

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第39卷 第10期

Vol.39 No.10

2018

中国科学院生态环境研究中心 主办

斜学出版社出版

ENVIRONMENTAL SCIENCE

第39卷 第10期 2018年10月15日

目 次

我国典型城市环境大气挥发性有机物特征比值)
2015 年北京大气 VOCs 时空分布及反应活性特征 张博韬 安成版 王瑟 闫贺 刘保献 张大伟(4400)	ì
北京市建筑光冷料 VOC。排放清单编制技术方法及应用	1
其王守测的建筑米冷料摆坐树右扣物(VOCs)令鲁水亚及组分转征	,
2014~2016年京津冀沿山城市空气质量首要污染物特征分析 王晓彦,王帅,朱莉莉,许荣,李健军(4422)	
北京市大气环境 PM_2 ,和 PM_1 及其碳质组分季节变化特征及来源分析	,
南京春季北郊地区大气 PM _{2.5} 中土安化学组分及恢问位系特征	
周一唱,韩珣, 王瑾瑾, 陈善莉, 沈潇雨, 章炎麟, 朱彬, 郭照冰(4439)	1
热脱附法快速分析大气细颗粒物中非极性有机物	
)
杭州市空气细颗粒物浓度与哮喘就诊人次的关系 王安旭,陈曦,宋从波,应颂敏,李倩,吴琳,毛洪钧(4457))
基于远程通讯技术的混动公交车 SCR 系统运行及 NO 排放特征	
机州市空气组粮粒物浓度与哮喘机诊人代的天系	ì
基于环境风险排序的海域优先污染物筛选 《《公》,《《公》,《《公》,《《公》,《《公》,《《公》,《《公》,《《公》	1
金字子 7. 水色 1. 17 1. 18 1. 18 2	
里庆远郊丰都当玉洞流域入气无机氮湿沉降变化特征与来源分析 	١
双 B P Y T C P P P P P P P P P P P P P P P P P P	,
志龙在你外国家及目然体护区人气氛几阵行怔 不错,口鹛,你金放,金儿痒(4490)	,
脱甲河水系 N ₂ O 大键产生过程及氮系米源探讨	
一次	1
生物炭添加对曝气人工湿地脱氮及氧化亚氮释放的影响	1
黑麦草对水体中镉-壬基酚复合污染的生理响应及修复 史广宇,李中义,张路,程媛媛,陈宏伟,施维林(4512))
城市黑臭水体的吸收特性分析 丁潇蕾, 李云梅, 吕恒, 朱利, 温爽, 雷少华(4519))
岷江上游水体中 DOM 光谱特征的季节变化····································)
防渗型生物滞留中试系统降雨径流水质与三维荧光特征 林修咏、王书敏、李强、谢云成(4539))
防冷型生物滞留中风系沉降的程流水质与三维灰光存征	1
全力 10 10 0 0 10 0 0 10 10 10 10 10 10 10 1	,
型及吴生勿地「小竹府工行中记功儿馆行证。	,
有贝敦秋型你有以民成化对小牛孵取血的吹附有为	
基于紫外光谱分析的腐殖质混凝控制	1
基丁家外光谱分析的腐组灰混凝控制	1
AAO 上艺联合臭氧削减污水中微量有机污染物及遗传毒性 ··················· 季默,汪震哲,陈志强,温沁雪(4584)	1
抗生素抗性基因在两级废水处理系统中的分布和去除 李奥林,陈吕军,张衍,代天娇,田金平,刘锐,温东辉(4593))
磁性壳聚糖凝胶球固定厌氧铁氨氧化菌对废水氨氮去除的影响 刘志文,陈琛,彭晓春,谢武明,黄镇扬,韩庆吉(4601))
海藻糖强化厌氧氨氧化耦合反硝化工艺处理高盐废水的脱氮除碳效能 杨振琳,于德爽,李津,王晓霞,冯莉(4612))
仟温下 A ² /O-BAF 反硝化除磷脱氮特性	١
O ₃ -BAC 深度处理石化废水厂尾水的特性及菌群结构分析 ··· 张超,单明皓,许丹宁,古明哲,代蓓蓓,纪轩,孙井梅(4628) 基于 MBR 不同种形短程硝化启动的微生物群落结构分析 ····························· 吴鹏,陈亚,张婷,沈耀良,徐乐中(4636)	ì
其于 MRR 不同和泥垣积硝化自动的微生物群液结构分析	1
3种不同工艺切换下活性污泥菌群结构及代谢产物对污泥沉降性能的影响	!
加汀汀,农怀江,陈市、工产,中里里,刈小除(4044)	,
硫酸盐还原菌活性污泥胞外聚合物对环丙沙星的吸附机制 张会群,贾妍艳,方荷婷,阴琳婉,吕慧(4653)包埋活性污泥反硝化性能的快速提高及群落分析 杨宏,徐富,孟琛,苏姗,袁星(4661)中国粮食主产区耕地土壤重金属时空变化与污染源分析 尚二萍,许尔琪,张红旗,黄彩红(4670)典型区土壤重金属空间插值方法与污染评价 马宏宏,余涛,杨忠芳,侯青叶,曾庆良,王锐(4684)秸秆与化肥减量配施对菜地土壤温室气体排放的影响 黄容,高明,黎嘉成,徐国鑫,吕盛,罗梅(4694)	1
包理活性污泥及帽化性能的快速提高及群落分析 物宏,徐虽,孟珠,办赙,哀至(4661)	1
中国粮食王产区耕地土壤重金属时至变化与污染源分析 尚二泙,许尔琪,张红旗,寅彩红(4670)	1
典型区土壤重金属空间插值方法与污染评价	1
秸秆与化肥减量配施对菜地土壤温室气体排放的影响 黄容,高明,黎嘉成,徐国鑫,吕盛,罗梅(4694))
不同肥料施用对设施菠菜地 NH, 挥发和N,O排放的影响 ······· 山楠, 韩圣慧, 刘继培, 陈清, 袁玉玲, 王立刚, 李虎(4705))
不同肥料施用对设施菠菜地 NH_3 挥发和 N_2 O排放的影响 ········· 山楠,韩圣慧,刘继培,陈清,袁玉玲,王立刚,李虎(4705)施肥类型和水热变化对农田土壤氮素矿化及可溶性有机氮动态变化的影响 ····································	
世界的)
长期不同施肥量对全程氨氧化细菌丰度的影响 王梅、王智慧、石孝均、蒋先军(4727))
典型绿洲不同土壤类型有机碳含量及其稳定碳同位素分布特征 陈新 贡璐 李杨梅 安申群 赵晶晶 4735))
凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制)
天然有机物活化讨磕廠卦降解十罐有机污染物效果	1
水分管理和外源硒对水稻吸收累积铅的影响······· 万亚男, 刘哲, Aboubacar Younoussa Camara, 余垚, 王琪, 李花粉(4759) 客水中微生物降解污染物的关键细菌····································	,
不力自经生产的原始的发现,不知识的影响 从工力,外自,Abubata Tounousa Camada,并至,上头,不允如(+132)	'
古小下版工物呼解行来初的大键细图 物后,物质化,从图 9 ,上玉田,取剂,导展 (4700)	,
Ψ氧化图列明墩散给言AS(Ⅲ)的氧化作用	,
海域局温油由 I 休啊局温啊盘婉骸盘还原囷的师选与生理特性及活性抑制。	
	1
1 株耐盐异养硝化-好氧反硝化菌 Zobellella sp. B307 的分离及脱氮特性 ··································	
白洁, 陈琳, 黄潇, 胡春辉, 赵阳国, 李岿然(4793))
1 株镰刀菌属 KY123915 的分离及其对 17β-雌二醇的降解特性	
)
氟喹诺酮对垂直流人工湿地性能及微生物群落的影响 李新慧. 郑权. 李静. 王晓慧. 海热提(4809))
林可霉素菌渣堆肥微生物群落多样性分析 任省涛 郭夏丽 芦阿虏 张倩倩 郭笑盈 干岩 干连忠 张宝宝(4817))
DEP 对蚯蚓抗氧化酶系的影响及 DNA 损伤)
DEP 对蚯蚓抗氧化酶系的影响及 DNA 损伤 ···································)
《环境科学》征订启事(4429) 《环境科学》征稿简则(4471) 信息(4529,4777,4816)	
「 「 「 「 「 「 「	

基于环境风险排序的流域优先污染物筛选

李奇锋1,2, 吕永龙1,2*, 王佩1, 张悦清1,2

(1. 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085; 2. 中国科学院大学, 北京 100049)

摘要:在流域生态环境治理中,确定治理水体的优先污染物是首先要考虑的问题.环境风险排序方法可利用污染物的毒性值与该污染的暴露浓度值的比值,快速对流域污染物进行风险排序,确定优先污染物.本文以有多年氟化工生产排放历史的大凌河为研究区域,分季节采集 18 个样点的水体表层样品,分析全氟辛基磺酸(PFOS)、全氟辛酸(PFOA)以及 8 种常见重金属,并搜集有关当地物种生态毒性的文献资料,确定其优先污染物.结果发现,2011~2016 年间,大凌河水体 PFOS 和 PFOA 的中位值浓度分别在 $0.77~3.57~\rm ng\cdot L^{-1}$ 、82.93~344 $\rm ng\cdot L^{-1}$ 之间,参照英国水环境对人体健康的潜在风险值发现其均低于标准限值.重金属和有机氯农药的浓度均低于国家 $\rm IV$ 级标准,但 $\rm Hg$ 和 $\rm As$ 的最高浓度高于 $\rm III$ 级标准.大凌河环境风险值范围为 $\rm 1.42\times10^{-6}~2.3\times10^{-2}$,环境风险排序结果为 $\rm Cu>Zn>As>p,p'-DDE>p,p'-DDT>Cd>Pb>Hg>PFOA>p-HCH>Cr>Ni><math>\rm \alpha-HCH>PFOS$. PFOS 和 PFOA 的环境风险排序较为靠后,说明不是该地区需要优先控制的污染物,但长期风险累积不可忽视. $\rm Cu$ 是未来大凌河生态环境治理的优先污染物,应重点控制包括造纸厂在内的主要工业企业的生产排放行为.

关键词:风险排序;大凌河;优先污染物;全氟和多氟烷基化合物;重金属;有机氯农药

中图分类号: X52 文献标识码: A 文章编号: 0250-3301(2018)10-4472-07 **DOI**: 10.13227/j. hjkx. 201802135

Selection of Priority Contaminants in a Watershed Using Risk Ranking Methodology

LI Qi-feng 1,2 , LÜ Yong-long $^{1,2\,*}$, WANG Pei 1 , ZHANG Yue-qing 1,2

(1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The present study focuses on the risk rankings of different contaminants from Daling River in Liaoning Province, China, for categorizing the environmental risk levels in the river. Eighteen surface water samples were collected from Daling River, which has been polluted by the surrounding fluorine industries for years. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and heavy metals were analyzed, and relevant eco-toxicity data obtained from literatures were considered. The median concentrations of PFOS and PFOA were observed as $0.77-3.57~\text{ng}\cdot\text{L}^{-1}$ and $82.93-344~\text{ng}\cdot\text{L}^{-1}$, respectively, which were lower than the standard limits of the United Kingdom. The concentrations of heavy metals and organochlorine pesticides (OCPs) were found to be lower than level IV of the Chinese national environmental quality standards for surface water. The maximum concentrations of mercury (Hg) and arsenic (As) were higher than the standard level III. The environmental risks ranged from 1.42×10^{-6} to 2.3×10^{-2} . The order of the risks by potential environmental contaminants was Cu > Zn > As > p, p'-DDE > p, p'-DDT $> \text{Cd} > \text{Pb} > \text{Hg} > \text{PFOA} > \gamma$ -HCH $> \text{Cr} > \text{Ni} > \alpha$ -HCH > PFOS. The present findings revealed that the environmental risks of PFOS and PFOA were relatively low and these were not taken as priority contaminants, but the accumulation risks could not be overlooked for a long time. Among the contaminants, copper (Cu) was the priority contaminant of Daling River. Hence, necessary measures are recommended to reduce the potential effects of contaminants on the environment.

Key words: risk ranking; Daling River; priority contaminant; per-and polyfluoroalkyl substances (PFASs); heavy metal; organochlorine pesticides (OCPs)

过去几十年的高强度开发,致使我国生态环境问题在一些工业化程度高的区域呈现出复合型污染特征,治理难度大,治理所需周期长且投入成本高^[1].例如,河流生态系统是化工企业和城市生活污水处理厂污水排放的重要传输通道,纳入了包括重金属、有机氯农药、全氟和多氟烷基化合物(perand polyfluoroalkyl substances, PFASs)、药物及个人护理品(pharmaceutical and personal care products, PPCPs)等在内的众多污染物^[2~4].在治理投入有限的情况下,从诸多污染物中遴选出一些污染物进行

优先治理,是一种科学的环境治理和生态恢复对策^[5].

近年来,国内外学者构建了多种基于计分排序 的优先污染物筛选方法,其中应用较为广泛的有欧

收稿日期: 2018-02-26; 修订日期: 2018-04-13

基金项目: 国家重点研发计划项目(2017YFC0505704); 国家自然科学基金项目(41420104004, 71761147001, 41701583); 天津市科技支撑计划项目(16YFXTSF00380)

作者简介: 李奇锋(1989~), 男, 博士研究生, 主要研究方向为流域污染物的环境效应与生态风险, E-mail:liqifeng0812@

* 通信作者,E-mail:yllu@rcees.ac.cn

盟水框架指令优先污染物筛选方法,美国根据污染物的出现频率、毒性和人群暴露潜势为指标,计算总得分进行排序等^[6,7].但是这类方法实施起来较为困难,不能快速在环境管理中实施应用,特别是出现环境应急事故时进行风险评估.基于化学品生态毒理数据的环境风险排序方法,笔者近年来与英国生态与水文学中心 Andrew C. Johnson 教授团队合作进行水环境污染物排序,快速筛选水体中的优先控制污染物^[8].该方法已经成功运用于中国环渤海、长江以及珠江等流域的水体污染物评价分析,科学地判定了各大流域的环境风险水平以及优先污染物^[2~4,9].

本研究以大凌河流域为例,拟通过分析水体样品,收集大凌河污染数据,系统研究辽宁大凌河的污染现状,利用环境风险排序方法对水体污染物进行风险排序,甄别大凌河流域的优先控制污染物(即环境风险最大的污染物),判定大凌河河口的风险水平,以期为未来大凌河流域生态环境治理提供科学依据.

1 材料与方法

1.1 研究区概况

大凌河[10]是辽宁省西部最大的河流,全长397 km, 年径流量为12.7 m3·s-1, 于辽东湾汇入渤海. 本研究位于大凌河中下游区域(图1),全长103 km, 细河是其最大支流, 年径流量为 $3.52 \text{ m}^3 \cdot \text{s}^{-1}$ 细河位于辽宁省阜新市境内, 是阜新市的主要排污 河流. 阜新市是我国重要的氟化工产业基地, 拥有 两个氟化工园区,每年各类氟化工品总产量达 14 000 t. 氟化工园区排放的污水已经给细河乃至 大凌河造成潜在生态风险,是渤海 PFASs 的主要来 源地之一. 阜新历史上有较大规模的全氟辛基磺酸 (perfluorooctane sulfonate, PFOS) 和全氟辛酸 (perfluorooctanoic acid, PFOA)的生产与使用,同时 该地区还有造纸厂废水等排放. 王荦等[11,12]对大凌 河地区重金属、有机氯农药做了系统研究, 发现该 地区历史上有化肥农药较大量的使用,残留了大量 的重金属、有机氯农药等. 因此, 本研究重点选择 大凌河水体 PFOS、PFOA 以及重金属、有机氯农药 的污染与环境风险状况.

1.2 样品的采集与分析

样品采集的点位如图 1 所示, 1~7 点位于细河, 8~14 点位于大凌河下游, 15~18 位于大凌河上游. 采样时间为 2015~2016 年, 分别采集 1 L 和

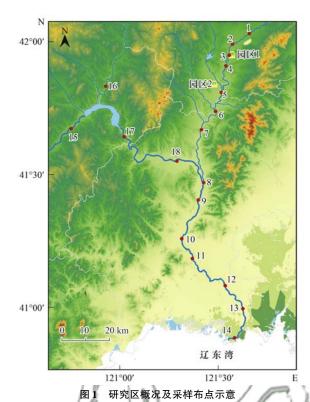


Fig. 1 Study area and sampling sites

10 mL 表层水样. 采集装置为 PP 级进口采样瓶, 样品冷藏保存.

PFOS、PFOA 提取前处理过程:取 400 mL 上清液,加 10 ng 内标,利用经过活化的 OASIS-WAX 小柱(依次用 4 mL 0.1% 的氨水甲醇溶液,4 mL 甲醇和 4 mL 超纯水活化)进行净化富集.过柱完成后,立刻用 4 mL 25 mmol·L⁻¹的乙酸铵缓冲溶液(pH = 4)冲洗.晾干小柱,再依次用 4 mL 甲醇、4 mL 0.1% 的氨水甲醇溶液洗脱,收集洗脱液.整个过程流速为 1 滴·s⁻¹.将收集的洗脱液用高纯氮气吹至 1 mL 以下,用甲醇定量至 1 mL,用 0.2 μ m 尼龙滤膜过滤后,保存于 1.5 mL 棕色样品瓶,冷藏在 -20°C冰箱中,待上机.每 6 个样品加入 1 个空白样,1 个空白加标样进行质量控制.

重金属提取:利用 0.45 μm 滤膜过滤样品,分为两部分. 一部分加入 HNO₃ 酸化,用于测定除 Hg 以外的重金属.一部分加浓硫酸酸化,加入重铬酸钾,样品呈较为持久的橙色,密封保存,用于测定 Hg.

1.3 PFASs 及重金属的测定

PFOS 与 PFOA 是利用高效液相色谱串联质谱仪(HPLC-MS/MS)分析,仪器型号为安捷伦 1290色谱系统串联安捷伦 6460 三重四级杆质谱系统.色谱条件^[13,14]:色谱柱 Agilent ZORBAX Eclipse

Plus C18 (2.1 × 100 mm, 1.8 μm),流动相为 2 mmol·L⁻¹醋酸铵溶液(A)和 100% 乙腈(B),梯度洗脱(0~8 min, 20% B; 8~10 min, 90% B),流速为 0.3 mL·min⁻¹;柱温为 40℃;进样量 5.0 μL. 质谱条件:电喷雾电离源负离子扫描(ESI⁻);多反应监测(MRM)模式;毛细管电压为3 500 V negative, Delta EMV(-)为 400 V;气源温度为 350℃,流速为 9 L·min⁻¹. PFOS 与 PFOA 的回收率为 70%~130%,满足质量控制要求.

重金属的测定: 样品中铜(Cu)、镍(Ni)、镉(Cd)、锌(Zn)、铬(Cr)、铅(Pb)和砷(As)7种重金属采用电感耦合等离子质谱仪(ICP-MS)技术测定,汞(Hg)采用原子荧光技术进行测定^[15]. 各金属元素的回收率保持在80%~120%之间,满足质量控制要求.

1.4 文献数据的收集

为尽可能全面评价大凌河的水环境现状,利用

中国知网、Google Scholar、Web of Science 数据库以及大凌河流域相关政府环境保护部门自 2011 年以来的监测和研究数据,最终获取到重金属、有机氯农药和 PFASs 的相关研究资料与数据^[10~14,16,17].

1.5 风险排序方法

风险排序方法的原理是利用污染物的毒性值与 该污染的暴露浓度值进行比较^[8,18],其方程式为:

$$R_{\rm m} = \frac{M_{\rm w}}{M} \tag{1}$$

式中, R_m 为污染物的中位值比较的相对风险值, M_w 为污染物所在水环境的浓度中位值, M_e 为污染物在水环境生物毒性值的中位值浓度. 在对中国的环渤海、长江、珠江等主要流域研究时,笔者对中国水环境本地物种的环境毒性数据进行了筛选,确定了中国水体环境各污染物的毒性中位值(表1) [2~4,9]. 在本研究中,大凌河发现的主要污染物有重金属、PFASs 和有机氯农药.

表 1 大凌河主要污染物的毒性中位值/ $\mu g \cdot L^{-1}$

	Table 1 Median ed	co-toxicity concentrations of	major contaminants in l	Daling River∕µg·L ⁻¹	
污染物	毒性中位值	污染物	毒性中位值	污染物	毒性中位值
Cd	85	Cr	2 900	Cu	130
Ni /	4 540	Ph	1 430	Zn	1 215
Hg	240	As	2 150	PFOA	2 000
PFOS (1 600	α-HCH	925	у-НСН	(I10 /
p,p'-DDT	9. 05	$p,p' ext{-DDE}$	3. 27	1 50	A 9 %

2 结果与讨论

2.1 大凌河水体中 PFOS 和 PFOA 的暴露水平

表 2 是大凌河 2011 ~ 2016 年 PFOS 和 PFOA 浓 度的统计值. PFOS 和 PFOA 的中位值分别为 0.77 ~3.57 ng·L⁻¹和 82.93 ~344 ng·L⁻¹之间. PFOS 的 最大浓度为 2015 年的 100 ng·L⁻¹,其余年份的最大 浓度均低于 20 ng·L-1. PFOA 的最大浓度为 2013 年的 1950 ng·L-1. PFOA 的最高浓度值位于氟化工 厂周边采样点,而 PFOS 的浓度较为均匀. 前期调 研发现,自2011年以来,在该流域入驻企业的主要 生产产品中包括 PFBA、PFBS 钾盐、C4 磺酰氟 (PFBSF)、PFOA 及其钾盐等. 与中国的其他流域 相比,大凌河的 PFOS 中值浓度和最大值浓度均低 于小清河、太湖和黄浦江等区域[19~21]. 大凌河 PFOA 的中值浓度与小清河、黄浦江等流域相当, 高于太湖的浓度. 大凌河 PFOA 最高浓度高于太湖 和黄浦江, 低于小清河. 这表明, 大凌河流域 PFOS 的排放得到了有效限制,已经不是其主要污染物, 而 PFOA 仍然为该区域的主要排放污染物之一.

因我国尚未制定 PFOS 和 PFOA 的排放浓度限值,考虑到与英国的水环境风险进行对比,故采用英国水环境对人体健康的潜在风险值^[10]: PFOS 为 1 000 ng·L⁻¹, PFOA 为5 000 ng·L⁻¹. 据此标准,大凌河在采样期间 PFOS 和 PFOA 的最高浓度均低于标准限值,表明大凌河 PFOS 和 PFOA 的污染尚处于较低风险水平.

2.2 大凌河水体中重金属和其他污染物的暴露水平大凌河的重金属和其他污染物的浓度水平如表 3 所示. 大凌河地表水中 8 种重金属 Cd、Cr、Cu、Ni、Pb、Zn、Hg、As 和 4 种有机氯农药 α-HCH、γ-HCH、p,p'-DDT、p,p'-DDE 的浓度(μg·L⁻¹)范围(中位值)分别为: ND ~ 4(0.03)、ND ~ 12(0.1)、ND ~ 692(3)、ND ~ 10(0.1)、0.2 ~ 6.5(0.5)、0.03~126(10.1)、0.002~0.4(0.02)、1.6~67.8(3.9)、ND ~ 0.12(0.004)、ND ~ 0.118(0.005)、ND ~ 0.02(0.005)和 ND ~ 0.023(0.003). 从整体上看,大凌河的重金属和有机氯农药浓度处于较低

表 2 大凌河(2011~2016年)和其他研究区域 PFOS 和 PFOA 的浓度统计/ $ng \cdot L^{-1}$

Table 2	Statistics of PFOS and PFOA	concentrations between 2011	and 2016 in Daling	River and other regions/	ng • L -1
1 abic 2	Statistics of Trop and Tron	Concentiations between 2011	and 2010 in Daning	g itivei and omei regions/ i	ıg · L

加索豆块	区域 采样年份 样品	24日長	PFOS 浓度			PFOA 浓度			44-4-
研究区域		件平份 件前里	最小值	中位值	最大值	最小值	中位值	最大值	文献
	2011	19	0. 05	2.5	12.6	0. 09	102	348	[13]
	2012	19	0. 16	0. 77	2.27	0. 58	113	675	[14]
大凌河	2013	19	0. 06	2.43	11.4	0. 61	344	1 950	[14]
八坂刊	2014	19	0. 47	1.52	6.95	2.17	156	772	[14]
	2015	19	$ND^{1)}$	3.571	100	0. 968	82.93	367.2	本研究
	2016	19	0. 347	2.847	11.174	0.20	100.28	147.69	本研究
小清河	2013	26	0. 68	6. 485	22	15. 3	96. 15	967 610	[19]
太湖	2014	31	10.6	21. 7	72.7	17. 1	28. 1	38. 2	[20]
黄浦江	$2012 \sim 2014$	121	ND	39. 6	286. 0	1	98. 1	402. 7	[21]
	参考标准			1 000			5 000		[10]

¹⁾ ND 表示未检出,下同

水平. 大凌河重金属的主要污染来源于造纸厂排污,有机氯农药主要来源于历史上工业使用和新近林丹、三氯杀螨醇的使用[11,12]. 大凌河地表水主要用于工业和部分养殖业. 因此本研究采用国家地表水 [[级标准(可用于饮用水源及渔业养殖)和 [[级标准(主要适用于一般工业用水区及人体非直接接触的娱乐用水区)进行评价. 从表3可以看出,水体中重金属及有机氯农药的最大浓度和中位浓度均低于 [[级标准,符合一般工业用水的标准. 但 Hg 和 As 的最大浓度值(Hg: 0.4 μg·L⁻¹, As: 67.8 μg·L⁻¹)高于 [[级限值(Hg: 0.1 μg·L⁻¹, As: 50 μg·L⁻¹),因此不能作为饮用水源地和渔业养殖,未来应对其产业结构进行

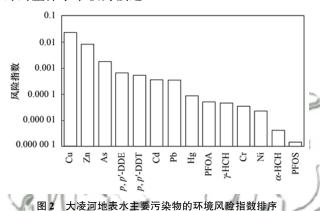
调整.

与其他相似产业结构的区域相比,大凌河地表水环境质量状况与其他河流相当.与河北洋河水环境重金属浓度相比,大凌河流域 Zn 和 As 的中位值高于洋河,其余均低于洋河的浓度水平[15]。与博尔塔拉河流域地表水重金属浓度相比,大凌河流域的相关重金属浓度均低于博尔塔拉河[22]。与辽宁条子河水中有机氯农药浓度水平相比,大凌河 HCHs的浓度低于辽宁条子河的平均水平(平均值为:0.01 μg·L⁻¹)^[23]。与辽河中下游地表水有机氯农药相比,大凌河 HCHs 和 DDTs 的浓度均低于辽河中下游的平均浓度(HCHs 平均值为 0.013 μg·L⁻¹, DDTs 的平均值为: 0.004 μg·L⁻¹)^[24]。

表 3 大凌河表层河水重金属和其他污染物浓度统计/ $\mu g \cdot L^{-1}$

Table 3 Concentrations of heavy metals and other contaminants in the surface water of Daling River/µg·L⁻¹

文献	参考标准 ^[25]	最大值	中位值	最小值	样品量	污染物
	5	4	0.03	ND **	35	Cd
	50	12	0.1	ND	35	Cr
	1 000	692	3	ND	35	Cu
本研究	20	10	0.1	ND	35	Ni
子切りし	50	6.5	0.5	0.2	35	Pb
	2 000	126	10.1	0.03	35	Zn
	1	0.4	0.02	0.002	35	Hg
	100	67.8	3.9	1.6	35	As
	5	0.12	0.004	ND	41	α -HCH
[11]	5	0.118	0.005	ND	41	γ-НСН
[11]	1	0.02	0.005	ND	67	$p, p' ext{-DDT}$
	1	0.023	0.003	ND	67	p,p'-DDE


2.3 大凌河环境污染物的风险排序

基于大凌河表层水的污染物浓度中值,大凌河的相关污染物环境风险排序结果如图 2 所示.大凌河的相对风险值范围为 $1.42 \times 10^{-6} \sim 2.3 \times 10^{-2}$,环境风险指数水平由高到低的排序为: Cu > Zn > As

>p,p'-DDE >p,p'-DDT > Cd > Pb > Hg > PFOA $> \gamma$ -HCH > Cr > Ni $> \alpha$ -HCH > PFOS. 重金属 Cu、Zn 和 As 是大凌河水体环境风险相对较高的污染物,排 名前三位,相对风险值分别为: 0.023、0.008 和 0.001 8. Cd、Pb、Hg、Cr 和 Ni 的环境风险指数较

低,相对风险值分别为: 3.53×10^{-4} 、 3.50×10^{-4} 、 8.33×10^{-5} 、 3.45×10^{-5} 和 2.20×10^{-5} . 在有机污染物中,相对环境风险值较高的是 p,p'-DDE、p,p'-DDT,风险值分别为 6.60×10^{-4} 和 5.23×10^{-4} ,排名第四和第五. PFOA、 γ -HCH、 α -HCH、PFOS 的环境风险较低,风险值分别为 5.00×10^{-5} 、 4.80×10^{-5} 、 4.00×10^{-6} 和 1.42×10^{-6} . 这表明,PFOA 和 PFOS 在当地的风险较低,但作为氟化工企业,其带来的长期累积风险也不可忽视.

整体来看,大凌河流域的优先控制污染物为Cu. 在其他研究中,Cu 也是风险最高的污染物,体现了较为一致的风险特征^[4,9]. 与其他研究相比,大凌河的最高环境风险值(2.3×10⁻²)低于环渤海的平均水平(3.6×10⁻²),但高于英国水体的平均值(7.83×10⁻³). PFOA、PFOS 的环境风险与环渤海的整体水平较为接近^[3].

新名 一大度河地表示主要75条初的が現入陸省数群 Fig. 2 Risk ranking of major contaminants in the surface water of Daling River

基于对大凌河 PFASs 多年的持续采样研究,笔者进一步分析了 2011~2016 年期间的年度环境风险变迁(图 3). 前期研究发现,大凌河 PFOS 和PFOA 主要来源于位于细河的氟化工园区,分别占

大凌河 PFOS 和 PFOA 来源的 44.57% 和 95.44% $^{[10]}$. 由此可以看出,大凌河水体 PFOS 和 PFOA 的环境风险由氟化工园区主导. 在 2011~2016年间,因停止 PFOS 生产活动,其环境风险较为稳定,而 PFOA 因生产活动和河流水量变化产生的环境风险变化较大. 细河 PFOS 和 PFOA 的环境风险指数范围在 5.31× 10 ~ 5.76× 10 ~ 6 6 和 6.82× 10 ~ 3.2× 10 ~ 1.32× 10 ~ 6 和 7.74× 10 ~ 6 ~ 1.59× 10 ~ 10.30

2.4 大凌河河口环境污染物的风险排序

河口位于河流与海洋的交汇口,因存在河流因素和海洋因素的强弱交替作用,营养物质丰富,是生物量较为丰富的水体生态系统^[26].河口也是人口稠密、工业活动密集的区域,其水体环境质量,对生物体和人体健康有重要影响^[27].在研究大凌河环境优先控制污染物时,有必要讨论河口污染物的环境风险变化情况.

大凌河河口环境污染物的主要数据来源于大凌河河口环境监测断面(2014~2016年)和前期大凌河 PFASs 排放研究. 大凌河河口断面主要监测了 Hg、Pb、Cu、Zn、As、Cd 和 Cr 等 7 种重金属. 因此,对大凌河河口的环境风险指数计算中,主要计算了这 7 种重金属、PFOS 和 PFOA,结果如图 4 所示.

2014~2016 年间,大凌河河口各类污染物的环境风险指数在 8. 27×10⁻⁷~6. 42×10⁻²之间. 环境风险指数较高的污染物为 Cu 和 Zn,其中 2014 年度 Zn 的浓度暴露是最主要的环境风险来源,风险指数为 6. 24×10⁻²,2015 年和 2016 年,重金属 Cu 污染的浓度暴露是最主要的环境风险来源,风险指数分别为 6.42×10^{-2} 和 5.57×10^{-2} . PFOS 和 PFOA

2016

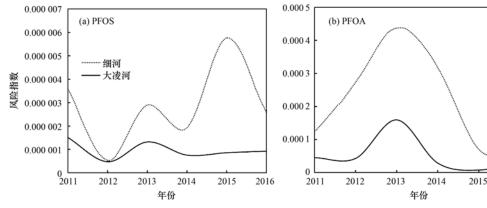


图 3 大凌河 2011~2016 年 PFOS 与 PFOA 环境风险指数变迁

Fig. 3 Environmental risk ratio variation of PFOS and PFOA in Daling River from 2011 to 2016

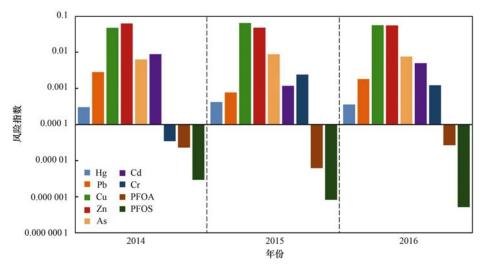


图 4 2014~2016 年大凌河河口环境风险指数变迁

Fig. 4 Environmental risk ratio variation in the estuary of Daling River from 2014 to 2016

的环境风险指数均低于7种重金属,数量级均低于10⁻⁴.因此,大凌河河口的优先控制污染物也为Cu,未来大凌河应重点治理排放重金属的包括造纸厂在内的工业企业.

3 结论

- (1) 阜新氟化工产业的排放是大凌河 PFASs 的主要来源,该区域履行 POPs 公约,停止了 PFOS 的生产与使用,但有较大规模的 PFOA 生产与使用. 2011 ~2016 年期间,水体中 PFOS 和 PFOA 的中位值分别为 $0.77~3.57~{\rm ng\cdot L^{-1}}$ 和 $82.93~344~{\rm ng\cdot L^{-1}}$ 之间,低于 PFASs 的相关水体标准.
- (2)大凌河地表水中 8 种重金属 Cd、Cr、Cu、Ni、Pb、Zn、Hg、As 和 4 种有机氯农药 α-HCH、γ-HCH、ρ,ρ'-DDT、ρ,ρ'-DDE 的浓度值均低于国家水体 IV级标准限值,但 Hg 和 As 的最大浓度值高于Ⅲ级限值,不能作为饮用水源和渔业养殖用水.
- (3)大凌河的环境风险值范围为 $1.42 \times 10^{-6} \sim 2.3 \times 10^{-2}$,环境风险指数水平由高到低的排序为: Cu > Zn > As > p, p'-DDE > p, p'-DDT > Cd > Pb > Hg > PFOA > γ -HCH > Cr > Ni > α -HCH > PFOS,其优先控制污染物依次为 Cu、Zn 和 As. PFOS 和 PFOA 的环境风险排序较为靠后,不是该地区的优先控制污染物,但长期风险累积不可忽视。2011~2016 年期间,大凌河的 PFOS 和 PFOA 的环境风险主要来自位于其支流的细河岸边的氟化工排放。
- $(4)2014 \sim 2016$ 年间,大凌河河口各类污染物的环境风险指数在 8.27 × $10^{-7} \sim 6.42 \times 10^{-2}$ 之间,优先控制污染物为 Cu. 因此, Cu 是未来大凌河生

态环境治理的优先污染物,应重点治理包括造纸厂 在内的主要工业企业的生产排放行为. 参考文献:

- [1] 吕永龙, 苑晶晶, 李奇锋, 等. 陆源人类活动对近海生态系统的影响[J]. 生态学报, 2016, **36**(5): 1183-1191. Lü Y L, Yuan J J, Li Q F, et al. Impacts of land-based human activities on coastal and offshore marine ecosystems [J]. Acta Ecologica Sinica, 2016, **36**(5): 1183-1191.
- [2] Zhang M, Shi Y J, Lu Y L, et al. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China[J]. Science of the Total Environment, 2017, 590-591: 633-642.
- [3] Zhang Y Q, Johnson A C, Su C, et al. Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem? [J]. Chemosphere, 2017, 178: 11-18.
- [4] Su C, Lu Y L, Johnson A C, et al. Which metal represents the greatest risk to freshwater ecosystem in Bohai Region of China?
 [J]. Ecosystem Health and Sustainability, 2017, 3 (2): e01260.
- [5] 卜庆伟, 王东红, 王子健. 基于风险分析的流域优先有机污染物筛查: 方法构建[J]. 生态毒理学报, 2016, **11**(1): 61-69.

 Bu Q W, Wang D H, Wang Z J. A risk-based screening approach for priority organic contaminants at the watershed scale: Method development[J]. Asian Journal of Ecotoxicology, 2016, **11**(1): 61-69.
- [6] 刘臣辉,付玲玲,申雨桐,等. 欧盟水框架指令优先污染物筛选方法的应用[J]. 环境工程,2015,33(10):126-129. Liu C H, Fu L L, Shen Y T, et al. The application of a prioritization exercise for the European water framework directive [J]. Environmental Engineering, 2015, 33(10):126-129.
- [7] 杨彦,李定龙,赵洁,等.基于健康风险的区域水环境优先 控制污染物筛选方法[P].中国专利:CN102867116A,2013-01-09
- [8] Donnachie R L, Johnson A C, Moeckel C, et al. Using riskranking of metals to identify which poses the greatest threat to

- freshwater organisms in the UK [J]. Environmental Pollution, 2014, 194: 17-23.
- [9] Johnson A C, Jürgens M D, Su C, et al. Which commonly monitored chemical contaminant in the Bohai region and the Yangtze and Pearl rivers of China poses the greatest threat to aquatic wildlife? [J]. Environmental Toxicology and Chemistry, 2018, 37(4): 1115-1121.
- [10] Li Q F, Wang T Y, Zhu Z Y, et al. Using hydrodynamic model to predict PFOS and PFOA transport in the Daling River and its tributary, a heavily polluted river into the Bohai Sea, China[J]. Chemosphere, 2017, 167: 344-352.
- [11] 王荦, 刘宪杰, 郭建国, 等. 辽宁省大凌河口水体中有机氯 农药的污染特征[J]. 海洋环境科学, 2013, **32**(3): 410-413
 - Wang L, Liu X J, Guo J G, et al. Pollution characteristics of organochlorine pesticides in surface water from Dalinghe river estuary, Liaoning Province [J]. Marine Environmental Science, 2013, 32(3): 410-413.
- [12] 王荦, 孙野青, 贾宏亮, 等. 辽宁省大凌河口沉积物重金属 污染及生态风险评价[J]. 海洋环境科学, 2013, **32**(1): 28-32.
 - Wang L, Sun Y Q, Jia H L, et al. Pollution and potential ecological risk evaluation of heavy metals in surface sediment from Daling River Estuary, Liaoning Province [J]. Marine Environmental Science, 2013, 32(1); 28-32.
- [13] Zhu Z Y, Wang T Y, Meng J, et al. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China; seasonal variation, mass flow, and risk assessment [J]. Environmental Science and Pollution Research, 2015, 22 (13): 10009-10018.
- [14] 王佩. 环渤海地区全氟烷基酸排放与迁移的生态学过程研究 [D]. 北京;中国科学院研究生院,2015.
- [15] 谭冰,王铁宇,朱朝云,等. 洋河流域万全段重金属污染风险及控制对策[J]. 环境科学, 2014, **35**(2): 719-726.

 Tan B, Wang T Y, Zhu Z Y, et al. Risk assessment and countermeasures of heavy metals pollution in Wanquan segment of Yanghe River[J]. Environmental Science, 2014, **35**(2): 719-726.
- [16] Meng J, Wang T Y, Wang P, et al. Perfluoroalkyl substances in daling river adjacent to fluorine industrial parks: Implication from industrial emission [J]. Bulletin of environmental contamination and toxicology, 2015, 94(1): 34-40.
- [17] 阜新市环境监测公报[EB/OL]. http://hbj. fuxin. gov. cn/hbj/zwgk/ztbd/jcbg/list. html.
- [18] Donnachie R L, Johnson A C, Sumpter J P. A rational approach to selecting and ranking some pharmaceuticals of concern for the aquatic environment and their relative importance compared with other chemicals [J]. Environmental Toxicology and Chemistry,

2016, 35(4): 1021-1027.

2422-2429.

- [19] Wang P, Lu Y L, Wang T Y, et al. Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China[J]. Journal of Hazardous Materials, 2016, 307: 55-63.
- [20] Ma X X, Shan G Q, Chen M, et al. Riverine inputs and source tracing of perfluoroalkyl substances (PFASs) in Taihu Lake, China[J]. Science of The Total Environment, 2018, 612: 18-25.
- [21] Sun Z Y, Zhang C J, Yan H, et al. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China[J]. Chemosphere, 2017, 174: 127-135.
- [22] 张兆永,吉力力·阿不都外力,姜逢清.博尔塔拉河河水、表层底泥及河岸土壤重金属的污染和潜在危害评价[J]. 环境科学,2015,36(7):2422-2429.

 Zhang Z Y, Jilili Abuduwaili, Jiang F Q. Pollution and potential ecology risk evaluation of heavy metals in river water, top sediments on bed and soils along banks of Bortala River, Northwest China[J]. Environmental Science, 2015,36(7):
- [24] 张秀芳, 董晓丽. 辽河中下游水体中有机氯农药的残留调查 [J]. 大连轻工业学院学报, 2002, **21**(2): 102-104. Zhang X F, Dong X L. Organic chlorinated pesticides in middle and lower reaches of Liaohe [J]. Journal of Dalian Institute of Light Industry, 2002, **21**(2): 102-104.
- [25] 徐美娟, 鲍波, 陈春燕, 等. 宁波市地表水重金属污染现状和健康风险评价[J]. 环境科学, 2018, **39**(2): 729-737.

 Xu M J, Bao B, Chen C Y, et al. Assessment of heavy metal pollution and human health risk of surface waters in the city of Ningbo, China[J]. Environmental Science, 2018, **39**(2): 729-737.
- [26] 牛明香, 王俊. 河口生态系统健康评价研究进展[J]. 生态学杂志, 2014, **33**(7): 1977-1982.

 Niu M X, Wang J. Review on estuary ecosystem health assessment[J]. Chinese Journal of Ecology, 2014, **33**(7): 1977-1982.
- [27] 刘静, 刘录三, 郑丙辉. 入海河口区水环境管理问题与对策 [J]. 环境科学研究, 2017, **30**(5): 645-653.

 Liu J, Liu L S, Zheng B H. Problems and countermeasures of water environmental management in estuaries [J]. Research of Environmental Sciences, 2017, **30**(5): 645-653.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 39 No. 10 Oct. 15, 2018

CONTENTS

Ratios of Volatile Organic Compounds in Ambient Air of Various Cities of China	n, et al.	(4400)
Content Levels and Compositions Characteristics of Volatile Organic Compounds (VOCs) Emission from Architectural Coatings Based on Actual Measurement GAO Mei-ping, DENG Zi-yu, NIE Le		
Characteristics of Primary Pollutants of Air Quality in Cities Along the Taihang Mountains in Beijing-Tianjin-Hebei Region During 2014-2016 WANG Xiao-yan, WANG Shuai, ZHU Li-		
Seasonal Variation and Source Analysis for PM2.5, PM1 and Their Carbonaceous Components in Beijing	n, et al. n, et al. ag, et al. oo, et al. ag, et al.	(4430) (4439) (4446) (4457) (4463)
Selection of Priority Contaminants in a Watershed Using Risk Ranking Methodology Characteristics and Sources of Atmospheric Inorganic Nitrogen Wet Deposition in Xueyu Cave Watershed, Outer Suburbs of Chongqing City DUAN Shi-hui, JIANG Yong-jun, ZHANG Yuan-zh		
Characteristics of Nitrogen Deposition in Heilongjiang Liangshui National Nature Reserve SONG Lei, TIAN Peng, ZHANG Jin-b Key Production Process of Nitrous Oxide and Nitrogen Sources in Tuojia River ZHAO Qiang, LÜ Cheng-wen, QIN Xiao-b Impact of Biochar on Nitrogen Removal and Nitrous Oxide Emission in Aerated Vertical Flow Constructed Wetland WANG Ning, HUANG Lei, LUO Xin Physiological Responses of Ryegrass in Cadmium-Nonylphenol Co-contaminated Water and the Phytoremediation Effects SHI Guang-yu, LI Zhong-yi, ZHANG L Analysis of Absorption Characteristics of Urban Black-odor Water DING Xiao-lei, LI Yun-mei, LÜ Hen	o, et al. o, et al. ug, et al. u, et al.	(4490) (4497) (4505) (4512)
Seasonal Variations of DOM Spectral Characteristics in the Surface Water of the Upstream Minjiang River	ig, et al. ig, et al. in, et al. ig, et al.	(4530) (4539) (4547) (4556)
Adsorption Behavior of Phosphate from Water on Zirconium-loaded Granular Zeolite-amended Sediment LIANG Shu-jing, LIN Jian-wei, ZHAN Yan-hu Control of Coagulant Dosing for Humic Substances Based on Ultraviolet Spectrum Analysis ZHANG Bei-chen, ZHANG Xiao-lei, QIN Lan-la Reduction of Wastewater Organic Micro-pollutants and Genotoxicity in a Hybrid Process Involving Anaerobic-anoxic-oxic and Ozonation Treatments LI Mo, WANG Zhen-zhe, CHEN Zhi-qian	n, et al.	(4576)
Distribution and Removal of Antibiotic Resistance Genes in Two Sequential Wastewater Treatment Plants	n, et al. n, et al.	(4593) (4601)
Characteristics of Denitrifying Phosphorus Removal by A ² /O-BAF at Low Temperatures	u, et al. ig, et al. ig, et al.	(4621) (4628) (4636)
Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge	Ki, et al. ag, et al. an, et al.	(4653) (4661)
SHANG Er-ping, XU Er-qi, ZHANG Hong-q Spatial Interpolation Methods and Pollution Assessment of Heavy Metals of Soil in Typical Areas	ng, et al. ng, et al. ei, et al.	(4684) (4694) (4705)
Long-term Fertilization Effects on the Abundance of Complete Ammonia Oxidizing Bacteria (Comammox Nitrospira) in a Neutral Paddy Soil WANG Mei, WANG Zhi-hui, SHI Xiao-ju		
Spatial Variation of Soil Organic Carbon and Stable Isotopes in Different Soil Types of a Typical Oasis	ei, et al. ag, et al. au, et al. ca, et al. an, et al.	(4735) (4744) (4752) (4759) (4766)
Oxidation of Humic Acid Complexing As(III) by As(III)-Oxidizing Bacteria	tion, u, et al.	(4783)
BAI Jie, CHEN Lin, HUANG Xia Isolation, Identification and Degradation Characteristics of a 17\(\beta\)-estradiol Degrading Strain Fusarium sp. KY123915 WU Man-li, ZHU Chang-cheng, QI Yan-yu Effect of Fluoroquinolones on Performance and Microbial Community of a Vertical Flow Constructed Wetland LI Xin-hui, ZHENG Quan, LI Jin Microbial Community Diversity Analysis During Composting of Lincomycin Mycelia Dreg with Manure REN Sheng-tao, GUO Xia-li, LU A-qia Oxidative Stress and DNA Damage Induced by DEP Exposure in Earthworms PING Ling-wen, LI Xian-xu, ZHANG Cu Mineralogy Characteristics and Heavy Metal Distribution of MSWI Fly Ash	n, et al. ng, et al. ng, et al. n, et al. ni, et al.	(4802) (4809) (4817) (4825)