

ENVIRONMENTAL SCIENCE

ISSN 0250-3301 CODEN HCKHDV HUANJING KEXUE

北京城区PM2.5各组分污染特征及来源分析 安欣欣,曹阳,王琴,富佳明,王陈婧,景宽,刘保献

ENVIRONMENTAL SCIENCE

第43卷 第5期 2022年5月15日

目 次

, , , , , , , , , , , , , , , , , , ,	
北京城区 PM	251)
北京城区 PM _{2.5} 各组分污染特征及来源分析 ····································	2231)
基丁时至混合效应模型的京津異 PM _{2.5} 浓度受化模拟 泡丽行,杨晓辉,朱春杰,李梦诗,技继福,土上,李天星,李伟妙(2	2262)
2000~2018年京津冀城市群 PM _{2.5} 时空演变及其与城市扩张的关联····································	2274)
海-陆大气交汇作用下青岛冬季大气 PM、污染特征与来源解析 ····································	
	284)
硫酸盐非均相机制对颗粒物污染的影响:上海典型污染事件的 WRF-Chem 模拟	204)
" 你放益非均相仇刑对,积恒初行案的影响: 上海典型行案事件的 WKF-Chem 侯权	
	2294)
大原市冬季不同污染程度下 PM 的化学组成 消光特征及氧化港热	317)
$\Delta M_{\rm P}(r) \rightarrow r = 10^{1.5} {\rm Art}(Q) = 1$	220
Λ が用いて子人 Γ	.329)
省会城市不同功能区大气 PM2.5 化学组分季节变化及来源分析	
	2336)
承德市 PM、中多环芳烃的季节分布特征、来源解析及健康风险评价 ·······	
双埔文 县宴宴 李仪琳 剪索形 极油 崖建升 瓜亚亚 工帅 侯晓松 (2	2/3)
# Emp FM _{2.5} 中多叶方层的学 17 和存证、不称解析及健康风险计划 贺博文,聂赛赛,李仪琳,郭睿瑶,姚波,崔建升,冯亚平,王帅,侯晓松(2 珠三角大气中二 噻 英污染水平与区域迁移	373)
环二用人气中一噻央行采外于马区项汇修	
·····································	2355)
华北平原南部农村地区黑碳气溶胶浓度及来源 张为、北京、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、大水、	2363)
其干模式计程分析技术天津地区 PM 污染气象成因分析 ····································	2373)
其三排油量和十年后应活性的 VOC. 污渍面分级烧到	383)
至1 III从里相八(X座们注时 VOG 17末断月次注册	2005)
基丁复采网络的中国吴氧拓扑特值	2395)
基于前体物多情景排放的兰州市 2030 年夏李狊氧预测 陈天雷,吴敏,潘成珂,常莉敏,李泱,刘鹏,高宏,黄韬,马建民(2	2403)
基于源反演和气溶胶同化方法天津空气质量模式预报能力改进 蔡子颖, 唐邈, 肖致美, 杨旭, 朱玉强, 韩素芹, 徐虹, 邱晓滨 (2	2415)
其干穴气质量贮测粉据的钢铁行业污洗源识别方法 石黎聪 胡克南 法肠帐 段善春 胡五禽 卧面娜 已验验(2	127
至于工 (灰里血肉双角甲的水门亚门木体区)刀位 在水内 17年期,则不用,阳为州,仅有谷,则内参,及田州,口之之(五五六州、江京中北连港八加 至日八海校中州南美安市中海田广河中	1426)
里行架大气应对 绩效疗效、差异化官径 宿旭自伏头跋效米后评怕	(436)
黄河流域水污染风险分区	2448)
黄河流域甘肃段工业行业水污染物空间排放特征 李雪迎、杨曦、乔琦、刘丹丹、张玥、赵若楠、白璐(2	2459)
黄河沉积物重全属时空分布与污染评价	2467)
ADCS MID 处去 DMD 特别秘证图门本社验诉郑宏棣宏和畅入民业报	1176
APCS-MLD 与自 FMF 快至胜利厦门首怀得见邓矶吸机怃彻壶属不源	4/0)
河流低泥 DOM、宫养盐与重金属空间分异特征及啊应关系 ··································· 肖艳春,寸会彬,宋永会(2	2489)
太原市汾河河岸带土壤重金属分布特征、评价与来源解析 胡杰,赵心语,王婷婷,苟奎贤,王春玲(2	2500)
世泽湖溶解杰有机质与重全属汞的结合特性····································	2510 Ĵ
宣告美化亚马下西宫地方任本史大多公宫化劫流。 如此结	510)
虽自分化驰列下四环侧口十不生态示机偶化机型	2318)
基于 DGT 技术的贞河上游典型水库孔积物氮磷释放与污染源解析	
基于前体物多情景排放的兰州市 2030 年夏季臭氧预测 陈天雷,吴敏,潘成珂,常莉敏,李泱,刘鹏,高宏,黄韬,马建民(2基于源反演和气溶胶同化方法天津空气质量模式预报能力改进	2527)
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
	- ' /
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 *** *** *** *** *** *** *** *** *** *	2537) 2548) 2557) 2566) 2575) 2586) 2595)
暴雨前后河南北部河流水质分异特征及其污染源解析 李文刚,吴希思,简敏非,刘淑丽,刘海球,丁惠君(2	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析 张彦, 邻磊, 梁志杰, 窦明, 李平, 黄仲冬, 齐学斌 (2番阳湖流域水葫芦(Eichhornia crassipes) 对水体微塑料的吸附截留效应 李文刚, 吴希思, 简敏菲, 刘淑丽, 刘海球, 丁惠君 (2太湖塑料添加剂时空分布和生态风险评价	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673)
暴雨前后河南北部河流水质分异特征及其污染源解析	2537) 2548) 2557) 2566) 2575) 2586) 2575) 2606) 2614) 2624) 2633) 2640) 2650) 2662) 2673) 2685) 2779) 2771) 27751) 27751) 27779) 27788)

北京城区 PM2.5 各组分污染特征及来源分析

安欣欣1,曹阳1,王琴1,富佳明1,王陈婧1,景宽1,刘保献1,2*

(1. 北京市生态环境监测中心, 大气颗粒物监测技术北京市重点实验室, 北京 100048; 2. 清华大学环境学院, 北京 100084)

摘要: 为探索北京城区大气细颗粒物(PM,,)及其各组分的浓度特征,于2019年全年在车公庄地区开展了PM,,及水溶性离 子、碳质组分及金属元素的连续在线监测. 结果表明, 2019 年北京城区ρ(PM, ς) 平均值为 46.7 μg·m-3, 化学组分中ρ[有机 物(OM)]、ρ(NO₃⁻)、ρ(SO₄⁻)、ρ(NH₄⁺)、ρ(EC)、ρ(Cl⁻)、ρ(微量元素)和ρ(地壳物质)分别为9.1、11.1、5.7、5.4、1.4、 0.9、1.6 和 7.3 μg·m⁻³, SNA (SO₄²⁻、NO₃⁻ 和 NH₄⁺)合计占到了 PM_{2.5}的 47.4%, 而碳质组分较以往研究质量分数偏低, 体现 出北京城区 PM, 5具有较强的二次污染特征,其中 NO, 7/SO, 2 为 1.96, 与以往的研究结果相比放大明显. SNA 在 4 个季节中均 占有较高比例,其中 NO₃ 为春、夏和秋季最主要组分,在 PM,5中质量分数为 27.8%、23.2% 和 23.1%; 受一次排放影响,冬 季ρ[TCA(OM + EC)] 和ρ(Cl -) 较高, 为 14. 2 μg·m - 3 和 2. 1 μg·m - 3 ,分别是夏季的 2 倍和 11 倍. 从季节日变化特征上看,各 组分冬季日变化曲线均呈单峰分布特征,这与冬季燃烧源排放时间集中在夜间以及夜间边界层下降有关; 其他三季 OM 日变 化曲线特征较相似呈双峰型分布,NO;在春夏季(06:00~09:00)浓度突出,SO4-、EC 和 Cl-日变化幅度较小.随着污染等级 增加,SNA 质量分数呈逐渐增加趋势,在五级重度污染时段,SO₄-和 Cl-质量分数升高,NO₅-/SO₄-下降,体现出区域污染影 响. 通过研究潜在源区发现,河北中南部地区为主要的潜在源区,相对贡献最大;其中冬季 SO₄ 的高值区域主要集中在东部 和东南部,分布范围更广且距离北京市较近. 基于 PMF 的源解析结果表明, 2019 年北京城区 PM, 5的来源依次为二次硝酸盐、 二次硫酸盐 + 二次有机物、机动车源、扬尘源、工业源和燃煤 + 生物质源,贡献率分别为 39%、24%、17%、7%、7%和 5%; 二次源是北京市的最主要来源,总贡献率达63%.

关键词:北京城区; PM_{2.5}; 水溶性离子; 碳质组分; 污染特征; 来源分析

中图分类号: X513 文献标识码: A 文章编号: 0250-3301(2022)05-2251-11 DOI: 10.13227/j. hjkx. 202109142

Chemical Characteristics and Source Apportionment of PM, 5 in Urban Area of Beijing

AN Xin-xin¹, CAO Yang¹, WANG Qin¹, FU Jia-ming¹, WANG Chen-jing¹, JING Kuan¹, LIU Bao-xian^{1,2*}

(1. Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China; 2. School of Environment, Tsinghua University, Beijing 100084, China)

Abstract: To explore the concentration characteristics of fine particulate matter (PM2.5) and its components in a Beijing urban area, PM2.5 and water-soluble ions, carbonaceous components, and metal elements were continuously measured online in the Chegongzhuang area throughout 2019. The results showed that the average $\rho(PM_{2.5})$ in the Beijing urban area in 2019 was 46.7 µg·m⁻³, and the ρ organic matter (OM)], ρ (NO₃), ρ (SO₄²), ρ (NH₄⁺), ρ (EC), ρ (Cl⁻), ρ (trace elements), and ρ (crustal matter) were 9.1, 11.1, 5.7, 5.4, 1.4, 0.9, 1.6, and 7.3 μ g·m⁻³, respectively. The SNA including SO_4^{2-} , NO_3^{-} , and NH_4^{+} accounted for 47.4% of PM, 5, and the proportion of carbonaceous components was lower than that of the previous results, which showed significant secondary pollution characteristics of PM, 5 in Beijing. Additionally, the ratio of NO₃ /SO₄² was 1.96, which was obviously larger than that of the previous results. In terms of the characteristics of different seasons, SNA accounted for a large proportion in all seasons, and NO₃⁻ was the main component in spring, summer, and autumn, accounting for 27.8%, 23.2%, and 23.1% in PM_{2.5}, whereas the concentrations of TCA(OM+EC) and Cl in winter were 14.2 µg·m⁻³ and 2.1 µg·m⁻³, which were 2 and 11 times those in summer. The characteristics of seasonal diurnal variation indicated that all components showed a single-peak distribution of diurnal variation in winter, which was related to the emission of combustion sources and the decrease in the boundary layer at night. In the other three seasons, the diurnal variation in OM showed a double-peak distribution, and NO₃ was higher from 06:00-09:00 in spring and summer, whereas there were no obvious variations in SO₄², EC, and Cl⁻. With the increase in pollution levels, SNA fractions gradually increased. During the heavy pollution, the proportion of SO_4^{2-} and CI^{-} increased, whereas the ratio of NO_3^{-}/SO_4^{2-} decreased, reflecting the influence of regional pollution. Potential source region analyses suggested that the air mass from the south-central area of Hebei province contributed most to the high PM2 5 concentrations in the urban area of Beijing. Furthermore, the high WPSCF value of SO₄ in winter was mainly concentrated in the east and southeast, with a wider distribution and a closer distance to Beijing. The PMF model showed the sources of PM_{2.5} in Beijing in 2019 as; secondary nitrate, secondary sulfate + secondary organic matter, vehicle sources, dust sources, industrial sources, and coal combustion + biomass sources, with the contributions of 39%, 24%, 17%, 7%, 7%, 7%, and 5%, respectively. Secondary sources were the main source in Beijing, with a total contribution of 63%.

Key words; Beijing urban area; PM2 5; water-soluble ions; carbonaceous components; pollution characteristics; source analysis

近年来,随着我国大气污染治理力度的不断加 大,空气质量呈逐年改善趋势, 2013~2018年全国 细颗粒物(PM25)浓度平均下降42%,但2018年,我 国 338 个地级及以上城市中,仍有 217 个城市环境 空气质量超标,京津冀区域是我国 PM2.5浓度较高区

收稿日期: 2021-09-15;修订日期: 2021-10-16 基金项目: 北京市科技重点研发计划首都蓝天行动培育项目 (Z191100009119014, Z191100009119001)

安欣欣(1980~),男,高级工程师,主要研究方向为大气 环境监测与污染成因分析, E-mail:anxinxin2002@163.com

* 通信作者, E-mail: liubaoxian28@163.com

域;338个地级及以上城市发生重度污染1899天次,其中PM_{2.5}为首要污染物的天数占重度及以上污染天数的60%^[1~4].研究PM_{2.5}的组分变化特征和来源,对掌握城市整体污染水平进而科学制定防治措施、进一步改善空气质量状况具有现实意义.

国内外专家学者开展过大量关于 PM2.5组分和 来源的研究,张会涛等[5]的研究通过对武汉市 PM_{25} 化学组分进行分析,发现 $OC \setminus SO_4^{2-}$ 和 NH_4^+ 质 量分数排名前三,总计达到40%,主要受到工业及 机动车排放的影响,扬尘的影响也不容忽视;肖致 美等^[6]的研究通过 2017~2019 天津市 PM_{2.5}主要组 分进行分析,发现 NO; 和 NH; 质量分数逐年上升, OC 和 SO₄ - 质量分数逐年下降,结果显示机动车排 放贡献分担率上升,工业和燃煤源的贡献分担率略 降;周静博等[7]的研究通过对石家庄市重污染过程 PM2.5污染特征和来源进行分析,获得 PM2.5主要成分 为二次无机离子和有机物,主要来源为燃煤和工业工 艺源,随污染加重 SO²⁻ 质量分数和二次无机源贡献 均大幅增加. Zamora 等[8]的研究针对北京市冬季重 污染过程进行了综合观测,分析了气象条件、局地排 放和颗粒物二次生成过程对污染的影响,证实了核模 态下颗粒物的增长和形成过程,认为减少气态前体物 排放对抑制污染过程中颗粒物增长至关重要. Li 等[9] 的研究通过模型分析了京津冀地区城市群污染过程。 发现来自区域传输的老化二次离子是北京市颗粒物 浓度快速增长的关键因素,而碳质颗粒物主要来自本 地排放. Liu 等[10]的研究通过对天津在线组分数据进 行源解析,发现PMF和ME2模型结果较一致,二次源 和机动车源在夏季贡献较大.

北京市是我国的首都,也是国际交往中心,空气质量状况受到全世界的广泛关注,其 PM_{2.5}浓度虽然呈逐年下降趋势,但 2018 年 PM_{2.5}浓度仍然远超国家二级标准限值.为控制颗粒物的污染,众多专家学者进行过很多针对性的分析[11~17],但以上研究大多基于手工方法且间隔采集,缺少基于在线连续长时间监测的变化趋势研究,特别是在 2017 年和 2018年秋冬季攻坚行动后北京市污染源发生较大变化.本研究选取北京市城区基于 2019 年全年 PM_{2.5}及其各组分在线高时间分辨率监测结果,探讨不同季节 PM_{2.5}的化学组分浓度特征,并分析其来源和源区位置,以期为北京市大气的污染控制提供数据支撑和科学依据.

1 材料与方法

1.1 采样点位及时间

本研究采样点位于北京市海淀车公庄地区北京

市生态环境监测中心 6 楼楼顶,测点距离地面高度 25 m,地处北京市城区西部二环与三环之间,周围主要是居住区,北面 80 m 为车公庄西路,周围没有明显的工业污染源,满足监测规范的各项要求,基本代表了北京城市环境的污染状况.监测的时间为 2019年1月1日~12月31日,时间分辨率为1h.分别用3~5月代表春季、6~8月代表夏季、9~11月代表秋季、1~2月和12月代表冬季.监测点位见图1.

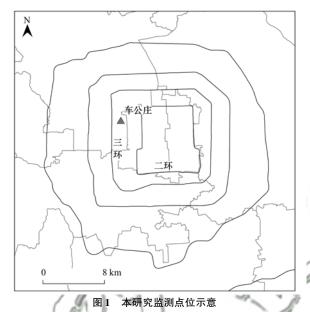


Fig. 1 Location of the research monitor station

1.2 分析方法及质量保证质量控制

在线 $PM_{2.5}$ 浓度监测仪为 Thermo Fisher 公司的 1405 + FDMS,原理是微量振荡天平(TEOM)法, FDMS 装置用于补偿 TEOM 方法导致挥发性成分损失而引起的监测结果的偏差,该仪器可以获得 $PM_{2.5}$ 的小时浓度,仪器检出限为 $1.0~\mu g \cdot m^{-3}$.

 $PM_{2.5}$ 中水溶性离子监测仪为 Thermo Fisher 公司的在线离子色谱仪(在线采样系统 URG-9000D、离子色谱仪 ICS-1100、2100),可以测定 $PM_{2.5}$ 中 SO_4^{2-} 、 NO_3^- 和 NH_4^+ 等多种水溶性离子,时间分辨率为 1 h,不同离子检出限范围在 0.001 ~ 0.01 μ g·m⁻³之间.

 $PM_{2.5}$ 中 OC 和 EC 浓度分析选用 Sunset 公司生产的 RT-4 型热光透射法 (NIOSH TOT) 在线监测仪,时间分辨率为 1h,其中 OC 检出限为 0.2 $\mu g \cdot m^{-3}$, EC 检出限为 0.1 $\mu g \cdot m^{-3}$.

 $PM_{2.5}$ 中金属元素分析使用 Xact 在线监测仪 (Xact 625; Cooper Environmental, USA),该仪器通过对滤带采集的颗粒物进行连续 XRF(X 射线荧光法)分析,得到时间分辨率为 1 h 的多金属元素浓度数据,不同元素检出限差异较大,范围在 $0.1 \sim 13.3$ ng·m⁻³之间.

 SO_2 分析仪器选用 Thermo Fisher 43i 分析仪,原理是紫外脉冲荧光法,仪器检出限为 $1.0~\mu g \cdot m^{-3}$; NO_x 分析仪器选用 Thermo Fisher 42i 分析仪,原理是化学发光法,仪器检出限为 $1.0~\mu g \cdot m^{-3}$.

本研究期间,按照《环境空气颗粒物(PM₁₀和PM_{2.5})连续自动监测系统运行和质控技术规范》(HJ 817-2018)的要求对 PM_{2.5}自动监测仪器进行系统地试漏以及温度、压力、湿度和流量的校准;对水溶性离子组分在线监测仪进行采样切割器的清理、流量的校准和混合标准液的校准;对 OCEC 在线监测仪进行采样切割器的清理、流量的校准和标准蔗糖溶液的校准;对重金属仪器进行采样器的清洗、流量校准和标准滤膜的校准;使用 Thermo Fisher 146i 动态气体校准仪和 111 零气发生器每天对 SO₂ 和 NO_x 气态分析仪器自动进行零点和跨度点的校准.

1.3 质量重构方法

为更好表征多种组分与 $PM_{2.5}$ 浓度的关系,对 $PM_{2.5}$ 进行组分重构: $PM_{2.5} = NO_3^- + SO_4^{2^-} + NH_4^+ +$ 有机物(OM) + EC + Cl^- + 地壳物质 + 微量元素 + 其他,其中 OM 用 OC 的 1.4 倍估算; 地壳物质 = Al × 2.2 + Si × 2.49 + Ca × 1.63 + Fe × 2.42 + Ti × 1.94 + Mg^{2^+} × 1.93; "微量元素"为: K、 F^- 、Ba、Cd、Sn、V、Cr、Mn、Co、Ni、Cu、Zn、As、Se 、Pb、P、 Na^+ 和 Hg 浓度之和; "其他"为 $PM_{2.5}$ 浓度与所有重构组分浓度之差.

1.4 PM, 5传输路径及潜在源区分析方法

后向轨迹模式 HYSPLIT 是一种用于模拟分析气流运动、沉降和扩散的模式,在大气污染物的扩散和传输分析中已得到了广泛运用^[18-20]. 本研究在模型中输入 GDAS 全球同化气象数据(ftp://arlftp. arlhq. noaa. gov/pub/archives/gdas1/),以车公庄站为起始点,以距离地面 500 m 为起始高度,以每天的00:00、01:00、02:00、03:00、…、21:00、22:00 和23:00 为时间计算起点,对 2019 年全年气团的 24 h后向轨迹进行模拟,并根据气团轨迹的方向和长度,依据欧拉法将春、夏、秋和冬这 4 个季节的气团轨迹进行聚类,聚类分析组间差异临界值设置为30%.

潜在源区贡献因子分析(potential source contribution function analysis, PSCF)是基于条件概率函数发展而来的方法,通过结合气团轨迹和对应的污染物浓度,来定性分析可能的源区位置.对研究区域划分为 $0.5^{\circ} \times 0.5^{\circ}$ 的网格,PSCF 定义为传输至监测点位的气团在途经网格ij时,对应的污染物浓度超过阈值的条件概率[21],计算公式如下:

$$PSCF_{ii} = m_{ii}/n_{ii} \tag{1}$$

式中, n_{ij} 为网格内全部经过的轨迹节点数量, m_{ij} 为污染物浓度高于设定阈值(本研究中设为观测期间污染物浓度的 75% 分位数)的轨迹节点的数量.

为了降低条件概率的不确定性,本研究引入了权重因子 W_{ii} ,计算公式如下:

$$WPSCF_{ij} = W_{ij} \times PSCF_{ij}$$
(2)
$$W_{ij} = \begin{cases} 1.00, & 4a \leq n_{ij}, \\ 0.70, & a \leq n_{ij} < 4a, \\ 0.42, & a/2 \leq n_{ij} < a, \\ 0.05, & n_{ii} < a/2. \end{cases}$$
(3)

式中, a 为研究区域中每一个网格内经过的轨迹节点的平均数量,即为轨迹节点总数与网格总数之商. 本研究中春、夏、秋、冬这 4 个季节 a 分别取 18、32、24、20,后向轨迹聚类和潜在源区分析均通过 Meteoinfo(V3. 0. 1)进行 [22].

1.5 PMF来源解析方法

正定矩阵因子分析(PMF)模型是基于受体点的大量观测数据来估算污染源的组成和对环境浓度的贡献,假设X为 $n \times m$ 矩阵,n为样品数,m为污染物组分,那么X可分解为X = GF + E,其中G为 $n \times p$ 矩阵,F为 $p \times m$ 矩阵,p为主要污染源的数目,E为残数矩阵,定义为:

$$\boldsymbol{x}_{ij} = \sum_{k=1}^{p} \boldsymbol{g}_{ik} \boldsymbol{f}_{kj} + \boldsymbol{e}_{ij}$$
 (4)

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{\boldsymbol{x}_{ij} - \sum_{k=1}^{p} \boldsymbol{g}_{ij} \boldsymbol{f}_{kj}}{\boldsymbol{u}_{ij}} \right]^{2}$$
 (5)

式中, x_{ij} 表示 i 样品中 j 组分的浓度; g_{ik} 是第 k 个源对第 i 个样品的相对贡献; f_{kj} 是第 k 个排放源中 j 组分的含量; e_{ij} 是残差. PMF 算法以 G(污染源载荷)和 F(源廓线)中元素非负为约束条件,通过加权最小二乘法使 Q 达到最小为最优,进而求解 G 和 F.

基于 1 h 分辨率的 $PM_{2.5}$ 化学组分数据,具有更大的样本量,且更能有效地反映出源的日变化信息,能有效地支撑 PMF 受体源解析 [23]. 随着 $PM_{2.5}$ 化学组成在线监测技术的日趋成熟,逐渐有学者开展在线多组分数据与 PMF 模型的联用,获得时间信息更全面的 $PM_{2.5}$ 来源解析结果 [24-26]. 本研究基于 2019年全年 1 h 分辨率的 $PM_{2.5}$ 及化学组分数据,利用美国 EPA 的推荐的 EPA PMF5.0 软件开展 $PM_{2.5}$ 的来源解析. 根据数据质量及组分特性,对参与模拟的样本及化学组分进行筛选,共7820个环境样本纳入分析,参与模型计算的组分包括 $PM_{2.5}$ 的是, $PM_{3.5}$ 的, $PM_{4.5}$ 的,

及气态污染物 NO_x ,测量不确定度使用基于公式的方法计算得到. 在 PMF 模型计算中,尝试 $3 \sim 10$ 个因子,进行多次优化计算,最终确定 6 个因子能合理解释其污染源类别,且此时解析结果稳定、大部分残差值分布在 $-3 \sim 3$ 间,进一步在 $-5 \sim 5$ 间调整 F_{peak} 值,寻找因子旋转的空间,发现 F_{peak} 值的变化对解析结果并无明显影响,故选择 F_{peak} = 0 时 PMF 的解析结果进行分析.

2 结果与讨论

2.1 PM2.5及各组分浓度状况

2019年,北京城区 ρ (PM_{2.5})为46.7 μg·m⁻³, 较全市平均浓度略高, $PM_{2.5}$ 中 ρ [有机物(OM)]、 $\rho(NO_3^-), \rho(SO_4^{2-}), \rho(NH_4^+), \rho(EC), \rho(Cl^-),$ ρ (微量元素)和 ρ (地壳物质)分别为9.1、11.1、 5.7、5.4、1.4、0.9、1.6 和 7.3 μg·m⁻³, 分别占 PM_{2.5}的 19.5%、23.7%、12.1%、11.5%、3.1%、 1.9%、3.5%和15.7%,NO₃为PM₂₅的首要组分, 见图 2. PM_{2.5}中 SNA(SO₄²⁻ + NO₃⁻ + NH₄⁺)的 3 种主 要水溶性离子大小为: $NO_3^- > SO_4^{2-} > NH_4^+$,共占总 量的47.4%,与丁萌萌等[27]于2015年在北京观测 结果相比,结果进一步上升,且高于我国华北、东部 和南部等重点城市的结果[28~31],说明近年来北京 PM, ,具有较强的二次污染特征. PM, ,中 ρ [TCA (OM + EC)]为 10.5 μg·m⁻³,远低于李立伟等^[32] 于 2015~2016 年在北京、天津、石家庄、保定和沧 州的监测结果以及张俊峰等[33]于 2016~2017 年在 北京和石家庄的结果,说明经过全面实施燃煤、工 业、机动车和散乱污等综合治理,北京市燃烧源排 放降低明显.

PM_{2.5}中的 NO₃⁻ 作为移动源排放的指标,SO₄²⁻ 作为固定源排放的指标,常用 NO₃⁻/SO₄²⁻ 来判断城市是以何种源污染为主,数值大于 1,移动源影响大,反之,固定源影响大. 2019 年,北京城区 NO₃⁻/SO₄²⁻ 为 1.96,与刘保献等^[34]在 2012 年北京城区的研究结果(1.08)相比,放大明显,由此可见,随着近几年的机动车保有量的不断增加以及固定源的有效治理,NO₃⁻ 的气态前体物将是北京地区急需加大控制力度的方向. 使用 PM_{2.5}中 OC/EC 来识别碳的排放和转化,用于表征二次污染的程度. 有研究学者认为,当 OC/EC 超过 2.0 的时候,表明有 SOC 的存在^[35]. 2019 年,北京城区 OC/EC 为 4.6,这说明北京大气中存在较为明显的 SOC 污染. 使用硫氧化率(SOR)和氮氧化率(NOR)来反映 SO₄²⁻ 和 NO₃⁻ 的形成转化过程. 有研究表明,当 SOR > 0.1,说明大气

中有光化学氧化反应发生; 当 SOR < 0.1,表示大气中以一次污染物为主^[36], SOR 和 NOR 的值越高,表示 SO₂ 和 NO_x 转化成二次气溶胶就越多. 2019年,北京城区 SOR 和 NOR 分别为 0.48 和 0.14,均大于 0.1,说明二次反应明显.



Fig. 2 Reconstruction results of $PM_{2.5}$ components in an urban area of Beijing

2.2 PM, 5及各组分浓度变化特征

2.2.1 PM, 5及各组分浓度季节变化特征

2019年,北京城区 4 个季节 PM2.5 及其中组分 浓度见表 1, PM25呈现冬春高、秋夏低的季节分布 特征,其中冬季>春季>秋季>夏季.从PM25组成 来看,4个季节二次离子(SNA)均占有较高比例, 夏季(51.6%)最高,春季(50.6%)次之,冬季 (44.3%)和秋季(43.9%)基本相当,体现了全年尤 其是夏季二次盐类对 PM25的重要贡献. 不同季节 NO; 浓度从高到低分别为:春季>冬季>秋季>夏 季,夏季 NO; 浓度低值与较好的扩散条件及 NH₄NO₃ 的高温分解有一定关系^[37]; NO₃ 在 PM_{2.5} 中的质量分数从高到低为:春季(27.8%)>夏季 (23.2%) > 秋季(23.1%) > 冬季(20.8%), NO₃ 为春、夏、秋季最主要组分,说明以其前体物 NO. 排放为主要产物的机动车和工业源是影响北京大气 污染的最重要因素. 而 SO₄ - 冬季最高, 夏季和春季 次之,秋季最低,由于冬季处于供暖期,区域前体物 SO_2 的显著增加是 SO_4^{2-} 浓度增加的主要原因. TCA 和 Cl - 绝大部分来自煤或生物质燃烧的一次排 放[38],平均浓度均表现为冬季最高,春、秋季相当, 夏季最低,体现出冬季一次排放强度明显偏高.冬季 TCA 是夏季的 2 倍左右, Cl 作为燃煤指示组分, 浓 度在冬季约是夏季11倍,区域燃煤取暖是造成冬季 浓度显著升高的原因. 地壳物质主要来自土壤和扬 沙,沙尘高发的春季浓度最高,夏季在湿沉降等因素 作用下浓度最低.

NO3/SO4 秋季最高、夏季最低,可能是由于秋

季气温和大气条件适合 NO_3^- 形成 $^{[39]}$,而夏季高温引起了 NO_3^- 分解以及 SO_4^{2-} 相对稳定而使比值降低. OC/EC 在 4 个季节差异不大,夏季最高,为 5.9,与夏季高温下较多二次有机颗粒生成有关 $^{[40]}$. 从 NOR 来

Table

看,NOR 春季和夏季较高,秋季和冬季较低,这可能是由于春夏温度较高,二次反应强,转化效率相对较高;而 SOR 夏季较高,这与夏季高温高湿 SO₂ 的氧化反应增强,且不易受热分解及挥发有关.

	表 1	不同季节 PM _{2.5} 约	且分浓度和相关参数	5 1)		
1	Concentration of I	M components a	nd related narometer	during	different	000

Table 1 Concentration of 1 M _{2.5} components and related parameters during different seasons											
季节	OM	NO_3^-	SO ₄ -	$\mathrm{NH_4}^+$	EC	Cl -	微量元素	地壳物质	$\mathrm{PM}_{2.5}$	SOR	NOR
春季	8.6	14. 3	5. 7	6. 0	1.4	0.8	1. 9	9. 9	51.4	0.41	0. 17
夏季	7.4	8.7	6.0	4. 6	1.0	0. 2	1. 1	5. 4	37. 6	0.66	0.16
秋季	8. 2	10. 2	4. 5	4. 7	1.4	0.6	1.5	7. 6	44. 3	0.51	0.12
冬季	12. 2	11. 2	6. 4	6. 2	1.9	2. 1	2.0	6. 5	53.7	0.33	0.11
平均值	9. 1	11. 1	5. 7	5. 4	1.4	0.9	1.6	7.3	46. 7	0.48	0. 14

1) PM_{2.5}及其组分单位为μg·m⁻³,SOR 和 NOR 无量纲

2.2.2 PM, 5及各组分浓度季节日变化特征

对于各组分的日变化研究有利于更好地识别其浓度变化与源排放及物理化学过程的关系,结果如图 3 所示. 总体来看, PM_{2.5}冬季夜间浓度较高, 春季上午浓度较高, 夏季和秋季日变化幅度较小. 在冬季,各组分日变化曲线均呈单峰分布特征, 峰值出现在凌晨前后,谷值出现在午后,这可能与冬季燃烧源一次排放时间集中在夜间, 以及夜间边界层下降有关. 从 NO₅ 日变化曲线看, 春、夏季(06:00~

09:00)浓度出现峰值随后下降,这与多地春夏季节研究结果相似,可能与清晨边界层活动导致的颗粒物积累及低温环境下的 NH_4NO_3 气-粒转化相关[41],秋季 NO_3 变化较为平缓,峰值出现在中午12:00 前后,可能与二次生成相关. SO_4^2 日变化幅度较小,特别是在春季,夏、秋两季 SO_4^2 高值多发生在午后,这与午后高温以及大气氧化性增强促进 SO_4^2 生成有关. 除冬季外, OM 日变化曲线特征较相似,呈双峰型分布,峰值时间分别在 12:00 和

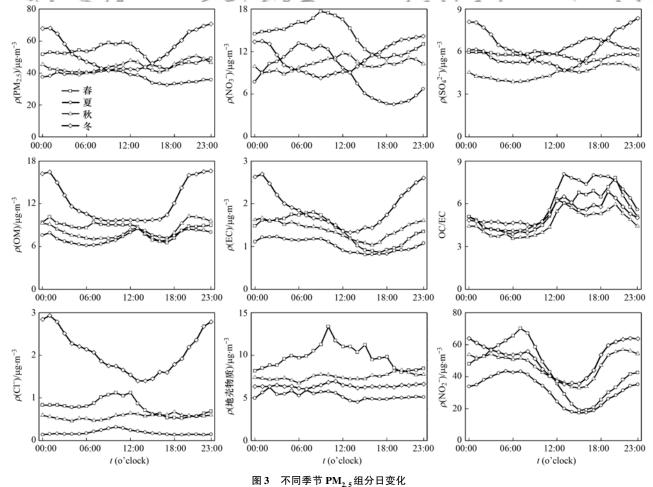


Fig. 3 Diurnal variations in PM_{2.5} components during different seasons

19:00前后, 且与 OC/EC 高值时间基本一致, 二次 OM 生成以及相关源排放可能是重要影响因素,相 关研究者也发现了类似日变化特征,午间峰值主要 来自餐饮排放和二次生成[42],晚间峰值是机动车、 餐饮排放和二次生成综合作用的结果^[43]. EC 日变 化曲线显示冬季浓度凌晨峰值突出,其他季节在早 高峰时段浓度较高,这可能是由于燃煤和机动车在 不同季节对 EC 的贡献差异造成的[44]. 除冬季以 外,Cl⁻浓度全天波动较小,且保持低值;而冬季具 有明显夜间高值,其峰值浓度是谷值浓度的2倍左 右. 地壳物质春季 10:00 出现尖锐峰值可能与瞬时 沙尘过程相关,其他季节日变化曲线平缓. NO, 浓度 变化与机动车活动时间较吻合,早高峰和凌晨时段 出现浓度峰值. 综上,冬季夜间燃煤排放、早高峰时 段的污染物积累以及正午前后的前体物二次转化是 颗粒物各组分浓度升高的主要原因.

2.3 不同空气质量级别下 PM_{2.5}各主要组分变化 特征

根据《环境空气质量标准》(GB 3095-2012)和《环境空气质量指数(AQI)技术规定》(HJ 633-2012)的规定,以 $PM_{2.5}$ 日均值对采样日期进行污染级别划分. 2019年,北京城区 $PM_{2.5}$ 一级天数为 137d,占比 37. 7%;二级天数为 169d,占比 46. 6%;三级天数为 39d,占比 10. 7%;四级天数为 12d,占比 3. 3%;五级天数为 6d,占比 1. 7%;未出现六级天气.

分别对不同浓度级别下 PM_{2.5}组分质量分数进行分析,结果见图 4. 一级天气时,OM 和地壳物质的质量分数较高,分别为 25. 8% 和 27. 8%,SNA 质量分数为 33. 8%,一次污染特征较为突出. 随着污染加重,二次污染特征逐渐加强,二级和三级天气时SNA 质量分数为 47. 2% 和 53. 7%,而 OM、地壳物质和微量元素等质量分数降低. 当达到四级和五级污染级别时,SNA 仍处于较高质量分数; 五级天气时 SO₄²⁻ 和 Cl⁻质量分数达到最高,分别为 13. 9% 和 2. 7%,由此反映出在重污染时期,北京城区在二次污染凸显的同时,燃煤源贡献也明显上升. 在北京市大部分区域"煤改气"和"煤改电"等措施下,重污染期间燃煤源相关贡献的提升,体现出区域污染传输的影响,更加凸显了京津冀联防联控的必要性.

2.4 后向轨迹和潜在源分析

2.4.1 后向轨迹聚类分析

2019年,北京市城区4个季节气团后向轨迹聚 类结果如图5所示,整体来看,北京市4个季节气团 来向变化明显,春季、冬季偏北气团相对较多,传输 距离较长;而夏季、秋季分别以东部、南部气流为

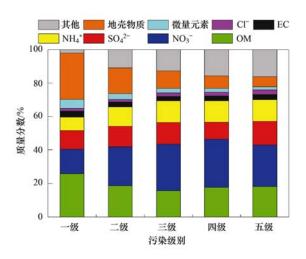


图 4 不同污染级别下 PM2.5组分重构

Fig. 4 Reconstruction results of $PM_{2.5}$ components at different pollution levels

主,轨迹较短.从季节上看,春季西北气流较为突出,所占比例约为46.7%,西北部的气团较为清洁,对北京市空气质量的改善有一定作用,但气团较为干燥,也容易带来沙尘颗粒;南部和东部气流约占26.6%和26.7%,途经邯郸、保定、天津和唐山等地,这些地区工业分布较为密集,燃煤消耗量较大[45],易带来污染气团.夏季受温带季风性气候影响,以东部和南部气流为主,占比达到68.6%,来自东部的气团途经渤海和天津等地,含水丰富,使得夏季湿沉降作用明显,对污染物的去除有一定贡献.秋季则以南部气流贡献最为突出,约占42.8%,途经南部高污染区,其携带的污染物易在北京市累积,形成重污染天气,为主要的传输通道.冬季偏北气流约占55.1%,扩散条件相对有利,这一定程度上降低了冬季重污染天气发生的频率.

2.4.2 潜在源区分析

为了解 2019 年北京市 PM_{2.5}的潜在源区分布及相对贡献,本研究利用 PSCF 模式进行了估算,结果如图 6 所示. 从区域上看, WPSCF 的高值区域主要分布在河北的中部、南部和东部,河南北部,山东北部及天津市等地,其中河北中部和南部地区 4 个季节 WPSCF 值均较高,相对贡献最大. 从不同季节上看,春、秋和冬季 WPSCF 高值分布区域相似,以河北中部和南部等地区为主要潜在源区. 其中春季 PM_{2.5}潜在源区分布广,秋季和冬季较为集中,而冬季虽以西北方向气团为主,但南部和东南部来向的气流途经工业较为密集、燃煤消耗量大的区域,对北京市冬季 PM_{2.5}浓度的贡献较为显著. 夏季受东南部气流影响,以东南方向上的天津和山东北部等地为 PM_{2.5}主要的潜在源区.

从SNA的潜在源区贡献因子分布来看,NO3

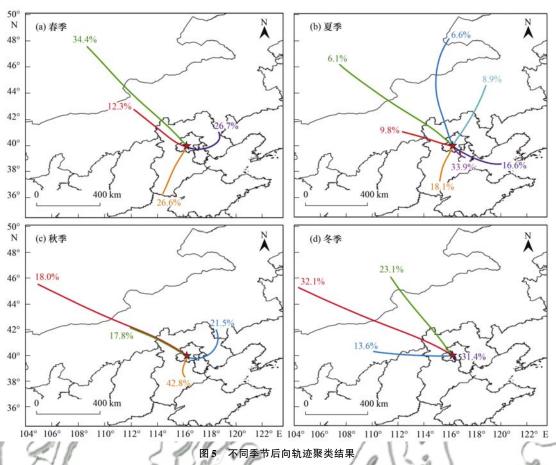


Fig. 5 Back trajectory clusters in different seasons

和 NH_4^+ 的 WPSCF 高值区域分布与 $PM_{2.5}$ 基本一致,而 SO_4^{2-} 则略有不同. 春季 SO_4^{2-} 最主要的潜在源区分布在山东与河北交界一带,与 NO_3^- 和 NH_4^+ 的潜在源区地理位置相比更偏东;夏季和秋季 SO_4^{2-} 高值区域相对距离较远且高值浓度偏低;而冬季 SO_4^{2-} 的 WPSCF 高值区域主要集中在东部和东南部,分布范围更广且距离北京市较近. 因此,如果冬季出现偏东偏南风,区域的燃煤源高排放区域极易在较短时间内向北京市汇集.

2.5 PM25来源解析

基于 PMF 分析确定 6 类主要因子,依据成分谱和贡献率识别各类污染源,如图 7 所示. 因子 1 对二次无机离子 NO_3^- 和 NH_4^+ 有显著贡献,为二次硝酸盐. 因子 2 以二次无机离子 SO_4^{2-} 、 NH_4^+ 和 OC 为主,为二次硫酸盐 + 二次有机物. 因子 3 对 Cl⁻和 NO_x 贡献突出,同时对 K、Hg 和 Pb 等一些无机元素也有一定贡献,通常 Cl⁻一般认为是燃煤的特征组分^[46],且燃煤也是 Hg 和 Pb 的主要来源^[47],此外生物质燃烧也以 K 和 Cl 为典型排放特征^[48],可确认该因子为燃煤源和生物质燃烧源. 因子 4 主要包括 OC、EC 和 Cu、Fe、Ba、Mn 等无机元素,且为 NO_x 最大贡献源,Cu 为机动车润滑油的主要添加

剂,而 Ba 和 Mn 也广泛地用于刹车片和轮胎中^[49],且该源具有明显的不完全燃烧特征,可认为因子 4 为机动车源. 因子 5 为工业源,其贡献率较大的组分为 Zn、Mn、Hg、Pb、Fe 和 Cu 等金属元素,同时对硫酸盐和 NO_x 也有一定贡献,主要来自于与金属加工相关的工业源排放. 因子 6 为扬尘源,特征元素为 Ca^{2+} 、 Mg^{2+} 、Si 和 Fe 等地壳组分及金属元素.

2019年,北京城区 PM,5的来源组成如图 8 所 示. 从全年上看,PM2.5的来源以二次源为主,总贡献 达到63%;一次源中以机动车源为最主要来源.各 类源占比从大到小依次为:二次硝酸盐、二次硫酸 盐+二次有机物、机动车源、扬尘源、工业源和燃 煤+生物质源,贡献率分别为39%、25%、17%、 7%、7%和5%.二次来源是机动车、工业、燃煤等 一次源排放的污染物通过化学反应生成的,其占比 较高.一次来源中,机动车源是最主要来源,而燃煤 +生物质燃烧源贡献最低,工业源贡献也处于较低 水平,反映出近年来北京市燃煤清洁能源改造和 "散乱污"企业整治等措施起到明显效果[50],而机动 车源的贡献逐渐凸显. 此外,由于监测原理限制,扬 尘典型示踪组分 Si 和 Al 测量准确度偏低,且 Al 未 纳入模型计算,扬尘源存在低估可能.从季节上看, PM25的来源季节变化也较为显著. 4 个季节中,二

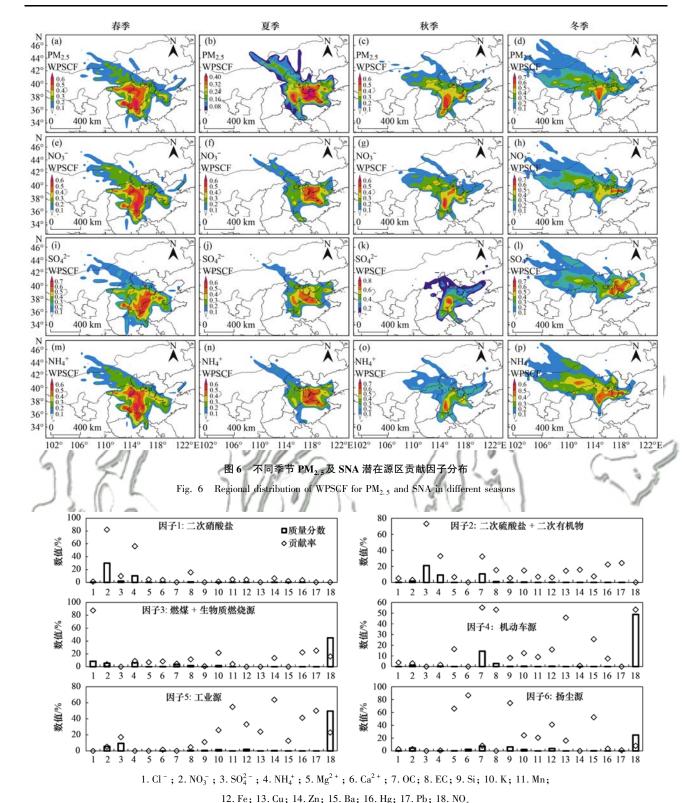


图 7 PMF 解析的因子谱及因子贡献 Fig. 7 Profiles and contributions of the factors resolved by PMF model

次硝酸盐均为首要来源,其中春秋季二次硝酸盐贡献高达45%和40%,高于冬夏季的33%和38%.而夏季处于高温、光化学反应活跃期,二次硫酸盐+二次有机物源的相对贡献最高,达到36%,绝对贡献与冬季相当.机动车源在秋冬季贡献率略高于春夏,机动车源排放强度相对稳定,但其属于低层污染

源,秋冬季逆温等不利气象条件出现相对频繁,易造成局地机动车排放的 PM₂,积累.春季为风沙季,扬尘源贡献率为 11%,达到全年最高,此外 2019 年秋季也发生多次沙尘过程,导致秋季扬尘源贡献也达到 9%.冬季采暖期燃煤+生物质燃烧源贡献量明显高于非采暖期,贡献率为 11%,但绝对贡献量和

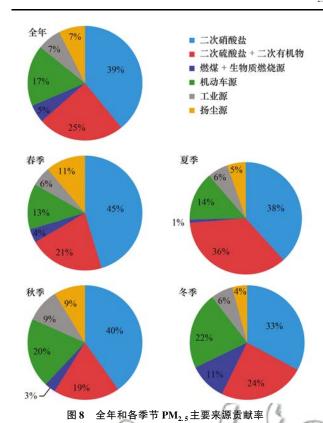


Fig. 8 Annual and seasonal average source contributions to PM₂

相对贡献率已显著低于以往研究水平.

3 结论

(1) 2019 年, 北京城区 ρ (PM_{2.5}) 为 46.7 μg·m⁻³, ρ (OM)、 ρ (NO₃⁻)、 ρ (SO₄²⁻)、 ρ (NH₄⁺)、 ρ (EC)、 ρ (Cl⁻)、 ρ (微量元素) 和 ρ (地壳物质) 分别为 9.1、11.1、5.7、5.4、1.4、0.9、1.6 和 7.3 μg·m⁻³. PM_{2.5}中 SNA 年均质量分数为 47.4%, 具有较强的二次污染特征; TCA 浓度远低于此前的研究结果,体现出一次燃烧源排放降低明显.

- (2)北京城区 PM_{2.5}浓度呈现冬春高、秋夏低的季节分布特征,全年 SNA 对 PM_{2.5}均有重要贡献. NO₃⁻ 为春、夏、秋季最主要组分,TCA 在冬季浓度最高. 从各组分日变化上看,在冬季各组分日变化曲线均呈单峰分布特征,峰值出现在凌晨前后,谷值出现在午后;其他三季 OM 日变化曲线特征较相似呈双峰型分布,NO₃⁻ 在春夏季(06:00~09:00)浓度突出,SO₄² 、EC 和 Cl⁻ 日变化幅度较小. 一级天气时PM_{2.5}的一次污染特征较突出. 随着污染等级增加,二次污染特征逐渐加强, SNA 质量分数为 50% 以上. 五级重度污染时,SO₄² 和 Cl⁻ 质量分数升高,北京城区在二次污染凸显的同时,区域燃煤源贡献也明显上升.
- (3)后向轨迹聚类分析结果显示,春季和冬季 偏北气团相对较多,而夏季和秋季分别以东部和南

部气团输送为主. 通过潜在源区分析发现,河北中南部地区为主要的潜在源区,相对贡献最大; 其中冬季 SO_4^- 的高值区域主要集中在东部和东南部,分布范围更广且距离北京市较近.

(4)基于 PMF 的源解析结果表明, 2019 年北京 城区 PM_{2.5}的来源中二次源是最主要来源,总贡献达 63%. 4 个季节中,二次硝酸盐均为首要污染来源,此外,春季扬尘源贡献率达到 11%,夏季二次硫酸 盐和二次有机物贡献率达全年最高为 36%,冬季采暖期燃煤和生物质燃烧源贡献量明显高于非采暖期,贡献率为 11%.

参考文献:

- [1] 王金南, 雷宇, 宁森. 改善空气质量的中国模式: "大气十条"实施与评价[J]. 环境保护, 2018, 46(2): 7-11. Wang J N, Lei Y, Ning M. Chinese model for improving air quality: An assessment of action plan of air pollution prevention and control[J]. Environmental Protection, 2018, 46(2): 7-11.
- [2] 王文兴, 柴发合, 任阵海, 等. 新中国成立 70 年来我国大气 污染防治历程、成就与经验[J]. 环境科学研究, 2019, 32 (10): 1621-1635. Wang W X, Chai F H, Ren Z H, et al. Process, achievements

Wang W X, Chai F H, Ren Z H, et al. Process, achievements and experience of air pollution control in China since the founding of the People's Republic of China 70 years ago [J]. Research of Environmental Sciences, 2019, 32(10): 1621-1635.

- [3] 刀谞, 吉东生, 张显, 等. 京津冀及周边地区采暖季 PM_{2.5}化 学组分变化特征[J]. 环境科学研究, 2021, **34**(1): 1-10. Dao X, Ji D S, Zhang X, *et al.* Characteristics of chemical composition of PM_{2.5} in Beijing-Tianjin-Hebei and its surrounding areas during the heating period [J]. Research of Environmental Sciences, 2021, **34**(1): 1-10.
- [4] 生态环境部. 生态环境部发布《中国空气质量改善报告(2013-2018年)》[EB/OL]. (2019-06-06). http://www.gov.cn/xinwen/2019-06/06/content_5397950.htm.
- [5] 张会涛,田瑛泽,刘保双,等. 武汉市 PM_{2.5} 化学组分时空分布及聚类分析[J]. 环境科学, 2019, **40**(11): 4764-4773. Zhang H T, Tian Y Z, Liu B S, *et al.* Spatial temporal characteristics and cluster analysis of chemical components for ambient PM_{2.5} in Wuhan[J]. Environmental Science, 2019, **40**(11): 4764-4773.
- [6] 肖致美,徐虹,李立伟,等. 基于在线观测的天津市 PM_{2.5}污染特征及来源解析[J]. 环境科学,2020,41(10):4355-
 - Xiao Z M, Xu H, Li L W, *et al*. Characterization and source apportionment of PM_{2.5} based on the online observation in Tianjin [J]. Environmental Science, 2020, **41**(10): 4355-4363.
- [7] 周静博, 段菁春, 王建国, 等. 2019 年元旦前后石家庄市重 污染过程 PM_{2.5}污染特征及来源解析[J]. 环境科学, 2020, **41**(1): 39-49.
 - Zhou J B, Duan J C, Wang J G, et al. Analysis of pollution characteristics and sources of PM_{2.5} during heavy pollution in Shijiazhuang city around New Year's Day 2019 [J]. Environmental Science, 2020, **41**(1): 39-49.
- [8] Zamora M L, Peng J F, Hu M, et al. Wintertime aerosol properties in Beijing [J]. Atmospheric Chemistry and Physics, 2019, 19(22): 14329-14338.
- [9] Li J, Du H Y, Wang Z F, et al. Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North

- China Plain [J]. Environmental Pollution, 2017, 223: 605-615.
- [10] Liu B S, Yang J M, Yuan J, et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China [J]. Atmospheric Research, 2017, 185: 22-31.
- [11] 李欢, 唐贵谦, 张军科, 等. 2017-2018 年北京大气 $PM_{2.5}$ 中 水溶性无机离子特征[J]. 环境科学, 2020, 41(10): 4364-4373.
 - Li H, Tang G Q, Zhang J K, et al. Characteristics of water-soluble inorganic ions in PM_{2.5} in Beijing during 2017-2018 [J]. Environmental Science, 2020, 41(10): 4364-4373.
- [12] 安欣欣, 张大伟, 冯鹏, 等. 北京城区夏季 PM_{2.5} 中碳组分和 二次水溶性无机离子浓度特征 [J]. 环境化学, 2016, **35** (4): 713-720.
 - An X X, Zhang D W, Feng P, et al. Characteristics of carbon components and secondary water-soluble inorganic ions in $PM_{2.5}$ in summer in urban Beijing [J]. Environmental Chemistry, 2016, 35(4): 713-720.
- [13] 尹晓梅, 乔林, 朱晓婉, 等. 北京地区偏南风和偏东风条件下污染特征差异[J]. 环境科学, 2020, **41**(11): 4844-4854. Yin X M, Qiao L, Zhu X W, et al. Differences in pollution characteristics under the southerly and easterly wind in Beijing [J]. Environmental Science, 2020, **41**(11): 4844-4854.
- [14] 徐冉,张恒德,杨孝文,等. 北京地区秋冬季大气污染特征及成因分析[J]. 环境科学, 2019, 40(8): 3405-3414.

 Xu R, Zhang H D, Yang X W, et al. Concentration characteristics of PM_{2.5} and the causes of heavy air pollution events in Beijing during autumn and winter[J]. Environmental Science, 2019, 40(8): 3405-3414.
- [15] 徐楠, 王甜甜, 李晓, 等. 北京冬季 PM_{2.5}中有机气溶胶的化 学特征和来源解析 [J]. 环境科学, 2021, **42**(5): 2101-2109.
 - Xu N, Wang T T, Li X, *et al.* Chemical characteristics and source apportionment of organic aerosols in atmospheric PM_{2.5} in Winter in Beijing [J]. Environmental Science, 2021, **42**(5): 2101-2109.
- [16] 王琴, 张大伟, 刘保献, 等. 基于 PMF 模型的北京市 PM_{2.5} 来源的时空分布特征[J]. 中国环境科学, 2015, **35**(10): 2917-2924.
 - Wang Q, Zhang D W, Liu B X, et al. Spatial and temporal variations of ambient PM_{2.5} source contributions using positive matrix factorization [J]. China Environmental Science, 2015, **35** (10): 2917-2924.
- [17] 曹云擎,王体健,韩军彩,等. "2+26"城市一次污染过程 $PM_{2.5}$ 化学组分和来源解析研究[J]. 环境科学学报, 2020, **40**(2): 361-372.
 - Cao Y Q, Wang T J, Han J C, *et al.* Study on chemical composition and source apportionment of $PM_{2.5}$ during a pollution episode in "2 + 26" cities [J]. Acta Scientiae Circumstantiae, 2020, **40**(2): 361-372.
- [18] Stein A F, Draxler R R, Rolph G D, et al. NOAA's HYSPLIT atmospheric transport and dispersion modeling system [J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059-2077.
- [19] 杜朋,李德平,刘建国,等. APEC 前后北京郊区大气颗粒物 变化特征及其潜在源区分析[J]. 环境科学学报,2018,38 (10):3846-3855.
 - Du P, Li D P, Liu J G, et al. Pollution characteristics and potential source region analysis of atmospheric particulate matter during 2014 APEC in Beijing Surburban [J]. Acta Scientiae

- Circumstantiae, 2018, 38(10): 3846-3855.
- [20] 王郭臣, 王东启, 陈振楼. 北京冬季严重污染过程的 PM_{2.5} 污染特征和输送路径及潜在源区[J]. 中国环境科学, 2016, **36**(7): 1931-1937.

 Wang G. C. Wang D. O. Chen Z. L. Characteristics, and
 - Wang G C, Wang D Q, Chen Z L. Characteristics and transportation pathways and potential sources of a severe PM_{2.5} episodes during winter in Beijing [J]. China Environmental Science, 2016, **36**(7); 1931-1937.
- [21] Polissar A V, Hopke P K, Paatero P, et al. The aerosol at Barrow, Alaska: long-term trends and source locations [J]. Atmospheric Environment, 1999, 33(16): 2441-2458.
- [22] Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis [J]. Meteorological Applications, 2014, 21(2): 360-368.
- [23] Wang Q Q, Qiao L P, Zhou M, et al. Source apportionment of PM_{2.5} using hourly measurements of elemental tracers and major constituents in an urban environment; investigation of timeresolution influence [J]. Journal of Geophysical Research; Atmospheres, 2018, 123(10): 5284-5300.
- [24] 元洁,刘保双,程渊,等. 2017年1月天津市区 PM_{2.5}化学组分特征及高时间分辨率来源解析研究[J]. 环境科学学报,2018, **38**(3); 1090-1101.

 Yuan J, Liu B S, Cheng Y, et al. Study on characteristics of PM_{2.5} and chemical components and source apportionment of high temporal resolution in January 2017 in Tianjin urban area [J]. Acta Scientiae Circumstantiae, 2018, **38**(3): 1090-1101.
- [25] 王晓浩,赵倩彪,崔虎雄. 基于在线监测的上海郊区冬季 PM_{2.5}来源解析[J]. 南京大学学报(自然科学), 2015, **51** (3): 517-523. Wang X H, Zhao Q B, Cui H X. PM_{2.5} source apportionment at suburb of shanghai in winter based on real time monitoring[J]. Journal of Nanjing University (Natural Sciences), 2015, **51** (3): 517-523.
- [26] Gao J, Peng X, Chen G, et al. Insights into the chemical characterization and sources of PM_{2.5} in Beijing at a 1-h time resolution[J]. Science of the Total Environment, 2016, 542: 162-171.
- [27] 丁萌萌,周健楠,刘保献,等. 2015 年北京城区大气 PM_{2.5} 中 NH₄⁺、NO₃⁻、SO₄²⁻及前体气体的污染特征[J]. 环境科学,2017,**38**(4):1307-1316.

 Ding M M, Zhou J N, Liu B X, et al. Pollution characteristics of NH₄⁺, NO₃⁻, SO₄²⁻ in PM_{2.5} and their precursor gases during 2015 in an urban area of Beijing[J]. Environmental Science, 2017, **38**(4): 1307-1316.
- [28] 贾佳,韩力慧,程水源,等. 京津冀区域 PM_{2.5}及二次无机组 分污染特征研究[J]. 中国环境科学,2018,**38**(3):801-811.
 - Jia J, Han L H, Cheng S Y, et al. Pollution characteristic of PM_{2.5} and secondary inorganic ions in Beijing-Tianjin-Hebei region [J]. China Environmental Science, 2018, **38**(3): 801-811.
- [29] 刘军, 陆晓波, 陈新星, 等. 南京市城区 PM_{2.5} 中化学组分演变特征[J]. 环境监控与预警, 2020, **12**(4): 40-44. Liu J, Lu X B, Chen X X, et al. Study on the Evolution characteristics of chemical components in PM_{2.5} in urban area of Nanjing[J]. Environmental Monitoring and Forewarning, 2020, **12**(4): 40-44.
- [30] 刘叶新, 陈伟华, 王雪梅, 等. 广州 $PM_{2.5}$ 化学组分特征及其与气象因子的关系 [J]. 环境科学学报, 2019, 39(1): 53-63.
 - Liu Y X, Chen W H, Wang X M, et al. Chemical composition of

- PM_{2.5} and its relations with meteorological factors in Guangzhou [J]. Acta Scientiae Circumstantiae, 2019, **39**(1): 53-63.
- [31] 江家豪,彭杏,朱波,等. 深圳大气 PM_{2.5}化学组成的长期变化特征[J]. 中国环境科学, 2021, **41**(2): 574-579.

 Jiang J H, Peng X, Zhu B, *et al.* Long-term variational characteristics of the chemical composition of PM_{2.5} in Shenzhen [J]. China Environmental Science, 2021, **41**(2): 574-579.
- [32] 李立伟,肖致美,陈魁,等. 京津冀区域 PM_{2.5}中碳组分污染特征研究[J]. 环境科学学报, 2018, **38**(4): 1306-1316. Li L W, Xiao Z M, Chen K, *et al.* Characteristics of carbonaceous species of PM_{2.5} in the region of Beijing, Tianjin and Hebei, China[J]. Acta Scientiae Circumstantiae, 2018, **38** (4): 1306-1316.
- [33] 张俊峰,韩力慧,程水源,等。京津冀地区典型城市大气细颗粒物碳质组分污染特征及来源[J]. 环境科学研究, 2020, 33(8): 1729-1739.

 Zhang J F, Han L H, Cheng S Y, et al. Characteristics and sources of carbon pollution of fine particulate matter in typical cities in Beijing-Tianjin-Hebei region [J]. Research of Environmental Sciences, 2020, 33(8): 1729-1739.
- [34] 刘保献,杨懂艳,张大伟,等. 北京城区大气 PM_{2.5}主要化学组分构成研究[J]. 环境科学, 2015, **36**(7): 2346-2352. Liu B X, Yang D Y, Zhang D W, *et al.* Chemical species of PM_{2.5} in the urban area of Beijing[J]. Environmental Science, 2015, **36**(7): 2346-2352.
- [35] Castro L M, Pio C A, Harrison R M, et al. Garbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations [J]. Atmospheric Environment, 1999, 33(17): 2771-2781.
- [36] Ohta S, Okita T. A chemical characterization of atmospheric aerosol in Sapporo [J]. Atmospheric Environment. Part A. General Topics, 1990, 24(4): 815-822.
- [37] 孙有昌,姜楠,王申博,等.安阳市大气 PM_{2.5} 中水溶性离子季节特征及来源解析[J]. 环境科学, 2020, **41**(1): 75-81. Sun Y C, Jiang N, Wang S B, *et al.* Seasonal characteristics and source analysis of water-soluble Ions in PM_{2.5} of Anyang city[J]. Environmental Science, 2020, **41**(1): 75-81.
- [38] Dai Q L, Bi X H, Liu B S, et al. Chemical nature of PM_{2.5} and PM₁₀ in Xi'an, China: Insights into primary emissions and secondary particle formation[J]. Environmental Pollution, 2018, 240: 155-166.
- [39] 刘保献,张大伟,陈添,等. 北京市 PM_{2.5}主要化学组分浓度水平研究与特征分析[J]. 环境科学学报,2015,35(12):4053-4060.
 Liu B X, Zhang D W, Chen T, et al. Characteristics and major
 - chemical compositions of $PM_{2.5}$ in Beijing [J]. Acta Scientiae Circumstantiae, 2015, $\bf 35$ (12); 4053-4060.
- [40] Liu B S, Song N, Dai Q L, et al. Chemical composition and source apportionment of ambient PM_{2.5} during the non-heating period in Taian, China[J]. Atmospheric Research, 2016, 170:

- 23-33.
- [41] Hu W, Hu M, Hu W W, et al. Seasonal variations in high timeresolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing [J]. Atmospheric Chemistry and Physics, 2017, 17 (16): 9979-10000.
- [42] Zhu W F, Zhou M, Cheng Z, et al. Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass spectrometer observations [J]. Science of the Total Environment, 2021, 771, doi: 10.1016/j. scitotenv. 2021. 144948.
- [43] Cui Y, Cao W, Ji D S, et al. Estimated contribution of vehicular emissions to carbonaceous aerosols in urban Beijing, China [J]. Atmospheric Research, 2021, 248, doi: 10.1016/j. atmosres. 2020.105153.
- [44] 曹阳,安欣欣,刘保献,等.北京市黑碳气溶胶浓度特征及 其主要影响因素[J].环境科学,2021,42(12):5633-5643.
 - Cao Y, An X X, Liu B X, et al. Characteristics and main influencing factors of black carbon aerosol in Beijing [J]. Environmental Science, 2021, 42(12): 5633-5643.
- [45] 伯鑫, 赵春丽, 吴铁, 等. 京津冀地区钢铁行业高时空分辨率排放清单方法研究[J]. 中国环境科学, 2015, 35(8): 2554-2560.

 Bo X, Zhao C L, Wu T, et al. Emission inventory with high temporal and spatial resolution of steel industry in the Beijing-Tianjin-Hebei Region[J]. China Environmental Science, 2015, 35(8): 2554-2560.
- [46] Duan F K, He K B, Ma Y L, et al. Concentration and chemical characteristics of PM_{2.5} in Beijing, China: 2001-2002 [J]. Science of the Total Environment, 2006, 355(1-3): 264-275.
- [47] 王树民, 白孝轩, 宋畅, 等. 燃煤电厂大气汞及其他痕量元素排放标准研究[J]. 中国环境科学, 2021, **41**(4): 1949-1958.
 - Wang S M, Bai X X, Song C, et al. Study of atmospheric trace elements emission standards for coal-fired power plants in China [J]. China Environmental Science, 2021, 41(4): 1949-1958.
- [48] Bi X H, Dai Q L, Wu J H, et al. Characteristics of the main primary source profiles of particulate matter across China from 1987 to 2017 [J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3223-3243.
- [49] Yu L D, Wang G F, Zhang R J, et al. Characterization and source apportionment of PM_{2.5} in an urban environment in Beijing [J]. Aerosol and Air Quality Research, 2013, 13(2): 574-583.
- [50] Li J Y, Gao W K, Cao L M, et al. Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: effects of clean air actions [J]. Environmental Pollution, 2021, 268, doi: 10.1016/j.envpol. 2020.115855.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 43 No. 5 May 15, 2022

CONTENTS

CONTENTS	
Chemical Characteristics and Source Apportionment of PM _{2,5} in Urban Area of Beijing	··· FAN Li-hang, YANG Xiao-hui, SONG Chun-jie, et al. (2262
Spatio-temporal Evolution Patterns of PM _{2.5} and Relationship with Urban Expansion in Beijing-Tianjin-Hebei Urban Agglomeration f	from 2000 to 2018
Characteristics and Same Anabasis of DM is Disables in Winter Hadas the Action of See Land American Company	
Characteristics and Source Analysis of PM _{2.5} in Qingdao in Winter Under the Action of Sea-Land-Atmosphere Convergence	
Source Apportionment and Seasonal Changes in PM _{2.5} Chemical Components from Different Functional Areas of a Provincial Capital	
Chemical Compositions, Light Extinction Effect, and Oxidative Potential of PM _{2.5} Under Different Pollution Levels During Winter in	n Taivuan
Source Apportionment and Health Risk Assessment of Metal Elements in Ambient PM _{2.5} in the Winter of Zhengzhou	REN Jiao, ZHAU Rong-rong, WANG Ming, et al. (231/
Characteristics, Ecological Risk Assessment, and Sources of the Polluted Metallic Elements in PM _{2.5} During Winter in Zibo City · · ·	
Seasonal Distribution Characteristics, Source Analysis, and Health Risk Evaluation of PAHs in PM _{2.5} in Chengde	
Pollution Level and Regional Migration of PCDD/Fs in Ambient Air from Pearl River Delta, China	··· FU Jian-ping, XIE Dan-ping, HUANG Jin-qiong, et al. (2355
Concentrations and Sources of Black Carbon Aerosols in Rural Areas of Southern North China Plain	
Research on Causes of Severely Polluted Weather in Tianjin Based on Process Analytical Technology	
Classification Control of Volatile Organic Compounds (VOCs) Emission Pollution Sources Based on Emission Amounts and Atmosphe	eric Reactivity
	CHEN Peng, ZHANG Yue, XING Min, et al. (2383
Complex Networks Reveal the Characteristics of Ozone in China	
Dzone Simulation of Lanzhou City Based on Multi-scenario Emission Forecast of Ozone Precursors in the Summer of 2030	
Method of Identifying Air Pollution from Iron and Steel Industry Based on Ambient Air Quality Monitoring Data Analysis	
Assessment of "Differentiated Response Requirement Based on Performance Grading" Plolicy During Heavy Air Pollution Alert	
Risk Zoning of Water Pollution in the Yellow River Basin	
Emission Characteristics of Industrial Water Pollutants in Gansu Section of the Yellow River Basin	
Spatial-temporal Distribution and Pollution Assessment of Heavy Metals in Sediments of the Yellow River	
APCS-MLR Combined with PMF Model to Analyze the Source of Metals in Sediment of Xinglin Bay Suburban Watershed, Xiamen	SHEN Chen-yu, YAN Yu, YU Rui-lian, et al. (2476
Spatial Differentiation Characteristics and Response Relationship of DOM, Nutrients, and Heavy Metals in River Sediments	·········· XIAO Yan-chun, YU Hui-bin, SONG Yong-hui (2489
Distribution Characteristics, Evaluation, and Source Analysis of Heavy Metals in Soils of Fenhe Riparian Zone in Taiyuan City	
Sinding Affinity Between Heavy Metal Hg and Dissolved Organic Matter in Hongze Lake	
Cosystem Evolutionary Trajectory of Lake Xiliang over the Past Century Driven by Eutrophication	
Sediment Release and Pollution Source Analysis of Typical Reservoirs in the Upper Reaches of the Yellow River Based on DGT Tech	hnology AA V ZHIL V DANG O 4 (2527
Differential Characteristics and Source Identification of Water Quality of the Rivers in Northern Henan Before and After Rainstorm	
Adsorption and Interception Effects of Eichhornia crassipes on Microplastics in Water of the Poyang Lake Basin	
Spatiotemporal Distribution and Ecological Risk Assessment of Plastic Additives in Taihu Lake	
Distribution Characteristics, Sources, and Storage of Microplastics in Surface Sediments of Luoma Lake	
Pollution Characteristics of Phosphorus in Different Media in Taihu Lake and Its Treatment Enlightenment	
Analysis on Diversity and Structure of Microbial Community in River Sediment of Siping Section of Liaohe River	
Non-point Source Pollution (NPSP) Induces Structural and Functional Variation in Bacterial Communities in Sediments of Jialing Ri	iver ······ XUE Yu-qin, XU Fei, LIU Kun-he, et al. (2595
Effects of Microplastics on Bacterial Community Composition and Diversity in Sediments	
Vertical Distribution Characteristics and Community Construction of Aerobic Denitrification Bacteria from the Sediments of Baiyangdi	Ian Lake During the Winter Freezing Period
Effect of Induced Mixing on Bacterial Community Structure and Metabolic Activity in Reservoir	LITANG Han-na, CITEN Znao-ying, ZITANG Zi-wei, et al. (2014
Distribution Characteristics of Microplastics in Bellamya aeruginosa in Typical Area of Poyang Lake	
Electrocatalytic Oxidation of Bisphenol A by Porous Ti/SnO ₂ -Sb-Ni Electrode Loaded with Multi-wall Carbon Nanotubes	
Efficiency and Mechanism of Degradation of Methylene Blue with H ₂ O ₂ Catalyzed by Magnetic Mn _{0.6} Zn _{0.4} Fe ₂ O ₄ @SiO ₂ ·········	
Effect of Two Types of Nanoparticles on the Adsorption of Ciprofloxacin on Zeolite	······ JIANG Lan-cui, MENG Zhao-fu, LIU Xian, et al. (2662
Adsorption Mechanisms and Effect Factors of As(V) by AMD Sludge Composite Material	ZHANG Ya-hui, ZHANG Rui-xue, WU Pan, et al. (2673
Shifts in Microbial Community and Variation in Functional Genes for Nitrification and Denitrification in Activated Sludge Affected by	y Triclosan and Its Transformed Intermediates
Construction of Sustainability Evaluation Index System for Contaminated Site Risk Management and Analysis on Key Influential Facto Construction and Empirical Analysis of a Comprehensive Evaluation Method of Coastal Wetland Soil Quality Based on Ecological Fun	
onstate that are tempered. This year of a competencial trade and interest of constant configuration and tempered to the configuration and the config	ZHANG Xue, KONG Fan-long, JIANG Zhi-xiang (2709
Source Analysis and Pollution Assessment of Heavy Metals in Farmland Soil Around Tongshan Mining Area	CHEN Hang, WANG Ying, WANG Shu (2719
Effects of Typical Iron and Manganese Minerals on Arsenic Speciation and Enzyme Activities in Paddy Soil	
Phytoremediation Efficiency of Two Cultivars of Brassica napus L. Under Water-soluble Chitosan Treatment in Typical Ph-contaminat	ted Farmland Soils ·····
7	MENG Xiao-fei, ZHENG Guo-di, CHEN Tong-bin, et al. (2741
Risk Prediction of Cadmium and Lead in Wheat Grains Based on Bayes Theorem	
nterannual Variation Characteristics of Nitrogen Loss Under Rapeseed/Maize Rotation in Purple Soil Sloping Field	
Physicochemical Properties of Biochars Prepared from Different Feedstocks and Evaluation of Its Potential as A Slow-release Carriers	B for Biochar-based Fertilizers
Effects of Combined Application of Wood Vinegar-Acidified Biochar and Nitrogen on Active Nitrogen and Ammonia Volatilization in	Saline Soil · · · · · · · · · · · · · · · · · · ·
neces of Committee Appreciation of wood vinegal-recumed blocked and vintogen on recure returned and vintogen	SHEN Shu-wei, ZHANG Dan-dan, WANG Min-ge, et al. (2779
Effects of Biodegradable Plastic Film Mulching on Greenhouse Gas Emissions Under Wheat-Maize Rotation System in the Guanzhong	Plain ·····
Forest Soil Microbial Community Structure Characteristics and Its Influencing Factors at Different Elevations on the Southern Slope of	f Daiyun Mountain
Effects of Simulated Warming and Increased Precipitation on Soil Extracellular Enzyme Activity and Enzymatic Stoichiometry of Abar	WANC Xing 7HONC 7a-bun HAN bun non at al. (2012)
	wang ang, anong le-kun, jian jun-nan, et al. (2812
Contribution of Urbanization to Local Warming in Major Cities of China	LI Yu, ZHOU De-cheng, YAN Zhang-mei, et al. (2822