_{0.4}Fe₂O₄@SiO₂(MZF@SiO₂)磁性纳米复合 物(magnetic nanocomposites, MNCs)催化剂,采用 扫描电镜、透射电镜、X射线光电子能谱和振动样 品磁强计等对 MZF@ SiO, 进行了表征, 以难生物降 解的多环芳烃类偶氮染料亚甲基蓝 (methylene blue, MB) 为目标污染物,利用 MZF@ SiO,催化 H₂O₂降解 MB, 探究了磁核 SF-MNPs 和壳层 SiO₂ 之间的协同作用对催化效能的影响,考察了不同初 始pH值、H,O,用量、MZF@SiO,投加量和反应温 度等对 MB 去除率的影响;确定了 MZF@ SiO, + H₂O₂ 体系中的活性氧化物,推测了催化机制,以期 为制备易固液分离、稳定性好和高效的非均相类 Fenton 催化剂提供切实可行的策略.

1 材料与方法

1.1 材料与仪器

亚甲基蓝(MB)、叔丁醇(TBA)、过氧化氢 [ω (H₂O₂) = 30%]、正硅酸乙酯(C₈H₂₀O₄Si)、蔗糖 (C₁₂H₂₂O₁₁)、氨水(NH₃·H₂O)、无水乙醇(Ethanol) 和香豆素(C₉H₆O₂),所用药品均为分析纯,购于成都市科龙化工试剂厂;SF-MNPs(自制).

UV-2250 型紫外-可见分光光度计(日本Shimadzu公司); SSA-4200 型孔隙及比表面积分析仪(北京比奥德电子技术有限公司); JSM-7500F型扫描电子显微镜(SEM,日本 JEOL公司); GENESIS 型能谱仪(EDS,美国 EDAX公司); JEM-2100F型透射电子显微镜(TEM,日本 JEOL公司); BHV-525型振动样品磁强计(VSM,日本 Riken公司); Escalab 250Xi型 X 射线光电子能谱仪(XPS,美国 Thermo Fisher Scientific公司); ICPOES-725型电感耦合等离子体发射光谱仪(ICP,安捷伦科技有限公司); JES FA200型电子顺磁共振仪(EPR,日本 JEOL公司).

1.2 MZF@ SiO, 磁性催化剂的制备

实验前期利用溶胶-凝胶法已制备得到 SF-MNPs^[17],将一定量的 SF-MNPs 加入柠檬酸溶液中,调节 pH,充分搅拌分散,然后加入一定量的氨水和正硅酸乙酯,待反应完成后,静置、冷却,移去上层清液,用无水乙醇和蒸馏水对沉淀进行 3 次抽滤洗涤,然后在 333 K下置于真空干燥箱内干燥 5 h,制得 MZF@ SiO₂ MNCs^[18].

1.3 实验方法

1.3.1 过氧化氢催化氧化实验

在一定温度下,将 50 mL 浓度为 100 mg·L⁻¹的 MB 溶液(初始 pH 为 6.5)加入到 250 mL 锥形瓶中 预热 30 min 后,加入一定量的 MZF@ SiO_2 ,在一定温度、转速 200 r·min⁻¹条件下吸附 60 min 后作为降解起点,然后加入一定量的 $\omega(H_2O_2)=15\%$ 溶液并计时,利用紫外-可见光分光光度计分析不同时刻降解液中的 MB 浓度^[19],采用快速消解分光光度法分析降解液中 COD 浓度^[20],采用钛盐分光光度法分析降解液中的 H_2O_2 浓度^[21]。MB 去除率、COD 去除率和 H_2O_2 利用率分别计算如下:

MB 去除率 =
$$[1 - (c_t/c_0)] \times 100\%$$
 (1)

COD 去除率 =
$$\left[1 - \frac{c(\text{COD})_t}{c(\text{COD})_0} \right] \times 100\%$$
 (2)

$$H_2O_2$$
 利用率 = $\left[\frac{c(H_2O_2)_t}{c(H_2O_2)_0}\right] \times 100\%$ (3)

式中, c_0 和 c_t 分别为初始和不同时刻降解液中 MB 的浓度, $\operatorname{mg} \cdot \operatorname{L}^{-1}$; $c(\operatorname{COD})_0$ 和 $c(\operatorname{COD})_t$ 分别为初始和不同时刻降解液中 COD 的浓度, $\operatorname{mg} \cdot \operatorname{L}^{-1}$; $c(\operatorname{H}_2\operatorname{O}_2)_0$ 和 $c(\operatorname{H}_2\operatorname{O}_2)_t$ 分别为初始和不同时刻降解液中的 $\operatorname{H}_2\operatorname{O}_2$ 浓度, $\operatorname{mol} \cdot \operatorname{L}^{-1}$.

1.3.2 自由基淬灭实验

取 50 mL 浓度为 100 mg·L⁻¹的 MB 溶液于 3 个 250 mL 锥形瓶中,在 303 K,转速 200 r·min⁻¹条件下于恒温振荡器中预热 30 min 后,分别向锥形瓶中加入 $1.0~{\rm g\cdot L^{-1}}$ 的 MZF@ ${\rm SiO_2}$,吸附 60 min 后,分别加入 $\omega({\rm H_2O_2})=15\%$ 溶液 4 mL 后,再分别加入 5 mL 叔丁醇、5 mL 糠醇(30 mmol·L⁻¹)和 5 mL 对苯醌(15 mmol·L⁻¹),降解 120 min 后,利用紫外-可见光分光光度计分析降解液中的 MB 浓度.

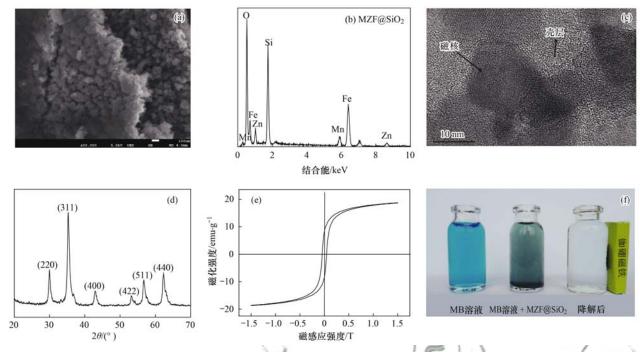
1.3.3 pH 调节实验

取 50 mL 浓度为 100 mg·L⁻¹的 MB 溶液于 250 mL 锥形瓶中,利用盐酸和氢氧化钠溶液调节 MB 溶液初始 pH 值分别为 3.5、4.5、5.5、6.5、7.5、8.5 和 9.5,然后加入 1.0 g·L⁻¹的 MZF@ SiO₂,在 303 K,转速 200 r·min⁻¹条件下吸附 60 min 后作为降解起点,加入 4 mL 的 $\omega(H_2O_2)$ = 15% 溶液后开始降解计时,利用紫外-可见分光光度计分析不同时刻降解液中的 MB 浓度.

1.3.4 稳定性及循环使用性能实验

(1)取 50 mL 浓度为 100 mg·L⁻¹的 MB 溶液于 250 mL 锥形瓶中,在 303 K,转速 200 r·min⁻¹条件下于恒温振荡器中预热 30 min 后,加入 1.0 g·L⁻¹的 MZF@ SiO₂,在 303 K,转速 200 r·min⁻¹条件下吸附 60 min 后,加入 4 mL 的 $\omega(H_2O_2)$ = 15%溶液

后开始降解计时,利用 ICP 分析不同时刻降解液中 Mn、Zn 和 Fe 的浓度.


(2)取 50 mL 浓度为 100 mg·L⁻¹的 MB 溶液于 250 mL 锥形瓶中,在 303 K,转速 200 r·min⁻¹条件下于恒温振荡器中预热 30 min 后,加入 1.0 g·L⁻¹的 MZF@ SiO₂,在 303 K,转速 200 r·min⁻¹条件下吸附 60 min 后,加入 4 mL 的 ω (H₂O₂) = 15% 溶液降解 120 min,将使用过的催化剂通过外加磁场分离后,用去离子水水洗 3 次,然后再次重复上述步骤,如此循环 4 次,计算每一个循环的 MB 去除率.

2 结果与讨论

2.1 MZF@ SiO, 的表征

由图 1(a) 可见, MZF@ SiO, 的表面粗糙, 蓬松 多孔, 呈颗粒状, BET 分析结果表明, MZF@SiO, 的比表面积、孔容和最可几孔径分别为 242 m²·g⁻¹、0.4 cm³·g⁻¹和3.0 nm, 其较大的比表面积 和孔容, 有利于 MB 吸附污染物, 提高降解效率: 由图 1(b) 可知 MZF@ SiO, 由 O、Si、Mn、Zn 和 Fe 组成,根据 MZF@ SiO,的能谱分析(EDS)结果可得 各元素含量分别为 33.96%、20.79%、6.19% 6.57% 和 32.49%. 在图 1(c)中, 深色部分为磁核 SF-MNPs, 浅色部分为无定形的 SiO₂ 壳层, SF-MNPs 被包裹在 SiO₂ 壳层中, MZF@ SiO₂ 具有"核-壳"结构. 图 1(d)为 MZF@ SiO, 的 XRD 谱图,未 发现晶态 SiO₂ 特征衍射峰存在,说明壳层 SiO₂ 以 无定形的形态存在; 在 29.7°、35.0°、42.5°、 52.7°、56.2°和61.7°处的衍射峰分别对应于 $Mn_{0.6}Zn_{0.4}Fe_2O_4$ MNPs 的(220)、(311)、(400)、 (422)、(511)和(440)的晶面反射, 且与具有尖晶 石结构的Mn_{0.6}Zn_{0.4}Fe₂O₄标准图谱(JCPDS74-2401) 相一致, XRD 谱图中各衍射峰尖锐、强度大且无其 它杂相的衍射峰,表明所制备的 Mno 6 Zno 4 Fe O 4 MNPs 的纯度较高,结晶度好,具有尖晶石结构;利 用(311)晶面对应衍射峰的 FEHM, 通过谢乐公式 估算得到平均晶粒尺寸为13.5 nm. 图1(e)为 MZF @SiO2的磁滞回线,其饱和磁化强度为18.6 emu·g-1, 适宜的饱和磁化强度可保证磁分离效果; 剩磁和矫顽力分别为 8.38 emu·g⁻¹和 0.044 T, 较 低的剩磁和矫顽力,可保证 MZF@ SiO, 在多次使用 后,仍具有较好的分散性. 图 1(f) 为MZF@ SiO_2 的 磁分离效果, MZF@SiO, 只需轻微振荡即可在溶液 中均匀分散,且磁分离效果极佳.

图 2(a)为 MZF@ SiO_2 的 XPS 全谱扫描图,位于 1021.6、711.0、641.7、532.4 和 103.2 eV 处的电子结合能(BE)峰分别对应于 Zn 2p、Fe 2p、

(a) SEM 图, (b) EDS 谱图, (c) HRTEM 图, (d) XRD 谱图, (e) 磁滞回线, (f) 磁分离 图 1 MZF@ SiO, 的表征

Fig. 1 Characterizations of MZF@ SiO₂

 $Mn 2p \setminus O 1s$ 和 Si 2p, 表明样品 MZF@ SiO₂ 由 Mn \setminus Zn \setminus Fe \setminus O 和 Si 组成,与 EDS 的结果相吻合.

图 2(b)为 $Fe\ 2p$ 高分辨的 XPS 图谱, 其中 2 个 主峰的 BE 分别为 711. 5 eV 和 725. 5 eV,分别对应于 $Fe\ 2p_{3/2}$ 和 $Fe\ 2p_{1/2}$,同时 $Fe\ 2p_{3/2}$ 和 $Fe\ 2p_{1/2}$ 分别在 719. 4 eV 和 733. 5 eV 有两个卫星峰,表明 MZF@ SiO_2 中存在 $Fe(III)^{[22]}$. $Fe\ 2p$ 高分辨的 XPS 图谱拟合结果表明,711. 4 eV 和 725. 3 eV 处的峰分别对应于 $Fe(III)^{[23,24]}$.

如图 2(c) 所示,Mn 2p 高分辨的 XPS 图谱在BE 为 642.2 eV 和 653.9 eV 处的两个峰,分别对应于 $Mn 2p_{3/2}$ 和 $Mn 2p_{1/2}$,且 Mn 2p 的自旋轨道分裂能为 11.7 eV,表明 $MZF@SiO_2$ 中存在 Mn(III) 和 $Mn(IV)^{[25,26]}$. $Mn 2p_{3/2}$ 峰在 642.2 eV 处可拟合为 3 个峰,640.8 eV 处的峰表明 $MZF@SiO_2$ 中存在 Mn(III),而 641.8 eV 和 642.9 eV 两处的峰分别对应于 Mn(III) 和 $Mn(IV)^{[27]}$; $Mn 2p_{1/2}$ 在 653.9 eV 处的峰可拟合为 3 个峰,652.7 eV 处的峰对应于 Mn(III),而在 653.8 eV 和 654.9 eV 处的峰分别对应于 Mn(IIII) 和 $Mn(IV)^{[28]}$.

图 2(d) 为 Zn 2p 高分辨的 XPS 图谱, BE 为 1 022. 3 eV和1 045. 1 eV处的两个峰分别对应于 Zn 2 $p_{3/2}$ 和 Zn 2 $p_{1/2}$ [29]. 位于1 022. 3 eV处的 BE 峰表明 MZF@ SiO₂ 中 Zn 主要以 Zn(II) 的化合态形式存在;此外, Zn 2 $p_{3/2}$ 峰中心显示出非常好的对称

性,说明 MZF@ SiO₂ 没有多余的锌存在^[30]

由正硅酸乙酯水解得到的 SiO_2 含有 4 种聚合度不同的硅: $Si(OSi)(OH)_3(Q_1)$ 、 $Si(OSi)_2(OH)_2$ (Q_2) 、 $Si(OSi)_3(OH)(Q_3)$ 和 $Si(OSi)_4(Q_4)^{[31]}$,且不同聚合度的硅的相对含量由小到大的顺序为: $Q_1 < Q_2 < Q_3 < Q_4^{[32]}$. 图 2(e) 为 Si 2p 高分辨的 XPS 图谱,根据 102.3、102.9、103.9 和 103.3 eV 各拟合峰的峰面积计算得到硅含量分别为 3.5%、23.5%、33.3% 和 39.7%,即各拟合峰分别对应: $Si(OSi)(OH)_3$ 、 $Si(OSi)_2(OH)_2$ 、 $Si(OSi)_3(OH)$ 和 $Si(OSi)_4$,该结果进一步表明 MZF@ SiO_2 表面具有丰富的硅羟基,有利于富集 MB,提高催化降解底物的浓度,从而提高催化效能.

由图 2(f) 可见, O 1s 高分辨的 XPS 图谱可拟合得到结合能分别为 529.9、530.5 和 532.8 eV 这 3 个峰, 其中 532.8 eV 对应于表面化学吸附氧及羟基氧^[33], 529.9 eV 可归属于磁核 SF-MNPs 中的晶格氧, 而 530.5 eV 对应为 SF-MNPs 中的空穴氧^[34], 而晶体中氧空位的存在, 对催化过程中的电子转移具有强化作用.

2.2 MZF@ SiO, 活化 H,O, 去除 MB 的效能

当反应 120 min, 只加入 H_2O_2 时, MB 去除率为 10. 64%; 不加 H_2O_2 , 只加入 $MZF@SiO_2$ 或 SF-MNPs 时, MB 去除率分别为 20. 94% 和 16. 38%, 前者对 MB 的去除效果好于后者, 这是由于此时主要依靠材料的吸附作用去除 $MB^{[35]}$, 而 $MZF@SiO_2$ 具

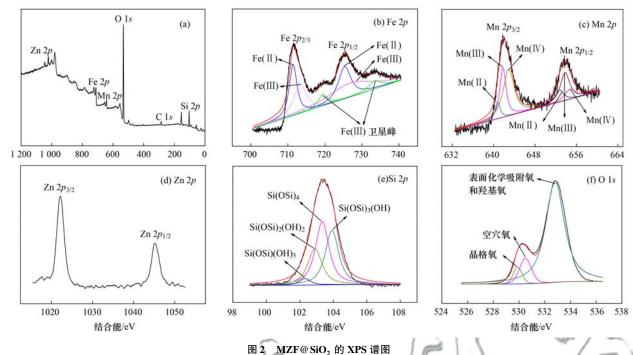


Fig. 2 XPS spectra of MZF@ SiO₂

有较大的比表面积,且其表面有丰富的硅羟基^[36,37],因此 MZF@ SiO₂ 对 MB 的去除效果强于 SF-MNPs;在 SF-MNPs + H₂O₂ 体系中 MB 去除率为 34.17%,而在 MZF@ SiO₂ + H₂O₂ 体系中, MB 去除率可达 94.76%,这表明 SF-MNPs 催化分解 H₂O₂ 的能力较弱,而 MZF@ SiO₂ 能有效活化 H₂O₂ 产生活性氧化物(ROS),使得 MB 分解或矿化,从而提高了 MB 的去除率.

在 MZF@ SiO₂ + H₂O₂ 体系中, 当分别加入淬灭剂叔丁醇(TBA)、糠醇(FFA)和对苯醌(p-BQ)后, MB 去除率从 94. 76% 分别降至 73. 94%、92. 00% 和 92. 18%,表明 MZF@ SiO₂ + H₂O₂ 体系中产生的 ROS 以羟基自由基(\cdot OH)为主,MZF@ SiO₂ 能有效活化 H₂O₂ 产生 \cdot OH;而体系中单线态氧(1 O₂)、超氧自由基(\cdot HO₂ \cdot)或超氧阴离子(\cdot O₂ $^-$)非主要的 ROS,对 MZF@ SiO₂ + H₂O₂ 体系降解 MB 的贡献不大.

为进一步验证 MZF@ $SiO_2 + H_2O_2$ 体系中生成了 · OH,可借助自由基捕获剂 5 , 5 - 二甲基-1 - 吡咯啉-N-氧化物 (DMPO) 与 · OH形成 DMPO-OH 加合物,而 DMPO-OH 具有峰强度为 1: 2: 2: 1的 EPR 特征图谱,由图 3 可见,当仅有 DMPO 和 H_2O_2 时,EPR 图谱有微弱的 DMPO-OH 的特征信号,主要是 H_2O_2 自身分解产生的 · OH被 DMPO 捕获所致;当 DMPO 加入 MZF@ $SiO_2 + H_2O_2$ 体系后,5 min 和 10 min 的 EPR 图谱均出现了峰强度为 1: 2: 2: 1的特征信号,且随着时间的增加,DMPO-OH 的 EPR 特征信号逐渐增强,进一步证实 MZF@ SiO_2 确能催化分

解 H₂O₂ 产生·OH,与淬灭实验结果相吻合.

与 SF-MNPs + H₂O₂ 体系相比较,在 MZF@ SiO₂ + H₂O₂ 体系中, MB 去除率显著提高, 表明 SiO₂ 包 覆层对于提高 MZF@ SiO, 的催化效能具有非常重 要的作用, 一方面可能是由于 SiO₂ 包覆层具有较 大的比表面积和丰富的硅羟基, MB 和 H,O, 极易聚 集或吸附在 MZF@ SiO, 的表面, 反应底物浓度提 高,有利于提高化学反应速率;另一方面,可能是 由于包覆层 SiO₂ 能加速电子传递速率, 有利于提 高·OH的利用率,从而促进 MB 的降解. 为探究 MZF@SiO,中包覆层SiO,是否能加速电子传递速 率, 本文以 MB 作为电活性探针, 以甘汞电极作为 参比电极,分别用 MZF@ SiO,、SiO,和 SF-MNPs 对 玻碳电极(GCEs)进行修饰,采用循环伏安法得到 了各自对应的循环伏安曲线. 前期实验测得未修饰 的 GCEs 的还原电位约为 0.2 V, 由图 4 可以看出, 经 MZF@ SiO₂ 修饰的 GCEs 比未修饰的 GCEs 具有 较低的还原电位[38],表明 MZF@ SiO,在 MB 的降 解过程中具有催化活性; 经 MZF@ SiO, 修饰的 GCEs 比分别用 SiO, 和 SF-MNPs 修饰的 GCEs 具有 更负的还原峰电位和更高的还原峰电流[39],说明 SiO,与 SF-MNPs 之间存在正协同作用, MZF@ SiO, 具有更快的电子传递速率,能促进在其表面发生的 氧化还原反应, 有利于 MB 的降解, 这也与其它文 献中的结论相一致[16].

2.3 初始 pH 对 MB 去除的影响

pH 是影响 Fenton 反应的重要因素之一,如图

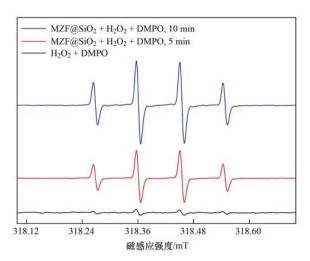


图 3 MZF@SiO₂ + H₂O₂ 体系中 DMPO-OH 加合物的 EPR 谱图

Fig. 3 EPR spectra of DMPO-OH adducts in the MZF@ $SiO_2 + H_2O_2$ system

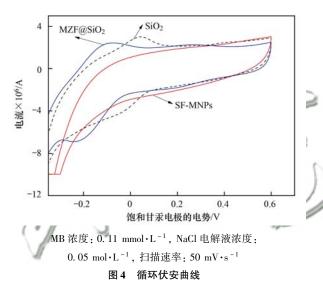
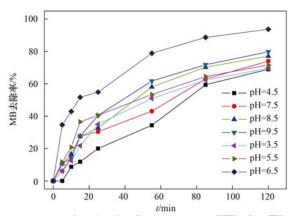
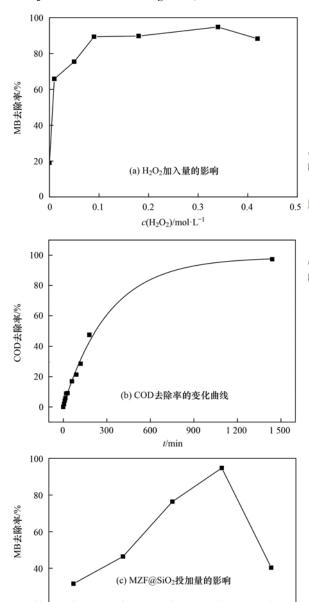



Fig. 4 Cyclic voltammetry curve

5 所示, 当初始 pH 值在 3.5~9.5 范围内, MZF@ SiO, + H,O, 体系对 MB 均具有较好的去除效果, MZF@SiO2的催化活性受pH值影响不大,表明催 化活性中心位于 MZF@ SiO, 的表面, MB 的催化降 解应该发生在固液界面[16,40]; 当反应时间为 120 min, 初始 pH 为 6.5 时, MB 的去除率最高, 可达 94.76%, 这说明 MZF@ SiO, 在近中性 pH 条件下 具有优异的催化性能. 这可能是由于具有"核-壳" 结构的 MZF@ SiO, 具有较大的比表面积, 其等电点 (pH_{pzc})为 2.5, 当初始 pH 值在 3.5~9.5 范围内 时, MZF@SiO, 表面带负电荷, 而 MB 为阳离子型 偶氮染料,故 MZF@ SiO2 对 MB 的富集效果好,提 高底物浓度有利于降解;有研究表明, Mn 在近中 性的条件下具有优异的非均相类 Fenton 催化活 性[41], 加之SiO, 可加速电子传递速率, 因此在近 中性条件下 MZF@ SiO, 具有较高的 MB 去除率.

MZF® SiO_2 + H_2O_2 体系在高 pH(pH > 5.0)条件下仍具有高效的催化性能,拓宽了 Fenton 体系的 pH 使用范围;印染废水的 pH 通常在 6.0 ~ 10.0 之间,若以 MZF® SiO_2 作为非均相类 Fenton 催化剂处理中性或碱性的印染废水,无需调节废水的 pH,可极大地节约生产成本.

MB 浓度: 100 mg·L⁻¹, 催化剂投加量: 1.0 g·L⁻¹
H₂O₂ 浓度: 0.34 mol·L⁻¹, 303 K, 200 r·min⁻¹
图 **5** 初始 pH 值对 MB 去除率的影响


Fig. 5 Effect of initial pH on MB removal efficiency

H,O,和 MZF@SiO,加入量对 MB 去除的影响 在非均相类 Fenton 技术中, H2O2 是直接参与 降解反应的重要底物,其浓度对降解反应具有重要 影响^[42,43],同时也应尽可能提高 H₂O,的利用率, 降低生产成本. 由图 6(a) 可知, 当 H₂O₂ 的加入量 逐渐增加, MB 的去除率逐渐增加, 当 H,O, 的加入 量为 0.34 mol·L⁻¹ 时,降解 120 min, MB 的去除率 最高,可达94.76%,这是因为随着H,O,加入量的 增加, 生成的·OH量随之增加, 适宜的 H₂O₂ 加入 量,可使得·OH的生成速率与自由基的利用速率能 有效协同,有效提高体系的氧化能力及 H₂O₂ 利用 率,从而使得 MB 的去除率随之增加;但当 H,O,的 加入量增加至 0.42 mol·L⁻¹, MB 的去除率下降为 88. 26%, 这是由于过多的 H,O, 会导致 H,O, 自身分 解加剧,也会导致·OH与H,O,反应生成活性较低的 超氧自由基 $(HO_2 \cdot)$, $HO_2 \cdot$ 会与 \cdot OH反应生成 H_2O 和 O_2 , 该过程对·OH有清除作用, 故导致 MB 的去 除率下降. 当 H_2O_2 的加入量为 $0.34 \text{ mol} \cdot \text{L}^{-1}$ 时, 降解 120 min 时, 可计算得到 H₂O₂ 的利用率为 74.50% [44], 较高的 H₂O₂ 利用率有助于保持较高 的 MB 的去除率, 也有利于降低生产成本.

但是, H_2O_2 的加入也会对体系带来一些不利的影响, 比如残留的 H_2O_2 会导致废水的 COD 增加 $[^{45,46]}$, 虽然这种 COD 对环境没有任何危害, 但有可能会影响后续的生化处理中的微生物的活性, 还

有可能会使处理后的废水达不到排放标准. 如图 6 (b) 所示,当 H_2O_2 的加入量为 $0.34~\text{mol}\cdot\text{L}^{-1}$ 时, COD 去除率随降解时间的增加而增加,当降解时间为 600 min 时, COD 去除率可达 90%,此后 COD 去除率变化不大,为消除残留的 H_2O_2 对废水或后续工段带来的不利影响,可采用延长降解时间的方法.

由图 6(c) 可见,当 MZF@ SiO_2 投加量在 $0.4 \sim 1.0 \text{ g·L}^{-1}$ 范围内,MB 的去除率随着 MZF@ SiO_2 投加量的增加而增加,反应 120 min,MZF@ SiO_2 投加量为 0.6 g·L^{-1} ,MB 的去除率为 46.43%;当 MZF@ SiO_2 投加量增加到 1.0 g·L^{-1} ,MB 的去除率提高

MB 浓度:100 mg·L $^{-1}$,催化剂投加量:1.0 g·L $^{-1}$, H $_2O_2$ 浓度:0.34 mol·L $^{-1}$, pH = 6.5,303 K,200 r·min $^{-1}$

0.8

MZF@SiO₂/g·L⁻¹

1.0

1.2

图 6 不同反应条件对 MB 降解的影响

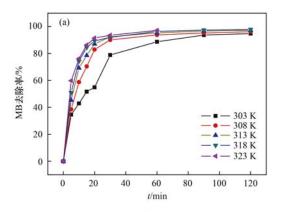
0.4

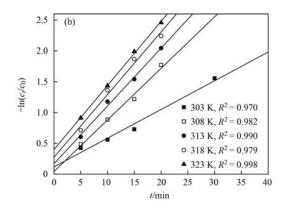
Fig. 6 Effect of various conditions on MB removal efficiency

至 94. 76%,MZF@ SiO_2 的投加量越多,反应体系中的催化活性位点就越多,催化效果就越好,污染物的去除效率越高. 当 MZF@ SiO_2 投加量为 1. 2 $g \cdot L^{-1}$,MB 的去除率反而下降,仅为 40. 38%,这可能是由于 MZF@ SiO_2 投加量过多,影响了 H_2O_2 在水相中的传质效率;MZF@ SiO_2 投加量过多也可能会导致部分活性点位被掩盖,难以发挥催化作用. 故实验条件下最佳催化剂投加量为 1. 0 $g \cdot L^{-1}$.

2.5 温度对 MB 去除的影响

印染废水的温度常为 323 K 左右^[45], 故在 303 ~323 K 范围内,考察了温度对 MZF@ SiO₂ 活化 H₂O₂去除 MB 的影响.由图 7(a)所示,随着温度升高,MB 的降解速率加快;当温度分别为 303 K 和 323 K,反应时间为 20 min, MB 的去除率分别为 55.0%和 92.0%;当反应时间超过 60 min,温度对 MB 的去除率影响不大.较高的反应温度,除增加能耗外,也有可能会加剧 H₂O₂ 分解或者使得 H₂O₂与·OH的反应速率加快,从而导致 H₂O₂利用率降低,因此,最佳反应温度可选择为 303 K.


由图 7(a) 可知, 不同温度下, 反应 30 min 后 MB 的浓度变化不大,实际过程中,去除污染物的 降解时段可选择不超过30 min;同时采用尝试法对 降解30 min 内的动力学数据进行了分析,结果表明 MZF@SiO2 活化H2O2 降解MB可用一级反应动力 学描述,图7(b)为一级反应动力学模型的拟合结 果,反应速率常数 (k_1) 如表 1 所示, k_1 随温度升高 而逐渐增加, 意味温度升高, 降解反应速率加快, 这是因为温度增加,可以提供更多的能量来克服反 应的能垒[45]. 根据 Arrhenius 方程可得式(4), 用不 同温度下 $\ln k_1$ 对 1/T 作图, 拟合得一直线, 其斜率 为3 557.63, 计算得到 MB 降解反应的表观活化能 (E_a) 为 29.58 kJ·mol⁻¹, 通常, 对于扩散控制的化 学反应过程,活化能常在12~15 kJ·mol⁻¹范围 内[45,47,48], 因此 MB 降解过程不是扩散控制过程, 该过程的速率控制步骤为固液界面反应,该结论也 与上述研究结果相吻合.


$$\ln k_1 = \ln A - (E_{\circ}/RT) \tag{4}$$

式中, k_1 为反应速率常数, \min^{-1} ; A 为指前因子, \min^{-1} ; E_a 为表面活化能, $kJ \cdot mol^{-1}$; R 为气体常数, $8.314 J \cdot (mol \cdot K)^{-1}$; T 为热力学温度, K.

2.6 MZF@ SiO₂ 的稳定性及循环使用性能

为了考察催化降解过程中 MZF@ SiO₂ 的稳定性,利用电感耦合等离子体发射光谱仪(ICP)分析了不同时刻的降解液中 Fe、Mn 和 Zn 的浓度. 如表

(a) 温度对 MB 去除率的影响, (b) 不同温度的一级反应动力学模型的拟合结果; MB 浓度: $100 \text{ mg} \cdot \text{L}^{-1}$,

催化剂投加量: $1.0~{\rm g\cdot L^{-1}}$, ${\rm H_2O_2}$ 浓度: $0.34~{\rm mol\cdot L^{-1}}$, ${\rm pH}$ = 6.5, $303~{\rm K}$, $200~{\rm r\cdot min^{-1}}$

图 7 温度对 MB 降解的影响

Fig. 7 Effect of temperature on MB degradation

2 所示, 30 min和60 min的降解液中均未检测出 Fe, 90 min 时 Fe 的浓度为 0. 030 mg·L⁻¹, 此后降解液中 Fe 的浓度变化不大; 而降解液中 Mn 和 Zn 的浓度随着降解时间的增加而逐渐增加,降解 120 min,降解液中 Mn 和 Zn 的浓度仍符合《污水综合排放标准》(GB 8978-1996)的要求. 根据 120 min 的降解液中 Fe、Mn 和 Zn 的浓度,可计算得到此时溶出的锰锌铁占加入催化剂质量的 0. 86%,因此,MZF@SiO₂ 具有较好的稳定性. 虽然降解过程中溶出了少量的铁,有文献指出,当溶液中总铁的浓度小于3. 920 mg·L⁻¹时,一般类 Fenton 反应仍以界面反应为主^[49],因此 MZF@SiO₂ 催化 H₂O₂ 是以固液界面表1 不同温度下一级反应动力学常数(k₁)

Table 1 Value of kinetic constant of the first order

reaction (k_1) at different temperatures					
T/K	303	308	313	318	323
1/min -1	0.0466	0. 083 7	0. 093 8	0. 101 7	0. 103 9

反应为主,与前述实验结果相吻合.

新鲜 MZF@ SiO₂ 的 MB 去除率为 94.76%,当 MZF@ SiO₂ 循环使用到第 3 次时,MB 的去除率仍能达到 92.37%;从第 4 次循环开始,MB 的去除率下降为 76.06%,有可能是因为降解产物沉积在催化剂表面所致,具体原因有待进一步研究.表 3 为不同磁性类 Fenton 催化剂降解 MB 的性能对比,本文所制备的 MZF@ SiO₂ 具有较高的反应速率常数,降解反应速率快,催化效率高,循环使用性能佳,稳定性强,具有广阔的应用前景.

表 2 不同时刻降解液中 Fe、Mn 和 Zn 的浓度

Table 2 Concentrations of Fe, Mn and Zn in the degradation liquid at different time

降解时间/min	$c(\mathrm{Fe})/\mathrm{mg} \cdot \mathrm{L}^{-1}$	$c(Mn)/mg \cdot L^{-1}$	$c(\mathrm{Zn})/\mathrm{mg} \cdot \mathrm{L}^{-1}$
30	ND	3. 289	3. 541
60	ND	3. 583	4. 077
90	0.030	3. 759	4. 434
120	0. 033	3. 888	4. 653

表 3 不同磁性催化剂降解 MB 的性能对比

Table 3 Degradation performances of MB with different magnetic catalysts

催化剂	k_1/\min^{-1}	稳定性	重复使用性	文献
Fe ₃ O ₄ /PCC	0. 028 0	总铁溶出浓度 0.62 mg·L ⁻¹	循环 6 次仍有 99.70%	[50]
nZVI/LF	0.0113	pH 从 3.0~9.0,总铁浓度从 0.103~0.044 mg·L ⁻¹	循环 4 次仍有 77.94%	[51]
羟基铁柱撑蒙脱土- δ -MnO $_2$ 复合材料	0. 001 3	未提及	3 次循环后有 58.70%	[52]
ZIF-8	0.0170	稳定	未提及	[53]
$\mathrm{Fe^0}\text{-}\mathrm{Fe_3}\mathrm{O_4}\text{-}\mathrm{RGO}$	0.0072	浸出铁浓度为 2 mg·L ⁻¹	5 次循环使用后仍有 68.80%	[54]
${\tt MZF@~SiO}_2$	0. 103 9	降解 120 min, Fe、Mn 和 Zn 溶出浓度仅有 0.033、 3.888 和 4.653 mg·L ⁻¹	4 次循环后有 76.06%	本研究

2.7 催化机制

如前所述, MZF@SiO₂ 具有优异的非均相类 Fenton 催化活性, 其催化活性中心位于MZF@SiO₂ 的表面, 过程的速率控制步骤为固液界面反应, ·OH是主要的ROS, 结合MZF@SiO₂ 的XPS分析结 果,提出了如下的 $MZF@SiO_2$ 活化 H_2O_2 的可能机制. 图 8 为 $MZF@SiO_2$ 催化 H_2O_2 降解 MB 的机制示意.

MZF@ SiO₂ 中的 ≡Fe(Ⅱ) 被 H₂O₂ 氧化为 ≡Fe(Ⅲ),同时生成·OH和 OH⁻[式(5)];

■Mn(**I**I) 可被 H,O, 氧化为 **■**Mn(**I**V) 和 **■**Mn(**II**), 并生成·OH和 OH⁻[式(6)和式 (7)], 而 ≡Mn(Ⅲ) 一部分很容易被 H₂O₂ 氧化为 **■**Mn(**I**V) , 并生成·OH和 OH⁻[式(8)], 另一 部分则被 ≡Fe(Ⅲ) 氧化成 ≡Mn(Ⅳ), 而 =Fe(Ⅱ) 被还原为 =Fe(Ⅱ) 「式(9)], =Fe(II) 则继续被 H,O, 重新氧化成 =Fe(III) [式(5)], Fe(Ⅱ) 完成一个价态循环. ■Mn(IV) 是一种强氧化剂,可直接将 MB 转化 为氧化产物^[55,56], 而 Mn(IV) 被还原为 Mn(II)[式 (10)], Mn(Ⅱ)完成一个价态循环; Mn(Ⅱ)、 Mn(Ⅲ)和 Mn(Ⅳ)之间的氧化还原循环在 MZF@ SiO₂ 降解 MB 的过程中具有非常重要的作用. 最 终, MB 被 \equiv Mn(\mathbb{N}) 和·OH[式(10)~(12)]分 解,形成中间产物、无机盐、CO2和H2O.此外,有 研究表明, 该过程能生成HO,:「式(12)和式 (13)]^[57~59], 但是, HO₂·的氧化性弱于·OH, 并且 在水中极不稳定,易发生歧化反应^[60],因此HO,· 对 MB 降解的影响很小.

虽然 Zn(II) 不具有非均相类 Fenton 催化活性,但 Zn(II) 为 Lewis 酸,估计能为 = Fe(II) 和 Mn(II) 提供所需的 pH 微环境,故 MZF@ SiO_2 能在 $3.5 \sim 9.5$ 的 pH 范围内具有出色的催化活性,且其在近中性(pH=6.5)条件下具有优异的催化活性,但 Zn(II) 在该催化反应中的作用有待进一步的实验研究. 最后,MZF@ SiO_2 优异的催化性能也归因于 SiO_2 壳层和 SF-MNPs 中的氧空位均能促进非均相类 Fenton 反应过程中的电子转移.

 $MB + \cdot OH \longrightarrow$ 中间产物 +无机盐类 + $CO_2 + H_2O$ (11)

$$\equiv \operatorname{Fe}(\mathbb{I}) + \operatorname{H}_{2}\operatorname{O}_{2} \longrightarrow \equiv \operatorname{Fe}(\mathbb{I}) + \operatorname{HO}_{2} + \operatorname{H}^{+}$$

$$(12)$$

$$\equiv \operatorname{Mn}(\mathbb{I}) + \operatorname{H}_{2}\operatorname{O}_{2} \longrightarrow \equiv \operatorname{Mn}(\mathbb{I}) + \operatorname{HO}_{2} + \operatorname{H}^{+}$$

$$(13)$$

图 8 MZF@SiO₂ 催化 H₂O₂ 降解 MB 的机制示意

Fig. 8 Proposed mechanism for MB degradation by MZF@ SiO₂ MNCs activation of H₂O₂

3 结论

- (1) 无定形的 SiO_2 壳层将磁核 SF-MNPs 完全包裹, MZF@ SiO_2 具有"核-壳"结构, 其比表面积为242 $m^2 \cdot g^{-1}$; MZF@ SiO_2 的饱和磁化强度为 18.6 $emu \cdot g^{-1}$, 剩磁和矫顽力均较低, 在水中具有优异的分散性和固液分离性能.
- (2) MZF@ SiO₂ 在 pH 为 3. 5 到 9. 5 的范围内均具有较佳的催化性能,且在近中性(pH = 6. 5)条件下具有最佳的 MB 去除率,当温度为 303 K, MZF@ SiO₂ 投加量为 1. 0 g·L⁻¹, H_2O_2 加入量为 0. 34 mol·L⁻¹,降解 120 min 时,MB 的去除率为 94. 76%,过氧化氢利用率为 74. 50%,一级反应速率常数为0. 046 6 min⁻¹,溶出的锰锌铁占加入催化剂质量的 0. 86%,MZF@ SiO₂ 具有较好的稳定性;循环使用到第 3 次时,MB 的去除率降低极少,仍能达到 92. 37%,从第 4 次循环开始,MB 的去除率下降为 76. 06%.
- (3)固液界面反应为 MB 降解过程的速率控制步骤, MZF@ SiO₂ + H₂O₂ 催化体系中的 ROS 主要为·OH;包覆层 SiO₂ 能加速电子传递速率,与 SF-MNPs 存在正协同催化作用; SF-MNPs 中存在氧空位,也能促进非均相类 Fenton 反应过程中的电子转移.

参考文献:

- [1] 李立, 吴丽颖, 董正玉, 等. 高晶度 Mn-Fe LDH 催化剂活化 过一硫酸盐降解偶氮染料 RBK5 [J]. 环境科学, 2020, **41** (6): 2736-2745.
 - Li L, Wu L Y, Dong Z Y, et al. Degradation of RBK5 by high crystallinity Mn-Fe LDH catalyst activating peroxymonosulfate

- [J]. Environmental Science, 2020, 41(6): 2736-2745.
- [2] Parida D, Moreau E, Nazir R, et al. Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes [J]. Journal of Hazardous Materials, 2021, 416, doi: 10.1016/j. jhazmat. 2021.126237.
- [3] 毕晨, 施周, 周石庆, 等. EGCG 强化 Fe²⁺/过硫酸盐体系降解金橙 G 的研究[J]. 中国环境科学, 2017, **37**(10): 3722-3728.
 - Bi C, Shi Z, Zhou S Q, et al. Degradation of orange G by $\mathrm{Fe^{2+}}/$ peroxydisulfate system with enhance of EGCG [J]. China Environmental Science, 2017, 37(10): 3722-3728.
- [4] 马红芳,杨浩宇,田委民,等. 氨三乙酸强化零价铁/过一硫酸盐降解橙黄 G[J]. 中国环境科学,2021,41(4):1597-1607.
 - Ma H F, Yang H Y, Tian W M, et al. Degradation of orange G by Fe⁰/peroxymonosulfate with nitrilotriacetic acid enhancement [J]. China Environmental Science, 2021, **41**(4): 1597-1607.
- [5] 于海斌, 刘强, 周立坤, 等. MnO_x/ZrO₂ 催化剂制备及催化 臭氧氧化降解甲基橙[J]. 化工学报, 2019, **70**(4): 1436-1445.
 - Yu H B, Liu Q, Zhou L K, *et al.* Preparation of MnO_x/ZrO_2 catalyst and catalytic ozonation degradation of methylorange [J]. CIESC Journal, 2019, **70**(4): 1436-1445.
- [6] Xu D Y, Sun X W, Zhao X, et al. Heterogeneous Fenton degradation of rhodamine B in aqueous solution using Fe-loaded mesoporous MCM- 41 as catalyst [J]. Water, Air, & Soil Pollution, 2018, 229 (10), doi: 10.1007/S11270-018-3932-9.
- [7] 王斌,王晓红,刘哲林,等.表面活性剂@Weakley型稀土多酸复合催化剂对甲基橙的光催化降解活性[J].无机化学学报,2020,36(10):1865-1872.
 - Wang B, Wang X H, Liu Z L, et al. Photocatalytic degradation activity of methyl orange by composite catalysts of surfantant@polyoxoanions weakley type [J]. Chinese Journal of Inorganic Chemistry, 2020, 36(10): 1865-1872.
- [8] 陈峰,周洋,陈彦南,等. 脱合金制备纳米多孔 Co 及其超级 电容器和对偶氮染料的降解性能[J]. 材料研究学报,2020, **34**(12):905-914.
 - Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and Azo-dye degradation [J]. Chinese Journal of Materials Research, 2020, 34 (12): 905-914.
- [9] Huang C, Wang Y L, Gong M, et al. α-MnO₂/Palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B [J]. Separation and Purification Technology, 2020, 230, doi: 10.1016/j.seppur.2019.115877.
- [10] 刘杰. 纳米 Fe₃O₄ 及其复合材料催化过氧化物去除水中氯酚的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
 Liu J. Catalytic peroxide oxidation of chlorophenol in aqueous solution in presence of Fe₃O₄ nanoparticles or its composites
 [D]. Harbin; Harbin Institute of Technology, 2014.
- [11] 刘兵,周益名,吴清珍,等. 纤维素水凝胶包覆 Fe₃O₄ 类 Fenton 纳米催化剂的制备及其催化降解性能[J]. 材料科学 与工程学报, 2017, **35**(1): 119-124.

 Liu B, Zhou Y M, Wu Q Z, *et al.* Preparation of Fe₃O₄-cellulose hydrogels core-shell Fenton nano-catalyst for degrading of azo dyes[J]. Journal of Materials Science and Engineering, 2017, **35**(1): 119-124.
- [12] 郭小熙, 田鹏飞, 孙杨, 等. 工业有机废水深度处理: 非均相 Fenton 催化剂研究进展[J]. 化工进展, 2021, **40**(2):

- 605-620.
- Guo X X, Tian P F, Sun Y, et al. Tertiary treatment of industrial organic wastewater: development of heterogeneous Fenton catalysts $[\ J\]$. Chemical Industry and Engineering Progress, 2021, 40(2): 605-620.
- [13] Munoz M, De Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-a review [J]. Applied Catalysis B: Environmental, 2015, 176-177; 249-265.
- [14] Zhang S B, Zhao Y C, Yang J P, et al. Fe-modified MnO_x/TiO₂ as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas [J]. Chemical Engineering Journal, 2018, 348, doi: 10.1016/j.cej.2018.05.037.
- [15] Arends I W C E, Sheldon R A. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments[J]. Applied Catalysis A: General, 2001, 212(1-2): 175-187.
- [16] Yang S T, Zhang W, Xie J R, et al. Fe₃O₄@ SiO₂ nanoparticles as a high-performance Fenton-like catalyst in a neutral environment[J]. RSC Advances, 2015, **5**(7): 5458-5463.
- [17] Wang R, Yu J, Hao Q. Activated carbon/Mn_{0.6} Zn_{0.4} Fe₂O₄ composites; facile synthesis, magnetic performance and their potential application for the removal of methylene blue from water [J]. Chemical Engineering Research and Design, 2018, 132: 215-225.
- [18] Yu J, Jiang D B, Hao Q, et al. Silica-coated magnetic nanocomposites as an adsorbent for the removal of methylene blue dyes from water: preparation and characterization [A]. In: Proceedings of the 6th International Conference on Manufacturing Science and Engineering [C]. France: Atlantis Press, 2015. 669-675.
- [19] 王莉, 张建红, 韩永军, 等. $Cu-CuO-MnO_2$ 核壳催化剂的制备及其催化降解亚甲基蓝的性能[J]. 环境工程学报, 2017, **11**(11): 5903-5908.
 - Wang L, Zhang J H, Han Y J, et al. Preparation of core-shell structure Cu-CuO-MnO₂ catalysts and their performance of catalytic degradation of methylene blue [J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5903-5908.
- [20] HJ/T 399-2007, 水质 化学需氧量的测定 快速消解分光光度 法[S].
- [21] 姜成春, 庞素艳, 马军, 等. 钛盐光度法测定 Fenton 氧化中的过氧化氢[J]. 中国给水排水, 2006, **22**(4): 88-91.

 Jiang C C, Peng S Y, Ma J, et al. Spectrophotometric determination of hydrogen peroxide in Fenton reaction with titanium oxalate[J]. China Water & Wastewater, 2006, **22**(4): 88-91.
- [22] Praveena K, Sadhana K, Murthy S R. Elastic behaviour of microwave hydrothermally synthesized nanocrystalline Mn_{1-x}-Zn_x ferrites[J]. Materials Research Bulletin, 2012, 47(4): 1096-1103.
- [23] Fan X L, Shao J, Xiao X Z, et al. Carbon encapsulated 3D hierarchical Fe₃O₄ spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2(35): 14641-14648.
- [24] Wan L J, Yan D, Xu X T, et al. Self-assembled 3D flower-like Fe₃O₄/C architecture with superior lithium ion storage performance [J]. Journal of Materials Chemistry A, 2018, 6 (48): 24940-24948.
- [25] 叶青, 霍飞飞, 王海平, 等. xAu/α-MnO₂ 催化剂的结构及催化氧化 VOCs 气体性能[J]. 高等学校化学学报, 2013, **34** (5): 1187-1194.

- Ye Q, Huo F F, Wang H P, et al. $x\text{Au}/\alpha\text{-MnO}_2$ catalysts: structure and catalytic oxidation of benzene and toluene [J]. Chemical Journal of Chinese Universities, 2013, 34(5): 1187-1194.
- [26] Moulder J F, Chastain J, King R C. Handbook of x-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data [J]. Chemical Physics Letters, 1992, 220(1): 7-10.
- [27] Andreoli S, Deorsola F A, Pirone R. MnO_x-CeO₂ catalysts synthesized by solution combustion synthesis for the low-temperature NH₃-SCR[J]. Catalysis Today, 2015, **253**, doi: 10.1016/j.cattod.2015.03.036.
- [28] Ramírez A, Hillebrand P, Stellmach D, et al. Evaluation of MnO_x, MN₂O₃, and Mn₃O₄ electrodeposited films for the oxygen evolution reaction of water[J]. The Journal of Physical Chemistry C, 2014, 118(26): 14073-14081.
- [29] Chen M S, Liu D C, Deng Y F, et al. Tailoring the porosity of ZnO/ZnFe₂O₄ composites for photocatalytic applications [J]. Ceramics International, 2017, 43(17): 16027-16031.
- [30] 柯贤文. ZnO 薄膜的制备及其掺杂研究[D]. 武汉: 武汉大学, 2011.
 Ke X W. Deposition and ion implantation of ZnO thin films[D].
 Wuhan: Wuhan University, 2011.
- [31] 余锡宾, 吴虹. 正硅酸乙酯的水解、缩合过程研究[J]. 无机材料学报, 1996, **11**(4): 703-707.

 Yu X B, Wu H. Studies on the hydrolysis and polycondensation process of TEOS[J]. Journal of Inorganic Materials, 1996, **11** (4): 703-707.
- [32] 赵文俞, 张清杰, 官建国, 等. Fe/SiO₂ 核壳复合粒子表面的 XPS 谱研究[J]. 硅酸盐通报, 2007, **26**(1): 38-42, 83. Zhao W Y, Zhang Q J, Guan J G, et al. XPS study on the surface of Fe/SiO₂ core-shell composite particles[J]. Bulletin of the Chinese Ceramic Society, 2007, **26**(1): 38-42, 83.
- [33] Joshi S, Kumar M. Influence of Co²⁺ substitution on cation distribution and on different properties of NiFe₂O₄ nanoparticles [J]. Journal of Superconductivity and Novel Magnetism, 2016, 29(6): 1561-1572.
- [34] Liang Y C, Hsia H Y. Growth and crystallographic feature-dependent characterization of spinel zinc ferrite thin films by RF sputtering[J]. Nanoscale Research Letters, 2013, 8(1), doi: 10.1186/1556-276X-8-537.
- [35] 姜德彬, 余静, 程庆峰, 等. 锰锌铁氧体/SiO₂ 复合磁性材料的制备和表征[J]. 化工环保, 2015, **35**(5): 536-541.

 Jiang D B, Yu J, Cheng Q F, et al. Preparation and characterization of composite magnetic material Mn-Zn ferrite/SiO₂[J]. Environmental Protection of Chemical Industry, 2015, **35**(5): 536-541.
- [36] 姜德彬, 余静, 叶芝祥, 等. 磁性纳米复合物对水中亚甲基蓝的 吸附及其机理[J]. 中国环境科学, 2016, **36**(6): 1763-1772.

 Jiang D B, Yu J, Ye Z X, *et al.* Adsorption and mechanism of methylene blue from water by magnetic nanocomposites [J]. China Environmental Science, 2016, **36**(6): 1763-1772.
- [37] Xie H L, He W, Chen G. Preparation for magnetic nanoparticles Fe₃O₄ and Fe₃O₄ @ SiO₂ and heterogeneous Fenton catalytic degradation of methylene blue [J]. Journal of the Chinese Chemical Society, 2015, 62(12): 1144-1148.
- [38] 王海文,王一丹,茅潜龙,等.硫掺杂有序介孔碳材料作为燃料电池氧还原催化剂[J].无机化学学报,2019,35(3):369-375.
 - Wang H W, Wang Y D, Mao Q L, et al. Sulfur-doped ordered mesoporous carbon as fuel cell electrocatalyst for oxygen reduction

- [J]. Chinese Journal of Inorganic Chemistry, 2019, 35(3): 369-375.
- [39] Ma Z C, Ren L M, Xing S T, et al. Sodium dodecyl sulfate modified FeCo₂O₄ with enhanced Fenton-like activity at neutral pH[J]. The Journal of Physical Chemistry C, 2015, 119(40): 23068-23074.
- [40] Ma X J, Xia H L. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation [J]. Journal of Hazardous Materials, 2009, 162(1): 386-390.
- [41] Watts R J, Sarasa J, Loge F J, et al. Oxidative and reductive pathways in manganese-catalyzed Fenton's reactions [J]. Journal of Environmental Engineering, 2005, 131(1): 158-164.
- [42] 尹鹏, 陈海, 杨慧, 等. Fe₃O₄/CeO₂-H₂O₂ 非均相类 Fenton 体系下降解 TCE 的研究[J]. 环境科学学报, 2018, **38**(2): 467-474.
 - Yin P, Chen H, Yang H, et al. Degradation of TCE by Fe₃O₄/CeO₂-H₂O₂ heterogeneous Fenton-like system[J]. Acta Scientiae Circumstantiae, 2018, **38**(2): 467-474.
- [43] 林志荣, 赵玲, 董元华, 等. 针铁矿催化过氧化氢降解PCB28[J]. 环境科学学报, 2011, **31**(11): 2403-2408. Lin Z R, Zhao L, Dong Y H, et al. Degradation of PCB28 by goethite-catalyzed hydrogen peroxide [J]. Acta Scientiae Circumstantiae, 2011, **31**(11): 2403-2408.
- [44] Xu L J, Wang J L. Magnetic nanoscaled Fe $_3$ O $_4$ /CeO $_2$ composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol [J]. Environmental Science & Technology, 2012, 46(18); 10145-10153.
- [45] Wang N N, Zheng T, Zhang G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787.
- [46] Lin S H, Lo C C. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8): 2050-2056.
- [47] Stumm W, Morgan J. Aquatic Chemistry (3rd ed.) [M]. New York; Wiley-Interscience, 1996.
- [48] Lin S S, Gurol M D. Catalytic decomposition of hydrogen peroxide on iron oxide; kinetics, mechanism, and implications [J]. Environmental Science & Technology, 1998, 32 (10): 1417-1423.
- [49] 蒋胜韬, 祝建中, 管玉江, 等. 非均相类 Fenton 法降解硝基苯化工废水的效能及其机制[J]. 化工学报, 2014, **65**(4): 1488-1494.
 - Jiang S T, Zhu J Z, Guan Y J, et al. Performance of heterogeneous Fenton-like system for degradation of nitrobenzene-containing wastewater [J]. CIESC Journal, 2014, 65(4): 1488-1494.
- [50] 华亚妮. 多酚- Fe_3O_4 类 Fenton 体系对有机污染物的降解研究 [D]. 重庆: 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2018.
 - Hua Y N. Study on degradation of organic pollutants in polyphenol-Fe $_3$ O $_4$ Fenton-like system [D]. Chongqing: University of Chinese Academy of Sciences (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences), 2018.
- [51] 梁成. 丝瓜络功能化及其吸附、催化降解性能研究[D]. 武汉:中国地质大学, 2020.
 Ligng C. The functionalization for looped fiber and its
 - Liang C. The functionalization for loopah fiber and its performance study on adsorption and catalytic degradation [D]. Wuhan: China University of Geosciences, 2020.
- [52] 石中亮, 王兴星, 姚淑华. 羟基铁柱撑蒙脱土-8-MnO₂ 复合体 Fenton 催化降解亚甲基蓝[J]. 无机化学学报, 2015, **31** (4): 696-702.

- Shi Z L, Wang X X, Yao S H. Heterogeneous Fenton degradation of methylene blue by δ -MnO₂-coated Fe-pillared bentonite[J]. Chinese Journal of Inorganic Chemistry, 2015, **31** (4): 696-702.
- [53] Jing H P, Wang C C, Zhang Y W, et al. Photocatalytic degradation of methylene blue in ZIF-8 [J]. RSC Advances, 2014, 4(97): 54454-54462.
- [54] Yang B, Tian Z, Zhang L, et al. Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe₃O₄/reduced graphene oxide[J]. Journal of Water Process Engineering, 2015, 5: 101-111
- [55] Kim E J, Oh D, Lee C S, et al. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: crystal phasedependent behavior [J]. Catalysis Today, 2017, 282: 71-76.
- [56] Driehaus W, Seith R, Jekel M. Oxidation of arsenate (III) with manganese oxides in water treatment [J]. Water Research,

- 1995, **29**(1): 297-305.
- [57] Dong G H, Huang L H, Wu X Y, et al. Effect and mechanism analysis of MnO₂ on permeable reactive barrier (PRB) system for the removal of tetracycline[J]. Chemosphere, 2018, 193: 702-710.
- [58] Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO₃ as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science & Technology, 2010, 44(5): 1786-1791.
- [59] He F, Ji Y, Wang Y, et al. Preparation of bifunctional hollow mesoporous Fe⁰ @ C @ MnFe₂O₄ as Fenton-like catalyst for degradation of Tetrabromobisphenol A[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80: 553-562.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 43 No. 5 May 15, 2022

CONTENTS

CONTENTS	
Chemical Characteristics and Source Apportionment of PM _{2,5} in Urban Area of Beijing	··· FAN Li-hang, YANG Xiao-hui, SONG Chun-jie, et al. (2262
Spatio-temporal Evolution Patterns of PM _{2.5} and Relationship with Urban Expansion in Beijing-Tianjin-Hebei Urban Agglomeration f	from 2000 to 2018
Characteristics and Same Anabasis of DM is Disables in Winter Hadas the Action of See Land American Company	
Characteristics and Source Analysis of PM _{2.5} in Qingdao in Winter Under the Action of Sea-Land-Atmosphere Convergence	
Source Apportionment and Seasonal Changes in PM _{2.5} Chemical Components from Different Functional Areas of a Provincial Capital	
Chemical Compositions, Light Extinction Effect, and Oxidative Potential of PM _{2.5} Under Different Pollution Levels During Winter in	n Taivuan
Source Apportionment and Health Risk Assessment of Metal Elements in Ambient PM _{2.5} in the Winter of Zhengzhou	REN Jiao, ZHAU Rong-rong, WANG Ming, et al. (231/
Characteristics, Ecological Risk Assessment, and Sources of the Polluted Metallic Elements in PM _{2.5} During Winter in Zibo City · · ·	
Seasonal Distribution Characteristics, Source Analysis, and Health Risk Evaluation of PAHs in PM _{2.5} in Chengde	
Pollution Level and Regional Migration of PCDD/Fs in Ambient Air from Pearl River Delta, China	··· FU Jian-ping, XIE Dan-ping, HUANG Jin-qiong, et al. (2355
Concentrations and Sources of Black Carbon Aerosols in Rural Areas of Southern North China Plain	
Research on Causes of Severely Polluted Weather in Tianjin Based on Process Analytical Technology	
Classification Control of Volatile Organic Compounds (VOCs) Emission Pollution Sources Based on Emission Amounts and Atmosphe	eric Reactivity
	CHEN Peng, ZHANG Yue, XING Min, et al. (2383
Complex Networks Reveal the Characteristics of Ozone in China	
Dzone Simulation of Lanzhou City Based on Multi-scenario Emission Forecast of Ozone Precursors in the Summer of 2030	
Method of Identifying Air Pollution from Iron and Steel Industry Based on Ambient Air Quality Monitoring Data Analysis	
Assessment of "Differentiated Response Requirement Based on Performance Grading" Plolicy During Heavy Air Pollution Alert	
Risk Zoning of Water Pollution in the Yellow River Basin	
Emission Characteristics of Industrial Water Pollutants in Gansu Section of the Yellow River Basin	
Spatial-temporal Distribution and Pollution Assessment of Heavy Metals in Sediments of the Yellow River	
APCS-MLR Combined with PMF Model to Analyze the Source of Metals in Sediment of Xinglin Bay Suburban Watershed, Xiamen	SHEN Chen-yu, YAN Yu, YU Rui-lian, et al. (2476
Spatial Differentiation Characteristics and Response Relationship of DOM, Nutrients, and Heavy Metals in River Sediments	XIAO Yan-chun, YU Hui-bin, SONG Yong-hui (2489
Distribution Characteristics, Evaluation, and Source Analysis of Heavy Metals in Soils of Fenhe Riparian Zone in Taiyuan City	
Sinding Affinity Between Heavy Metal Hg and Dissolved Organic Matter in Hongze Lake	
Cosystem Evolutionary Trajectory of Lake Xiliang over the Past Century Driven by Eutrophication	
Sediment Release and Pollution Source Analysis of Typical Reservoirs in the Upper Reaches of the Yellow River Based on DGT Tech	hnology AND York THE Views DANG Of the street of 1 (2527)
Differential Characteristics and Source Identification of Water Quality of the Rivers in Northern Henan Before and After Rainstorm	
Adsorption and Interception Effects of Eichhornia crassipes on Microplastics in Water of the Poyang Lake Basin	
Spatiotemporal Distribution and Ecological Risk Assessment of Plastic Additives in Taihu Lake	
Distribution Characteristics, Sources, and Storage of Microplastics in Surface Sediments of Luoma Lake	
Pollution Characteristics of Phosphorus in Different Media in Taihu Lake and Its Treatment Enlightenment	
Analysis on Diversity and Structure of Microbial Community in River Sediment of Siping Section of Liaohe River	
Non-point Source Pollution (NPSP) Induces Structural and Functional Variation in Bacterial Communities in Sediments of Jialing Ri	iver ······ XUE Yu-qin, XU Fei, LIU Kun-he, et al. (2595
Effects of Microplastics on Bacterial Community Composition and Diversity in Sediments	
Vertical Distribution Characteristics and Community Construction of Aerobic Denitrification Bacteria from the Sediments of Baiyangdi	Ian Lake During the Winter Freezing Period
Effect of Induced Mixing on Bacterial Community Structure and Metabolic Activity in Reservoir	LITANG Han-na, CITEN Znao-ying, ZITANG Zi-wei, et al. (2014
Distribution Characteristics of Microplastics in Bellamya aeruginosa in Typical Area of Poyang Lake	
Electrocatalytic Oxidation of Bisphenol A by Porous Ti/SnO ₂ -Sb-Ni Electrode Loaded with Multi-wall Carbon Nanotubes	
Efficiency and Mechanism of Degradation of Methylene Blue with H ₂ O ₂ Catalyzed by Magnetic Mn _{0.6} Zn _{0.4} Fe ₂ O ₄ @SiO ₂ ··········	
Effect of Two Types of Nanoparticles on the Adsorption of Ciprofloxacin on Zeolite	······ JIANG Lan-cui, MENG Zhao-fu, LIU Xian, et al. (2662
Adsorption Mechanisms and Effect Factors of As(V) by AMD Sludge Composite Material	ZHANG Ya-hui, ZHANG Rui-xue, WU Pan, et al. (2673
Shifts in Microbial Community and Variation in Functional Genes for Nitrification and Denitrification in Activated Sludge Affected by	y Triclosan and Its Transformed Intermediates
Construction of Sustainability Evaluation Index System for Contaminated Site Risk Management and Analysis on Key Influential Facto Construction and Empirical Analysis of a Comprehensive Evaluation Method of Coastal Wetland Soil Quality Based on Ecological Fun	
onstate that are tempered. This year of a competencial trade and interest of constant configuration and tempered and the configuration and the configuratio	ZHANG Xue, KONG Fan-long, JIANG Zhi-xiang (2709
Source Analysis and Pollution Assessment of Heavy Metals in Farmland Soil Around Tongshan Mining Area	CHEN Hang, WANG Ying, WANG Shu (2719
Effects of Typical Iron and Manganese Minerals on Arsenic Speciation and Enzyme Activities in Paddy Soil	
Phytoremediation Efficiency of Two Cultivars of Brassica napus L. Under Water-soluble Chitosan Treatment in Typical Ph-contaminat	ted Farmland Soils ·····
7	MENG Xiao-fei, ZHENG Guo-di, CHEN Tong-bin, et al. (2741
Risk Prediction of Cadmium and Lead in Wheat Grains Based on Bayes Theorem	
nterannual Variation Characteristics of Nitrogen Loss Under Rapeseed/Maize Rotation in Purple Soil Sloping Field	
Physicochemical Properties of Biochars Prepared from Different Feedstocks and Evaluation of Its Potential as A Slow-release Carriers	B for Biochar-based Fertilizers
Effects of Combined Application of Wood Vinegar-Acidified Biochar and Nitrogen on Active Nitrogen and Ammonia Volatilization in	Saline Soil · · · · · · · · · · · · · · · · · · ·
neces of Committee Appreciation of wood vinegal-recumed blocked and vintogen on recure returned and vintogen	SHEN Shu-wei, ZHANG Dan-dan, WANG Min-ge, et al. (2779
Effects of Biodegradable Plastic Film Mulching on Greenhouse Gas Emissions Under Wheat-Maize Rotation System in the Guanzhong	Plain ·····
Forest Soil Microbial Community Structure Characteristics and Its Influencing Factors at Different Elevations on the Southern Slope of	f Daiyun Mountain
Effects of Simulated Warming and Increased Precipitation on Soil Extracellular Enzyme Activity and Enzymatic Stoichiometry of Abar	WANC Ying 7HONC 7a-bun HAN bun non at al. (2012
	wang ang, anong le-kun, jian jun-nan, et al. (2812
Contribution of Urbanization to Local Warming in Major Cities of China	LI Yu, ZHOU De-cheng, YAN Zhang-mei, et al. (2822