

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第39卷 第10期

Vol.39 No.10

2018

中国科学院生态环境研究中心 主办

斜学出版社出版

ENVIRONMENTAL SCIENCE

第39卷 第10期 2018年10月15日

目 次

我国典型城市环境大气挥发性有机物特征比值)
2015 年北京大气 VOCs 时空分布及反应活性特征 张博韬 安成版 王瑟 闫贺 刘保献 张大伟(4400)	ì
北京市建筑光冷料 VOC。排放清单编制技术方法及应用	1
其王守测的建筑米冷料摆坐树右扣物(VOCs)令鲁水亚及组分转征	,
2014~2016年京津冀沿山城市空气质量首要污染物特征分析 王晓彦,王帅,朱莉莉,许荣,李健军(4422)	
北京市大气环境 PM_2 ,和 PM_1 及其碳质组分季节变化特征及来源分析	,
南京春季北郊地区大气 PM _{2.5} 中土安化学组分及恢问位系特征	
周一唱,韩珣, 王瑾瑾, 陈善莉, 沈潇雨, 章炎麟, 朱彬, 郭照冰(4439)	1
热脱附法快速分析大气细颗粒物中非极性有机物	
)
杭州市空气细颗粒物浓度与哮喘就诊人次的关系 王安旭,陈曦,宋从波,应颂敏,李倩,吴琳,毛洪钧(4457))
基于远程通讯技术的混动公交车 SCR 系统运行及 NO 排放特征	
机州市空气组粮粒物浓度与哮喘机诊人代的天系	ì
基于环境风险排序的海域优先污染物筛选 《《公》,《《公》,《《公》,《《公》,《《公》,《《公》,《《公》,《《公》	1
金字子 7. 水色 1. 17 1. 18 1. 18 2	
里庆远郊丰都当玉洞流域入气无机氮湿沉降变化特征与来源分析 	١
双 B P Y T C P P P P P P P P P P P P P P P P P P	,
志龙在你外国家及目然体护区人气氛几阵行怔 不错,口鹛,你金放,金儿痒(4490)	,
脱甲河水系 N ₂ O 大键产生过程及氮系米源探讨	
一次	1
生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响	1
黑麦草对水体中镉-壬基酚复合污染的生理响应及修复 史广宇,李中义,张路,程媛媛,陈宏伟,施维林(4512))
城市黑臭水体的吸收特性分析 丁潇蕾, 李云梅, 吕恒, 朱利, 温爽, 雷少华(4519))
岷江上游水体中 DOM 光谱特征的季节变化····································)
防渗型生物滞留中试系统降雨径流水质与三维荧光特征 林修咏、王书敏、李强、谢云成(4539))
防冷型生物滞留中风系沉降的程流水质与三维灰光存征	1
全力 10 10 0 0 10 0 0 10 10 10 10 10 10 10 1	,
型及吴生勿地「小竹府工行中记功儿馆行证。	,
有贝敦秋型你有以民成化对小牛孵取血的吹附有为	
基于紫外光谱分析的腐殖质混凝控制	1
基丁家外光谱分析的腐组灰混凝控制	1
AAO 上艺联合臭氧削减污水中微量有机污染物及遗传毒性 ··················· 季默,汪震哲,陈志强,温沁雪(4584)	1
抗生素抗性基因在两级废水处理系统中的分布和去除 李奥林,陈吕军,张衍,代天娇,田金平,刘锐,温东辉(4593))
磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响 刘志文,陈琛,彭晓春,谢武明,黄镇扬,韩庆吉(4601))
海藻糖强化厌氧氨氧化耦合反硝化工艺处理高盐废水的脱氮除碳效能 杨振琳,于德爽,李津,王晓霞,冯莉(4612))
仟温下 A ² /O-BAF 反硝化除磷脱氮特性	١
O ₃ -BAC 深度处理石化废水厂尾水的特性及菌群结构分析 ··· 张超,单明皓,许丹宁,古明哲,代蓓蓓,纪轩,孙井梅(4628) 基于 MBR 不同种形短程硝化启动的微生物群落结构分析 ····························· 吴鹏,陈亚,张婷,沈耀良,徐乐中(4636)	ì
其于 MRR 不同和泥垣积硝化自动的微生物群液结构分析	1
3种不同工艺切换下活性污泥菌群结构及代谢产物对污泥沉降性能的影响	!
加汀汀,农怀江,陈市、工产,中里里,刈小除(4044)	,
硫酸盐还原菌活性污泥胞外聚合物对环丙沙星的吸附机制 张会群,贾妍艳,方荷婷,阴琳婉,吕慧(4653)包埋活性污泥反硝化性能的快速提高及群落分析 杨宏,徐富,孟琛,苏姗,袁星(4661)中国粮食主产区耕地土壤重金属时空变化与污染源分析 尚二萍,许尔琪,张红旗,黄彩红(4670)典型区土壤重金属空间插值方法与污染评价 马宏宏,余涛,杨忠芳,侯青叶,曾庆良,王锐(4684)秸秆与化肥减量配施对菜地土壤温室气体排放的影响 黄容,高明,黎嘉成,徐国鑫,吕盛,罗梅(4694)	1
包理活性污泥及帽化性能的快速提高及群落分析 物宏,徐虽,孟珠,办赙,哀至(4661)	1
中国粮食王产区耕地土壤重金属时至变化与污染源分析 尚二泙,许尔琪,张红旗,寅彩红(4670)	1
典型区土壤重金属空间插值方法与污染评价	1
秸秆与化肥减量配施对菜地土壤温室气体排放的影响 黄容,高明,黎嘉成,徐国鑫,吕盛,罗梅(4694))
不同肥料施用对设施菠菜地 NH, 挥发和N,O排放的影响 ······· 山楠, 韩圣慧, 刘继培, 陈清, 袁玉玲, 王立刚, 李虎(4705))
不同肥料施用对设施菠菜地 NH_3 挥发和 N_2 O排放的影响 ········· 山楠,韩圣慧,刘继培,陈清,袁玉玲,王立刚,李虎(4705)施肥类型和水热变化对农田土壤氮素矿化及可溶性有机氮动态变化的影响 ····································	
世界的)
长期不同施肥量对全程氨氧化细菌丰度的影响 王梅、王智慧、石孝均、蒋先军(4727))
典型绿洲不同土壤类型有机碳含量及其稳定碳同位素分布特征 陈新 贡璐 李杨梅 安申群 赵晶晶 4735))
凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制)
天然有机物活化讨磕廠卦降解十罐有机污染物效果	1
水分管理和外源硒对水稻吸收累积铅的影响······· 万亚男, 刘哲, Aboubacar Younoussa Camara, 余垚, 王琪, 李花粉(4759) 客水中微生物降解污染物的关键细菌····································	,
不力自经生产的原始的发现,不知识的影响 从工力,外自,Abubata Tounousa Camada,并至,上头,不允如(+132)	'
古小下版工物呼解行来初的大键细图 物后,物质化,从图 9 ,上玉田,取剂,导展 (4700)	,
Ψ氧化图列明墩散给言AS(Ⅲ)的氧化作用	,
海域局温油由 I 休啊局温啊盘婉骸盘还原囷的师选与生理特性及活性抑制。	
	1
1 株耐盐异养硝化-好氧反硝化菌 Zobellella sp. B307 的分离及脱氮特性 ··································	
白洁, 陈琳, 黄潇, 胡春辉, 赵阳国, 李岿然(4793))
1 株镰刀菌属 KY123915 的分离及其对 17β-雌二醇的降解特性	
)
氟喹诺酮对垂直流人工湿地性能及微生物群落的影响 李新慧. 郑权. 李静. 王晓慧. 海热提(4809))
林可霉素菌渣堆肥微生物群落多样性分析 任省涛 郭夏丽 芦阿虏 张倩倩 郭笑盈 干岩 干连忠 张宝宝(4817))
DEP 对蚯蚓抗氧化酶系的影响及 DNA 损伤)
DEP 对蚯蚓抗氧化酶系的影响及 DNA 损伤 ···································)
《环境科学》征订启事(4429) 《环境科学》征稿简则(4471) 信息(4529,4777,4816)	
「 「 「 「 「 「 「	

O₃ -BAC 深度处理石化废水厂尾水的特性及菌群结构 分析

张超¹,单明皓¹,许丹宁¹,古明哲¹,代蓓蓓²,纪轩²,孙井梅¹*

(1. 天津大学环境科学与工程学院, 天津 300350; 2. 中石化天津分公司水务部, 天津 300271)

摘要:采用连续流 O_3 -BAC 对华北某石化废水处理厂尾水进行了中试处理实验,研究了 O_3 氧化对 COD 及 UV₂₅₄处理效果的影响,同时对处理过程中有机物的变化特性及稳定运行 30 d 时 BAC 填料中的微生态环境进行了分析. 结果表明,在 O_3 接触时间为 40 min, O_3 投加量为 20 mg·L⁻¹,BAC 单元空床停留时间为 1.5 h 条件下, O_3 -BAC 工艺出水 COD 为 24 mg·L⁻¹,平均去除率为 40.4%,相对于单独 BAC 工艺去除率提高 10.0%,UV₂₅₄的平均去除率为 55.1%,且 COD 与 UV₂₅₄之间呈一定的相关性,相关系数 R^2 为 0.89; O_3 氧化后相对分子质量 $<1\times10^3$ 的比例由尾水中的 69.0% 提高到了 87.0%, O_3 -BAC 工艺中NPOC 的去除率为 45.8%,较单独 BAC 工艺提高 23.0%,且 BAC 单元去除的 NPOC 主要由相对分子质量 $<1\times10^3$ 的组分所贡献;经 GC-MS 图谱及有机物统计分析,经 O_3 氧化后烷烃类、不饱和酯类及酚类等有机物得到明显的去除; O_3 氧化后 BAC 单元的微生态环境得到明显改善,其中微生物种类(丰度在 1.0% 以上)由 6 种增加到了 11 种. O_3 -BAC 工艺可以有效应用于石化尾水的深度处理中.

关键词:石化尾水;深度处理; O₃-BAC; 相对分子质量; 菌群分析

中图分类号: X703.1 文献标识码: A 文章编号: 0250-3301(2018)10-4628-08 **DOI**: 10.13227/j. hjkx. 201801276

Characteristics of Advanced Treatment of Treated Petrochemical Water by O₃-BAC and Analysis of Consortium Structure

ZHANG Chao¹, SHAN Ming-hao¹, XU Dan-ning¹, GU Ming-zhe¹, DAI Bei-bei², JI Xuan², SUN Jing-mei^{1*}
(1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; 2. Department of Water Affairs, Tianjin Petrochemical Company of Sinopec, Tianjin 300271, China)

Abstract: The advanced treatment of treated petrochemical water by Ozone-Biological Activated Carbon (O₃-BAC) was carried out in this study. The effect of O₃ on the removal of Chemical Oxygen Demand (COD) and Spectral Absorption Coefficient (UV₂₅₄) were investigated. The characteristics of organic matter and the microbial consortium structure of BAC were also investigated at 20 mg·L⁻¹ of O₃ dosage concentration, 40 min of O₃ single stage contact time and 1.5 h of the empty bed residence time of BAC. Results showed that the effluent COD concentration of O₃-BAC was 24 mg·L⁻¹ with the removal efficiency of 40.4%. The COD removal efficiency of O₃-BAC was higher than that for the BAC process. The UV₂₅₄ removal efficiency of O₃-BAC was 55.1%. Meanwhile, UV₂₅₄ correlated with COD with a correlation coefficient of 0.89. The percentage of dissolved organic matters with relative molecular weight less than 1 × 10³ increased from 69.0% to 87.0% after O₃ oxidation. The NPOC removal efficiency of O₃-BAC (45.8%) was higher than that of the BAC process (23.0%). The NPOC removal efficiency of the BAC unit was mainly achieved by reduction of dissolved organic matters with relative molecular weight less than 1 × 10³. GC-MS analysis results showed that organic substances such as alkanes, unsaturated esters, and phenols had been removed by O₃ oxidation. The micro ecological environment of the BAC unit had been significantly improved after O₃ oxidation, and the genera with relative abundance over 1.0% increased from 6 to 11. The combined O₃-BAC system can be applied to the advanced treatment of petrochemical treated water.

Key words: treated petrochemical water; advanced treatment; O₃-BAC; relative molecular weight; consortium structure

石油化工废水(石化废水)种类繁多、成分复杂、污染物浓度较高、部分有机物具有生物或环境毒性、可生化性较差且水质水量波动大,属于较难处理的工业废水,对环境污染十分严重^[1,2]. 石化废水处理厂尾水可生化性较差,主要为结构复杂、难被生物降解,且具有一定的生物毒性的有机污染物^[3,4]. 目前我国对环境保护日渐重视,其中天津市《城镇污水处理厂水污染物排放标准》(DB

12599-2015)将 COD 排放浓度限值定为 30 mg·L⁻¹. 由此可见, 亟需开发适当的深度处理技术, 通过提升二级处理工艺的效能以提高出水水质, 来满足排放要求.

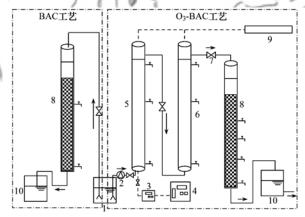
收稿日期: 2018-01-30; 修订日期: 2018-03-26

基金项目: 国家水体污染控制与治理科技重大专项(2015ZX07203-

011)

作者简介: 张超(1990~), 男, 博士研究生, 主要研究方向为水污染控制理论与技术, E-mail:15690327278@163. com

* 通信作者,E-mail:jmsun@tju.edu.cn


石化废水处理厂尾水中对 COD 贡献较大的多 为含不饱和键、难被生物降解的有毒有机物以及部 分溶解性微生物产物,这些物质具有很强的环境毒 性. 直接采用传统的生化深度处理工艺, 如曝气生 物滤池等, 很难有效大幅度提高出水水质[5]. 目前 主要的石化废水深度处理技术包括:超滤-反渗 透[6]、混凝-沉淀-过滤[7]、Fenton 氧化[3]、O, 氧化 和活性炭吸附[8,9]等. 采用超滤-反渗透工艺对石化 废水进行深度处理, 出水水质好, 但是成本较高; 混凝-沉淀-过滤工艺具有技术成熟、原理简单、可 操作性强和成本低,但工艺对溶解性有机物处理效 果有限, 易造成二次污染; Fenton 氧化工艺具有反 应迅速、氧化彻底、所需构筑物简单和占地面积小 等特点, 然而, Fenton 工艺在研究过程中通常都需 要通过投加化学药剂调节处理废水的 pH, 不仅增 加了工艺的复杂性,同时也提高了处理成本. 0,具 有极强的氧化性能, 既具有将一些小分子有机物直 接矿化,还具有能将环烷烃类、长链醛酮类、长链 酯类等难降解大分子物质降解为毒性小的小分子有 机物,从而有效地提高石化尾水的可生化性[10].虽 然 O, 氧化特性明确、技术成熟, 但是由于 O, 在水 处理中利用率较低, 且其氧化性能有限, 无法将石 化废水中难降解有机物完全矿化为 CO2 和 H2O, 致 使必须加大用量才能有效降低污染物浓度,导致处 理成本较高,因此在大多数情况下,0,更适宜与生 化处理技术配合使用, 以达到进一步去除石化废水 中有机物的目的. O3-BAC 工艺是先利用臭氧的氧 化作用将难降解有机物氧化成易被微生物利用的有 机物, 再利用 BAC 单元生物活性炭进行吸附及微 生物降解, 共同去除有机污染物的物化-生化处理 工艺. 该工艺具有吸附作用强、去除效率高、成本 低及操作简单等优点, 在废水深度处理工艺中已被 广泛引用[8,9].

尽管近年来对于 O₃-BAC 工艺研究已逐渐成熟,但对于 O₃-BAC 工艺深度处理石化尾水的机制探讨还不够深入,尤其是对于 O₃ 氧化前后对 BAC 单元的微生态环境的影响研究得还不多. 基于以上研究背景,本实验以华北某石化企业污水处理厂尾水作为研究对象,采用 O₃-BAC 工艺进行污水处理厂尾水的深度处理. 分别从 O₃ 氧化前后水质变化特性及分子生物学角度分析 O₃-BAC 工艺深度处理石化尾水机制. 同时,探讨了 O₃ 氧化前后水质变化对 BAC 单元微生态环境影响,以期为 O₃-BAC 工艺用于石化废水尾水深度处理提供理论依据和技术支持.

1 材料与方法

1.1 中试实验装置及运行参数

整体实验装置主要由两个工艺组成, 分别是 BAC 工艺和 O₃-BAC 工艺,装置示意图如图 1 所 示. 通过两个工艺对比分别考察了 O, 氧化对石化 尾水中污染物特征及 BAC 单元中微生态环境的影 响. 其中, O, 发生器选用 3S-A10 型 O, 发生器(北 京同林高科科技有限责任公司),以氧气作为气源, O, 产量最大为 10 g·L⁻¹, 进气流量为 1 L·min⁻¹. O,浓度测定仪选用3S-J5000型气态O,浓度测定仪 (北京同林高科科技有限责任公司). 0、接触柱及 0,缓冲柱主体材质均为有机玻璃,有效高度均为 2.5 m, 内径均为200 mm, O, 接触柱底部设置钛合 金 0, 曝气盘. 0, 尾气由内部填充有活性炭的破坏 器分解破坏. BAC 柱主体材质为有机玻璃, 填料为 石油化工专用果壳活性炭(冀北燕山活性炭有限公 司), 粒径2~4 mm, 活性炭层有效高度为2.5 m, 内径为 200 mm. 前期实验优化了 O, 投加量、停留 时间及生物活性炭柱运行条件分别为: 0, 接触时 间为 40 min, O₃ 投加量为 20 mg·L⁻¹, BAC 单元空 床停留时间为 1.5 h.

1. 进水水箱; 2. 提升泵; 3. O_3 浓度测定仪; 4. O_3 发生器; 5. O_3 接触柱; 6. O_3 缓冲柱; 7. 流量计; 8. BAC 柱; 9. O_3 尾气破坏器; 10. 出水水箱

图1 实验装置示意

Fig. 1 Schematic of the experimental apparatus

1.2 实验用水

本实验用水为华北某石化综合污水处理厂净化车间生化处理尾水,该净化车间的设计运行能力为 1.32 万m³·d⁻¹,进水主要为炼油常减压电脱盐废水,车间污水处理主要工艺是二级气浮-二级曝气工艺,出水基本满足《石油化学工业污染物排放标准》(GB 31571-2015)的要求.实验进水水质如表 1 所示.

表 1 实验装置进水水质

Table 1	Influent	water	muality
rante i	mmucm	water	quanty

指标	COD/mg·L ⁻¹	$BOD_5/mg \cdot L^{-1}$	$\mathrm{NH_4^+}$ -N/mg • L $^{-1}$	$TN/mg \cdot L^{-1}$	pН
数值	32. 6 ~ 46. 1	2.9 ~4.5	1.0 ~ 4.6	19. 2 ~ 36. 4	6.7 ~ 8.7
均值	39. 0	3.8	2.7	31. 2	8. 0

1.3 分析方法

GC-MS 测试方法: 水样预处理采用李文锦[11] 的研究方法,之后经 GC-MS 联用仪定性分析 (Agilent 7890A-5975C,美国安捷伦科技有限公司),所测得图谱与 NIST 质谱图数据库进行对比获得样品信息. 毛细色谱柱采用 HP-5 MS型. 升温程序为: 初始温度 60° 保持 3 min,以 8 $^{\circ}$ ·min ⁻¹ 的速率升温至 300° 、保持 3 min,共计 36 min;溶剂延迟时间: 6 min;进样口温度: 260° 、载气:高纯氦气(>99.999%);载气流速: 0.7 mL·min ⁻¹,分流比 1:1;进样量: 1 μ L;检测器温度: 300° 、质谱电离方式为电子轰击源;离子源温度: 230° 、四级杆温度: 150° 、EI 源为 70 eV,扫描所示、此外,经 GC-MS 分析,水中含有烃类和脂肪酸类等物质22 种.

溶解性有机物相对分子量截留分布:采用 Models 8050 超滤杯(美国 Millipore 公司),超滤杯 有效容积 50 mL,有效过滤面积 1.77×10⁻³ m²,内置磁力搅拌装置,采用压力为 0.1 MPa 高纯氮气加压.将水样调至中性,经 0.45 μm 滤膜过滤,滤后水样依次经截留相对分子量分别为 100×10³、30×10³、10×10³、5×10³ 和 1×10³ 的 Millipore 新型再生纤维素膜,采用并联方式超滤.分别测定各组分的 NPOC,以各组分 NPOC 占未超滤组分 NPOC 的百分比确定各组分的质量分数.

菌群结构分析: BAC 填料上生物膜(0.5 g)的 菌群结构基于 16S rDNA 基因的 V3 ~ V4 区 DNA 序列 PCR 扩增与高通量测序技术进行分析, 所用扩增引物分别为 338F(ACTCCTACGGGAGGCAGCAG)和 806R(GGACTACHVGGGTWTCTAAT)(北京奥维森基因科技有限公司)^[12]. 使用 Usearch 软件(版本 8.1.1831)进行 OTU 聚类,聚类标准为 97% 相似,基于前述 OTU 聚类结果,调用 Mothur 软件(版本 1.30.1),计算各个样品 Shannon 指数、Chaol 指数、ACE 指数、Simpson 指数、盖度. 采用 RDPclassifier 软件(版本 2.12)将前述各样品合格序列进行物种分类操作,阈值设置为 0.8,低于该阈值的分类结果被划归为 unclassified 一类.分类完成后采用自写 perl 脚本统计各物种门和属比例并绘制

柱状图.

其他分析方法: O_3 发生器产气及 O_3 尾气的浓度利用 3S-J5000 型气相 O_3 浓度检测仪在线测定 (测量范围 $0.001 \sim 800 \text{ mg·L}^{-1}$, 精度 0.001 mg·L^{-1}), O_3 柱出水中的 O_3 浓度采用 FIX550-DO3-W 型液相 O_3 浓度检测仪测定(测量范围 $0.5 \sim 20 \text{ mg·L}^{-1}$, 精度 0.01 mg·L^{-1}), 两种仪器在测试前先通过碘量法[13] 进行校准; COD 采用重铬酸钾法测定(HJ 828-2017); UV_{254} 采用分光光度法测定(GB/T 5750. 11-2006); NPOC 采用 TOC-L 分析仪测定(HJ 501-2009); TN 采用凯氏定氮法(HJ 717-2014); NH_4^+ -N采用纳氏试剂分光光度法(GB 7479-87); BOD_5 采用稀释接种法(GB 7488-1987); PH 采用玻璃电极检测法(GB/T 6920-1986).

2 结果与讨论

2.1 COD 及 UV₂₅₄的去除

为解决单纯 O₃ 氧化矿化度不高,中间产物致使出水 COD 浓度较高的问题,在 O₃ 氧化预处理单元后连接 BAC 单元. O₃ 氧化后生成的小分子更易被活性炭吸附,并最终由附着在其上的微生物所降解,此外活性炭层还具有一定的过滤作用,既具备化学氧化的有效性,又有生物处理的经济性. O₃-BAC 工艺对石化污水处理厂尾水 COD 及 UV₂₅₄去除的影响如图 2 所示.

由图 2(a) 可知, 进水 COD 浓度在 $40 \text{ mg} \cdot \text{L}^{-1}$ 左右, O_3 预处理单元出水 COD 浓度约 $32 \text{ mg} \cdot \text{L}^{-1}$, 经过 O_3 处理单元的处理, COD 约去除 $8 \text{ mg} \cdot \text{L}^{-1}$, 水质可生化性由 0.09 提高到了 0.28. Schepper 等 [14] 的研究表明 O_3 不仅可以将难降解、大分子有机物氧化为易降解、小分子有机物,同时还可以通过化学氧化的方式氧化部分 COD. 尾水经 O_3 氧化后,通过 BAC 单元,前 13d 由于反应器活性炭的吸附作用,去除了大量的 COD,出水稳定在 $17 \text{ mg} \cdot \text{L}^{-1}$ 左右,而随着活性炭吸附能力下降,BAC 单元的出水 COD 增加到 $24 \text{ mg} \cdot \text{L}^{-1}$ 左右,并趋于稳定. 相对于单独 BAC 单元出水 COD 下降了 $4.6 \text{ mg} \cdot \text{L}^{-1}$,由此证明 O_3 氧化可发挥预处理的作用,

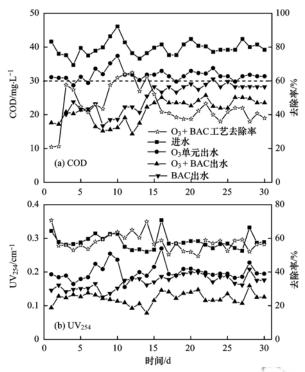


图 2 O₃-BAC 工艺对 COD 及 UV₂₅₄的去除情况

Fig. 2 $\,$ Effects of O_3-BAC on the COD , UV_254 removal

有效改善废水的可生化性,提高后续 BAC 处理单元对 COD 的去除效率. 装置稳定后 O₃-BAC 工艺对 COD 的去除率为 40.4%,相对于单独 BAC 工艺去除率提高 10.0%,其中 O₃氧化对 COD 去除的贡献率为 49.0%,BAC 处理单元对 COD 去除的贡献率为 51.0%,可见 O₃氧化效果已较为充分.

 UV_{254} 可有效地表征石化废水中难降解有机物 (酚类、芳香醛、多环芳烃等含苯环及共轭键结构 物质) 在废水中的浓度^[3,15]. O_3 -BAC 工艺对石化污水处理厂尾水 UV_{254} 的去除效果如图 2(b) 所示. 从中可知,进水 UV_{254} 的平均值为 $0.290~cm^{-1}$,稳定后 O_3 氧化单元出水 UV_{254} 的平均值为 $0.198~cm^{-1}$,BAC 生化处理出水 UV_{254} 的平均值为 $0.129~cm^{-1}$. 装置稳定后 O_3 -BAC 工艺对 UV_{254} 的去除率为 55.1%,其中 O_3 氧化的贡献率为 57.0%,BAC 的贡献率为 43.0%, O_3 氧化是去除 UV_{254} 的主要单元 [16]. 此外,石化污水处理厂尾水 UV_{254} 经 O_3 预氧 化后已经明显降低,大多数有机物的不饱和键结构 被破坏, O_3 预氧化起到了改善有机物结构的作用.

有研究表明^[17,18], UV_{254} 与 COD 有一定的相关性, UV_{254} 值越小,可生化性就越强,水中复杂有机物分解及去除效果就越好. 对本实验数据进行 COD 与 UV_{254} 之间离散关系分析如图 3 所示,并得出相关系数为 0.89,说明 COD 与 UV_{254} 之间具有强相关性.

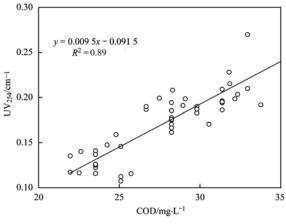


图 3 COD 与 UV₂₅₄之间离散关系

Fig. 3 Relationship between COD and UV₂₅₄

2.2 O₃-BAC 工艺对废水分子量分布的影响

O₃ 投加主要是通过改变水质的有机物分子量分布,使大分子、难降解有机物转化为低分子有机物,同时提高水质的可生化性,图 4 为不同工艺对石化污水处理厂尾水相对分子质量分布的影响.

由图 4(a) 可得, 单独 BAC 工艺对于有机物的 相对分子质量分布没有太大影响, 其可生化性并没 有得到很大的改善, 而对于经过 0, 氧化的 0, 单元 及 O₃-BAC 工艺的出水水质中的分子量分布有较大 的改变. 其中, 相对分子质量 <1×103 的比例由进 水的 69.0% 分别提高到了 87.0% (O, 出水)和 82.0% (O₃-BAC 出水), O₃ 氧化主要起到将相对分 子质量 > 1 × 103 的难降解有机物转化为更易被微 生物利用的小分子物质,同时还可能改变有机物的 表面官能团及亲疏水性,进而增加其被后置的 BAC 单元吸附的作用[19]. 因此, 在 O₃-BAC 工艺中相对 分子质量 $<1 \times 10^3$ 的比例较 O_3 出水单元略低. O_3 -BAC 工艺则将二者的优势结合,对大分子及小分子 有机物均有较好的去除效果. 相较于单独 BAC 处 理, O₃-BAC 工艺对各级分子量对应的有机物去除 率分别提升 10.0%、39.0%、60.0%、56.0%、 49.0% 和 59.0%, O₃-BAC 工艺对石化污水处理厂 尾水水质改善效果十分明显.

由图 4(b) 可得,NPOC 在 O_3 单元、单独 BAC 单元和 O_3 -BAC 工艺的去除率分别为 27.9%、22.9%和45.8%.其中, O_3 氧化后 NPOC 各分子量组分都有所减少,说明 O_3 不仅可以将大分子难降解有机物裂解为小分子有机物,同时还可以将部分有机物直接矿化为 CO_2 和 $H_2O^{[20]}$. 经 O_3 氧化后,在 BAC 单元中主要是相对分子质量 $<1 \times 10^3$ 的去除,其他分子量组分并没有太大变化。因此,在

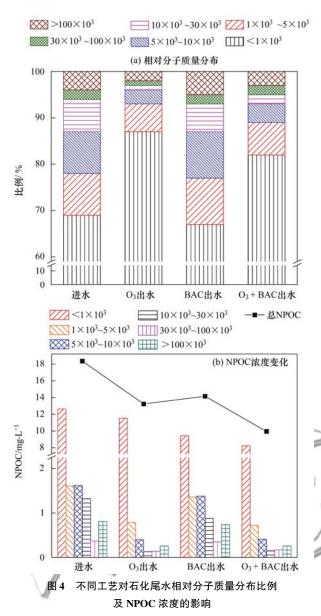
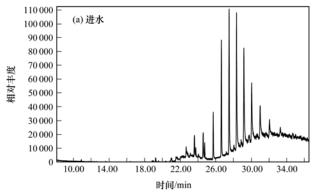



Fig. 4 Relative molecular weight distribution and NPOC variations in petrochemical treated water after different treatment processes

BAC 单元, 总 NPOC 去除主要由相对分子质量 < 1×10^3 的去除所贡献, 约贡献 $99\%^{[21]}$.

2.3 特征污染物种类分析

进一步对 O_3 氧化前后的水质进行了 GC-MS 仪定性分析,其气相色谱图如图 5 所示. 经 O_3 氧化后,峰的数量及峰高都有明显的下降,经过对照 MS 数据库分析,18 min 之前出的峰对应的物质为含量较少的含硅杂质,除邻苯二甲酸二丁酯外,其余物质含量较低,间接验证出水水质改善效果较为理想. 尾水及 O_3 氧化后出水物质种类及结构的相关信息如表 2 所示. 其中尾水中多为不饱和键有机物约占 55.0%,主要为烷烃类、不饱和酯类及酚类为主,这些物质结构复杂,难被生物降解,且具有一定的生物毒性. 经 O_3 -BAC 工艺处理后这些结构复杂的有机物得到明显的去除,同时也说明了经 O_3 -BAC 工艺处理后出水水质得到明显改善.

2.4 O, 氧化对 BAC 单元微生态环境的影响

石化尾水中含有大量的难降解,毒性的有机 物,分别对 O。氧化后及单独 BAC 填料中微生物进 行 16S rDNA 测定, 考察 O, 氧化对于 BAC 填料中 微生态环境的影响. 表 3 为 BAC 工艺与 O₃-BAC 工 艺中 BAC 内生物膜样品的测序结果. 其中丰富度指 数 Chaol 是估计群落中含有 OUT 数目的指数, 生 态学中常用来估计物种总数. 多样性指数 Shannon 用来估计群落中 OUT 多样性高低的群落多样性指 数, Shannon 值越大说明群落多样性越高. 从表 3 数 据可以看出, BAC 工艺与 O₃-BAC 工艺中微生物的 物种多样性相差并不大,说明 O,的投加,对于 BAC 柱中微生物的物种多样性影响并不大. 通过前 期的实验得出,在 O、接触时间为 40 min,投加量为 20 mg·L⁻¹时, 臭氧的利用率为 100%. 因此, O₃ 并 不会进入到 BAC 单元对其微生态环境产生破坏 作用.

进一步对微生物物种分别在门、目和属水平的丰度进行了测定。在门的水平(图6),主要的8种

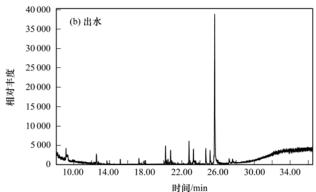


图 5 O₃-BAC 工艺前后出水 GC-MS 谱图

Fig. 5 GC-MS spectrogram of the O₃-BAC treatment system effluent and influent

细菌(门)为 Proteobacteria、Acidobacteria、Chloroflexi、 Nitrospirae、 Bacteroidetes、Planctomycetes、Armatimonadetes 和 Parcubacteria. 其中,Proteobacteria 和 Acidobacteria 为 BAC 工艺与O₃-BAC 工艺的共同优势菌门,两种菌门的总和高达 64.0% 和 73.0%. 然而,在有 O₃ 条件下Chloroflexi 和 Nitrospirae 的相对丰度显著减小,从

13. 2% 减少到了 5. 6%. 这可能与 O_3 将一些大分子、难降解物质转化为易被生物降解的小分子物质有关. 相反,Proteobacteria 与 Bacteroidetes 的丰度分别从 47. 7% 增加到 58. 7% 和从 2. 9% 增加到了 5. 5%. 这可能与尾水中毒性有机污染物的减少有关. 为了进一步分析 O_3 对菌群结构的影响,分析了菌落结构在属水平上[图 O_3 的变化情况.

表 2 石化尾水 O₃-BAC 处理前后主要有机物统计情况

Table 2 Numbers and types of organics in the O3-BAC treatment system effluent and influent when applied to petrochemical treated water

		**	,				•	
项目	杂环	氮杂萘、吡啶	不饱和链酯	苯基酯	链烷烃	酚类	环烃醇	醚醇
进水	2	2	4	2	9	1	1	1
03 出水	0	0	0	1	3	0	0	0

表 3 细菌种群多样性指数特征

Table 3 Characteristics of bacterial community diversity based on diversity indices

工艺	序列数	聚类单元数	Shannon 指数	盖度	Chaol 指数
BAC	31260	459	7. 087	0. 998	459
O_3 -BAC	18592	438	7. 077	0. 998	453

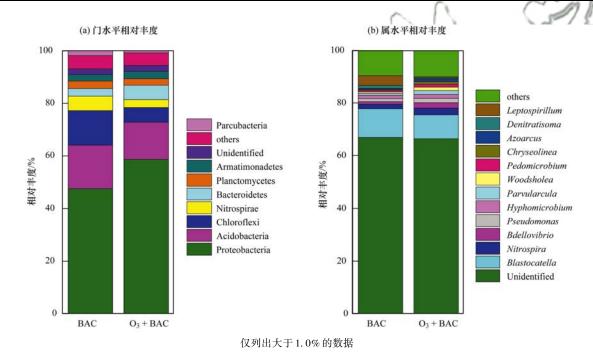


图 6 BAC 和 O₃-BAC 生物群落的相对丰度

Fig. 6 Bacterial community and relative abundance of reactors in BAC and O3-BAC

属水平上,未经 O_3 氧化的 BAC 填料微生物中丰度在 1.0% 以上的主要有 6 种菌,分别包括 Blastocatella 、 Leptospirillum 、 Nitrospira 、 Hyphomicrobium、Pseudomonas 和 Denitratisoma. 而经过 O_3 氧化后,丰度在 1.0% 以上的微生物有 11 种菌,分别为 Blastocatella 、Nitrospira 、Bdellovibrio 、 Pseudomonas 、 Hyphomicrobium 、 Parvularcula 、 Woodsholea 、 Pedomicrobium 、 Chryseolinea 和 Azoarcus. 其原因在于 O_3 氧化前的石化尾水中含有

大量有毒物质(图 5)抑制了微生物的生长,在经 O_3 氧化后水质明显改善,主要微生物种类明显增加^[22].结果表明 O_3 氧化后可以改善水质进而改善BAC 单元的微生态环境.

同时,硝化螺菌属 Nitrospira、Hyphomicrobium 和假单胞菌 Pseudomonas 的丰度均有所增加,而 Blastocatella、Denitratisoma 和 Leptospirillum 的丰度 有所减少. 其中,硝化螺菌属 Nitrospira 是硝化细菌 的一种,氧化亚硝酸盐生成硝酸盐,在氧化亚硝酸

盐过程中获得能源, 石化废水具有一定的生物毒 性,尤其是对于硝化细菌的抑制作用较为明显,经 O, 氧化后石化尾水水质得到改善, 因此 BAC 单元 中硝化细菌的丰度会有所增加,从1.7%增加到了 2.6% [22,23]. 假单胞菌 Pseudomonas 可通过生物吸 附及生物降解作用去除广范围的有机物,如酚、对 硝基酚、菲、苯及其他石油烃类, 如正烷烃、芳香 烃和多环芳烃^[24,25]. 经 O, 氧化的 BAC 单元填料上 丰度由 1.2% 增加到 1.6%. Hyphomicrobium 既是烃 类降解菌也是反硝化细菌, 在经 O, 氧化的 BAC 单 元填料上丰度由 1.2% 增加到 1.5% [23,26]. 假单胞 菌 Pseudomonas 与菌 Hyphomicrobium 的增加都说明 石化尾水具有一定的毒性作用, 而经过臭氧氧化后 水质得到改善,水质毒性下降.Blastocatella 是一种 缺氧的化能异养菌, 并且具有严格的呼吸代谢类 型, 因此在 0, 存在时丰度从 10.9% 减少到 9. 1% [23].

3 结论

- (1) O_3 -BAC 工艺出水 COD 为 24 mg·L⁻¹, 平均 去除率为 40. 4%,相对于单独 BAC 工艺去除率提高 10%,UV₂₅₄的平均去除率为 55. 1%,出水水质满足设计标准,该工艺可作为该厂石化尾水深度处理工艺. 同时得出 COD 与 UV₂₅₄之间具有强相关性,相关系数 R^2 为 0. 89.
- (2) O_3 氧化后相对分子质量 $< 1 \times 10^3$ 的比例由 69.0% 提高到了 87.0%, O_3 -BAC 工艺中 NPOC的去除率为 45.8%, 较单独 BAC 工艺提高 23.0%, 且 BAC 单元的 NPOC 主要由相对分子质量 $< 1 \times 10^3$ 的组分减少所贡献,表明 O_3 氧化将大分子物质降解成小分子物质,且小分子物质主要在 BAC 单元进行去除.
- (3) O₃ 氧化后烷烃类、不饱和酯类及酚类等有毒性难降解有机物得到明显去除,石化尾水水质得到改善,BAC 单元的微生物种类(丰度在 1%以上)由 6 种增加到了 11 种,其中 Nitrospira、Hyphomicrobium和 Pseudomonas 的丰度均有所增加,表明 O₃ 氧化可以改善 BAC 单元的微生态环境从而提高有机物的去除.

参考文献:

- [1] Hodges A, Fica Z, Wanlass J, et al. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation [J]. Chemosphere, 2017, 174: 46-48.
- [2] Siddique M N I, Munaim M S A, Wahid Z A. Role of hydraulic retention time in enhancing bioenergy generation from

- petrochemical wastewater [J]. Journal of Cleaner Production, 2016, 133: 504-510.
- [3] 王翼, 吴昌永, 周岳溪, 等. Fenton 氧化深度处理石化废水厂二级出水研究[J]. 环境科学, 2015, **36**(7): 2597-2603. Wang Y, Wu C Y, Zhou Y X, et al. Treatment of petrochemical treatment plant secondary effluent by fenton oxidation [J]. Environmental Science, 2015, **36**(7): 2597-2603.

学

- [4] 刘明国, 吴昌永, 周岳溪, 等. 臭氧-曝气生物滤池组合工艺处理石化二级出水的试验研究[J]. 环境科学, 2014, 35 (2): 651-656.

 Liu M G, Wu C Y, Zhou Y X, et al. Treatment of petrochemical secondary effluent by ozone-biological aerated filter [J].
- [5] Wu C Y, Gao Z, Zhou Y X, et al. Treatment of secondary effluent from a petrochemical wastewater treatment plant by ozonation - biological aerated filter [J]. Journal of Chemical Technology and Biotechnology, 2015, 90(3): 543-549.

Environmental Science, 2014, 35(2): 651-656.

- [6] Zheng D J, Cai W B, Wang T, et al. Pilot-scale integrated membrane system for the treatment of acrylonitrile wastewater [J]. Desalination, 2015, 357; 215-224.
- [7] Verma S, Prasad B, Mishra I M. Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics[J]. Journal of Hazardous Materials, 2010, 178 (1-3): 1055-1064.
- [8] Lin C K, Tsai T Y, Liu J C, et al. Enhanced biodegradation of petrochemical wastewater using ozonation and bac advanced treatment system[J]. Water Research, 2001, 35(3): 699-704.
- [9] 张菊萍, 陆少鸣, 徐姮,等。臭氧-生物活性炭净水工艺处理 苯酚污染的应急效果及影响因素分析[J]. 环境工程学报。 2015, **9**(6): 2745-2749.

 Zhang J P, Lu S M, Xu H, *et al.* Phenol pollution emergency treatment and influencing factors of O₃-BAC process [J]. Chinese Journal of Environmental Engineering, 2015, **9**(6): 2745-2749.
- [10] Ahmadi M, Kakavandi B, Jaafarzadeh N, et al. Catalytic ozonation of high saline petrochemical wastewater using PAC@ Fe II Fe $_2$ O₄: optimization, mechanisms and biodegradability studies [J]. Separation and Purification Technology, 2017, 177: 293-303.
- [11] 李文锦. 石化废水中特征污染物的固相萃取-GC/MS 法测定研究[D]. 邯郸:河北工程大学, 2013.
 Li W J. Determination of particular pollutants in petrochemical wastewater by solid-phase extraction followed by GC/MS[D]. Handan: Hebei University of Engineering, 2013.
- [12] Tang Y Q, Li M, Zou Y A, et al. Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation [J]. International Biodeterioration & Biodegradation, 2018, 126: 119-130.
- [13] 石晓荣,朱天宇,陈家财. 水中臭氧浓度的检测方法[J]. 河海大学常州分校学报,2007,21(1):48-52.
 Shi X Y, Zhu T Y, Chen J C. The methods of measuring ozone concentration in water [J]. Journal of Hohai University Changzhou, 2007,21(1):48-52.
- [14] De Schepper W, Dries J, Geuens L, et al. Conventional and (eco) toxicological assessment of batch partial ozone oxidation and subsequent biological treatment of a tank truck cleaning generated concentrate [J]. Water Research, 2009, 43 (16):

- 4037-4049
- [15] Chen X, Hung Y C. Predicting chlorine demand of fresh and fresh-cut produce based on produce wash water properties [J]. Postharvest Biology and Technology, 2016, 120: 10-15.
- [16] Yu W Z, Zhang D Z, Graham N J D. Membrane fouling by extracellular polymeric substances after ozone pre-treatment; variation of nano-particles size[J]. Water Research, 2017, 120: 146-155.
- [17] 陈梅芹, 吴景雄. UV₂₅₄ 在炼油废水深度处理中的效果预测 [J]. 工业水处理, 2008, 28(2): 64-66. Chen M Q, Wu J X. Discussion on UV₂₅₄ as a predictive index of advance treatment effect for refinery wastewater [J]. Industrial Water Treatment, 2008, 28(2): 64-66.
- [18] Aghili F, Ghoreyshi A A, Rahimpour A, et al. Enhanced treatment of pretreated sour whey by PAC adsorption/membrane process [J]. Chemical Engineering and Processing: Process Intensification, 2016, 99: 80-85.
- [19] 陈妍清. 臭氧生物活性炭工艺去除污染物的特性研究[D]. 南京: 东南大学, 2006.

 Chen Y Q. Special research on the removal pollutant by ozonation and BAC filtration[D]. Nanjing: Southeast University, 2006.
- [20] 董秉直, 张佳丽, 何畅. 臭氧氧化饮用水过程中可同化有机 碳生成的影响因素 [J]. 环境科学, 2016, **37**(5): 1837-1844.
 - Dong B Z, Zhang J L, He C. Influencing factors of assimilable organic carbon (AOC) formation in drinking water during ozonation process[J]. Environmental Science, 2016, 37(5):

- 1837-1844.
- [21] 舒诗湖, 苏定江, 高乃云, 等. 臭氧生物活性炭工艺对不同分子量有机物去除效果的研究[A]. 2005 年饮用水安全保障技术与管理国际研讨会论文集[C]. 天津: 中国城镇供水协会, 美国国家水研究中心, 2005.
- [22] 王钦祥,于茵,周岳溪,等.石化废水易降解成分对活性污泥耗氧抑制毒性评价的干扰因素[J].环境科学研究,2016,29(1):92-98.
 - Wang Q X, Yu Y, Zhou Y X, et al. Interference of activated sludge oxygen uptake toxicity evaluation by readily degradable compositions in petrochemical wastewater [J]. Research of Environmental Sciences, 2016, 29(1): 92-98.
- [23] Yang Q, Xiong P P, Ding P Y, et al. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity [J]. Bioresource Technology, 2015, 196: 169-175.
- [24] 张多英. 生物增强活性炭优势菌群稳定及竞争特征研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

 Zhang D Y. Study of bacterial community stability and competition of bioenhanced activated carbon process [D].

 Harbin: Harbin Institute of Technology, 2011.
- [25] Peix A, Ramírez-Bahena M H, Velúzquez E. The current status on the taxonomy of *Pseudomonas* revisited; an update [J]. Infection, Genetics and Evolution, 2018, 57: 106-116.
- [26] Li G, Huang W, Lerner D N, et al. Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil[J]. Water Research, 2000, 34(15): 3845-3853.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 39 No. 10 Oct. 15, 2018

CONTENTS

Ratios of Volatile Organic Compounds in Ambient Air of Various Cities of China	n, et al.	(4400)
Content Levels and Compositions Characteristics of Volatile Organic Compounds (VOCs) Emission from Architectural Coatings Based on Actual Measurement GAO Mei-ping, DENG Zi-yu, NIE Le		
Characteristics of Primary Pollutants of Air Quality in Cities Along the Taihang Mountains in Beijing-Tianjin-Hebei Region During 2014-2016 WANG Xiao-yan, WANG Shuai, ZHU Li-		
Seasonal Variation and Source Analysis for PM2.5, PM1 and Their Carbonaceous Components in Beijing	n, et al. n, et al. ag, et al. oo, et al. ag, et al.	(4430) (4439) (4446) (4457) (4463)
Selection of Priority Contaminants in a Watershed Using Risk Ranking Methodology Characteristics and Sources of Atmospheric Inorganic Nitrogen Wet Deposition in Xueyu Cave Watershed, Outer Suburbs of Chongqing City DUAN Shi-hui, JIANG Yong-jun, ZHANG Yuan-zh		
Characteristics of Nitrogen Deposition in Heilongjiang Liangshui National Nature Reserve SONG Lei, TIAN Peng, ZHANG Jin-b Key Production Process of Nitrous Oxide and Nitrogen Sources in Tuojia River ZHAO Qiang, LÜ Cheng-wen, QIN Xiao-b Impact of Biochar on Nitrogen Removal and Nitrous Oxide Emission in Aerated Vertical Flow Constructed Wetland WANG Ning, HUANG Lei, LUO Xin Physiological Responses of Ryegrass in Cadmium-Nonylphenol Co-contaminated Water and the Phytoremediation Effects SHI Guang-yu, LI Zhong-yi, ZHANG L Analysis of Absorption Characteristics of Urban Black-odor Water DING Xiao-lei, LI Yun-mei, LÜ Hen	o, et al. o, et al. ug, et al. u, et al.	(4490) (4497) (4505) (4512)
Seasonal Variations of DOM Spectral Characteristics in the Surface Water of the Upstream Minjiang River	ig, et al. ig, et al. in, et al. ig, et al.	(4530) (4539) (4547) (4556)
Adsorption Behavior of Phosphate from Water on Zirconium-loaded Granular Zeolite-amended Sediment LIANG Shu-jing, LIN Jian-wei, ZHAN Yan-hu Control of Coagulant Dosing for Humic Substances Based on Ultraviolet Spectrum Analysis ZHANG Bei-chen, ZHANG Xiao-lei, QIN Lan-la Reduction of Wastewater Organic Micro-pollutants and Genotoxicity in a Hybrid Process Involving Anaerobic-anoxic-oxic and Ozonation Treatments LI Mo, WANG Zhen-zhe, CHEN Zhi-qian	n, et al.	(4576)
Distribution and Removal of Antibiotic Resistance Genes in Two Sequential Wastewater Treatment Plants	n, et al. n, et al.	(4593) (4601)
Characteristics of Denitrifying Phosphorus Removal by A ² /O-BAF at Low Temperatures	u, et al. ig, et al. ig, et al.	(4621) (4628) (4636)
Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge	Ki, et al. ag, et al. an, et al.	(4653) (4661)
SHANG Er-ping, XU Er-qi, ZHANG Hong-q Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas	ng, et al. ng, et al. ei, et al.	(4684) (4694) (4705)
Long-term Fertilization Effects on the Abundance of Complete Ammonia Oxidizing Bacteria (Comammox Nitrospira) in a Neutral Paddy Soil WANG Mei, WANG Zhi-hui, SHI Xiao-ju		
Spatial Variation of Soil Organic Carbon and Stable Isotopes in Different Soil Types of a Typical Oasis	ei, et al. ag, et al. au, et al. ca, et al. an, et al.	(4735) (4744) (4752) (4759) (4766)
Oxidation of Humic Acid Complexing As(III) by As(III)-Oxidizing Bacteria	tion, u, et al.	(4783)
BAI Jie, CHEN Lin, HUANG Xia Isolation, Identification and Degradation Characteristics of a 17\(\beta\)-estradiol Degrading Strain Fusarium sp. KY123915 WU Man-li, ZHU Chang-cheng, QI Yan-yu Effect of Fluoroquinolones on Performance and Microbial Community of a Vertical Flow Constructed Wetland LI Xin-hui, ZHENG Quan, LI Jin Microbial Community Diversity Analysis During Composting of Lincomycin Mycelia Dreg with Manure REN Sheng-tao, GUO Xia-li, LU A-qia Oxidative Stress and DNA Damage Induced by DEP Exposure in Earthworms PING Ling-wen, LI Xian-xu, ZHANG Cu Mineralogy Characteristics and Heavy Metal Distribution of MSWI Fly Ash	n, et al. ng, et al. ng, et al. n, et al. ni, et al.	(4802) (4809) (4817) (4825)