

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

第38卷 第4期

Vol.38 No.4

2017

中国科学院生态环境研究中心 主办

斜学出版社出版

ENVIRONMENTAL SCIENCE

第38卷 第4期 2017年4月15日

目 次

西宁近郊大气氮干湿沉降研究
2015 年北京城区大气 PM2.5 中 NH4、NO3、SO4- 及前体气体的污染特征————————————————————————————————————
一
超速处理、正元、不可。
畜禽粪便有机肥中重金属在土壤剖面中积累迁移特征及生物有效性差异 何梦媛,董同喜,茹淑华,苏德纯(1576)
山东省农田土壤多环芳烃的污染特征及源解析 ····································
<u> </u>
迟荪琳,徐卫红,熊仕娟,王卫中,秦余丽,赵婉伊,张春来,李彦华,李桃,张进忠,熊治庭,王正银,谢德体(1654) 不同作物对外源硒动态吸收、转运的差异及其机制 … 彭琴,李哲,梁东丽,王梦柯,郭璐(1667) 褪黑素对水稻幼芽镍胁迫的缓解作用 … 刘仕翔,黄益宗,罗泽娇,黄永春,蒋航(1675) 不同形态磺胺类药物在根-土界面的空间分布及毒性评价 … 金彩霞,司晓薇,王万峰,王春峰,王子英,张琴文,王婉(1683) 三峡库区消落带沉积物对鱼体富集汞的影响 …

矿化垃圾中Fe(Ⅲ)还原耦合 CH。厌氧去除特性

王立立1,2,何婷1,2,龙焰1,2*,刘常宝1,2

(1. 暨南大学环境学院,广州 510632; 2. 暨南大学广东省高校水土环境毒害性污染物防治与生物修复重点实验室,广州 510632)

摘要:填埋场内 Fe 的含量极其丰富,被誉为"世界第三大铁库",同时又是重要的甲烷释放源.本研究利用 Fe 的变价特性,结合矿化垃圾可用作生物覆盖材料的特点,设计反应器模拟填埋场覆土层,通过添加 FeCl₃ 研究了Fe(\blacksquare)对 CH₄ 厌氧去除的影响及与共存电子受体 NO₃ 、SO₄ 之间的相互作用.结果表明,矿化垃圾中添加Fe(\blacksquare)可明显促进 CH₄ 厌氧去除,CH₄ 含量随时间变化符合零级动力学,去除速率(以 CH₄/干垃圾计)达 1.28 mmol·(kg·d)⁻¹. 厌氧条件下 CH₄ 共存时,外加Fe(\blacksquare)有利于矿化垃圾中形成活性Fe(\blacksquare),与共存电子受体 NO₃ 、SO₄ 还原形成耦合效应,从而加速 NO₃ 、SO₄ 的消耗.

关键词:甲烷;厌氧去除;矿化垃圾;Fe(Ⅲ)还原;耦合

中图分类号: X705 文献标识码: A 文章编号: 0250-3301(2017)04-1558-08 DOI: 10.13227/j. hjkx. 201606032

Characteristics of Anaerobic Methane Removal Coupled to Fe (III) Reduction in Aged Refuse

WANG Li-li^{1,2}, HE Ting^{1,2}, LONG Yan^{1,2*}, LIU Chang-bao^{1,2}

(1. School of Environment, Jinan University, Guangzhou 510632, China; 2. Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China)

Abstract: Landfills are the third largest iron reservoir and one of the largest sources of methane release. Iron, as a kind of transition metal, plays a particularly important role in environmental biogeochemistry and is closely linked to the biogeochemical cycle of C, S and N. The aged refuse could be utilized as bio-cover material to improve the removal of contaminants. Therefore, this work investigated the effect of iron reduction on anaerobic removal of methane, and the interactions of ferric iron with nitrate and sulfate in the aged refuse. The columns were operated as landfill bio-covers and recirculated leachate with addition of FeCl₃ solution. In the experiment, three columns were used, two of them were used as controls (named as B1 and B3), B1 was fed with leachate and CH_4 , whereas B3 was only recirculated with leachate adding FeCl₃. The treatment B2 was fed with the above two substrates. During the operation of columns, the contents of CH_4 , CO_2 and N_2 in the gas, and the concentrations of NO_3^- , NO_2^- , NH_4^+ , SO_4^{2-} , Fe(III) and Fe(III) in the leachate and refuse were respectively determined. The results showed that adding ferric iron obviously enhanced the removal of methane in anaerobic aged refuse, the decrease of methane content with time obeyed zero-order kinetic, and the rate of methane removal (denoted as CH_4 /aged refuse) reached 1.28 mmol·(kg·d)⁻¹. In the anaerobic condition, methane could improve the reduction of Fe(III) to dissolved, active and bioavailable Fe(III). The active Fe(III) probably coupled to the transformation of NO_3^- and SO_4^{2-} , and thus accelerated the removal of NO_3^- and SO_4^{2-} .

Key words: methane; anaerobic removal; aged refuse; Fe(**II**) reduction; coupling

 CH_4 是重要的温室气体 [1]. 垃圾填埋场作为三大 CH_4 释放源之一,其每年约释放 CH_4 16~22 $Tg^{[2]}$,占全球 CH_4 通量的 10% ~ $19\%^{[3]}$. 填埋气在通过覆盖层向大气释放的过程中,能被其中的微生物氧化,因此,可利用生物技术控制填埋场甲烷排放. 铁是生物圈最常利用的变价金属,其价态变化与 C、S、N、P 的生物地球化学循环及重金属转化密切相关 [4],已受到研究者的高度关注. 填埋场内Fe 的含量极其丰富,被誉为"世界第三大铁库" [5]. 据报道,不同填埋龄垃圾样品中 Fe(III) 和Fe(III) 含量变化范围分别为16 156. 2~10 551. 9 $mg \cdot kg^{-1}$ 和10 741. 0~7 366. 1 $mg \cdot kg^{-1}$. 而且伴随垃圾填埋

龄的增加,因异化铁还原作用持续将垃圾中的Fe(Ⅲ)还原为Fe(Ⅱ),Fe(Ⅱ)含量会不断积累^[6].针对Fe(Ⅲ)与CH₄,以往的研究中人们大多关注稻田土、沉积物等介质中Fe(Ⅲ)对产甲烷的抑制作用.且普遍认为,Fe(Ⅲ)通过与产甲烷菌竞争电子供体(乙酸盐、氢气)抑制电子传递到产甲烷过程,从而抑制CH₄产生.然而,随着研究深入,人们发现Fe(Ⅲ)不仅影响CH₄产生,而且可以调控CH₄氧

收稿日期: 2016-06-06; 修订日期: 2016-11-15

基金项目: 国家自然科学基金项目(410013230);环境保护公益性行

业科研专项(2011467001)

作者简介: 王立立(1973~),女,博士,硕士生导师,主要研究方向为 废水生物处理,E-mail: towanglili@163.com

* 通信作者,E-mail:Tlongyan@jnu.edu.cn

化. 早在 1980 年, Zehnder 等^[7] 就发现在缺氧环境或消化污泥中添加 FeCl₂ 和 FeCl₃ 可以促进 CH₄ 氧化的现象;2009 年 Beal 等^[8] 发现沉积物中存在能够利用水铁矿的甲烷氧化菌, 从微生物角度证明Fe(Ⅲ)可驱动厌氧甲烷氧化(anaerobic oxidation of methane, AOM). 此后,研究者陆续从能量^[9]、地球化学^[10]、电子平衡计算和分子生物学检测^[11]等角度证明Fe(Ⅲ)还原耦合 AOM 普遍存在于淡水^[12]、海洋沉积物^[13]、湿地^[14]、地下蓄水层中^[11]. 2016年最新的研究报道证明 methanosarcinales(甲烷叠球菌) 厌氧条件下能够利用Fe(Ⅲ)将 CH₄ 转化成CO₂,而且该过程中还原得到的Fe(Ⅱ)能供其他细菌的新陈代谢所用^[15].

矿化垃圾是具有独特性质如含有多种微量元素、金属、腐殖质,并富含各种功能微生物的介质,

1 材料与方法

1.1 供试样品的采集及预处理

试验中所用垃圾取自广州某山谷型简易填埋场.该填埋场无渗滤液、填埋气收集系统,主要受纳周边居民的生活垃圾和建筑垃圾,封场超过10 a. 垃圾样品的采集及预处理见文献[17],垃圾理化性质见表1. 试验中所用渗滤液取自广州市兴丰垃圾填埋场渗滤液处理厂的SBR 反应器出水,水质特性见表2.

表 1 垃圾理化性质

Table 1 Thysico-encinear properties of the aged refuse				
项目	测量值	项目	测量值	
pН	7. 85 ~ 7. 95	NO ₂ -N/mg·kg ⁻¹	3. 83 ± 0. 52	
含水率/%	34.37 ± 0.40	NH ₄ -N/mg•kg ⁻¹	37.35 ± 0.66	
Fe/mg·kg ⁻¹	$33\ 311.\ 00\pm 20.\ 50$	SO ₄ -/mg·kg -1	$1\ 315.\ 00\ \pm 1.\ 53$	
Fe(II)/mg·kg ⁻¹	1 197. 72 ± 130. 97	TC/%	3.37 ± 1.41	
Fe(∭)/mg·kg ⁻¹	7 464 86 + 188 60	NO ₂ -N/mg·kg ⁻¹	$144\ 00 + 2\ 03$	

Table 1 Physico-chemical properties of the aged refuse

表 2 渗滤液理化性质

Table 2 Physico-chemical properties of the leachate

项目	测量值	项目	测量值
pН	8. 62	NO ₂ -N/mg·L ⁻¹	3. 83 ± 0. 16
Fe/mg·L ⁻¹	560.00 ± 10.19	NH_4^+ -N/mg • L $^{-1}$	165.35 ± 0.80
Fe(II)/mg·L ⁻¹	1.66 ± 0.11	SO ₄ - /mg·L - 1	371.19 ± 7.23
Fe(Ⅲ)/mg•L ⁻¹	$22.\ 10 \pm 1.\ 26$	COD/mg·L ⁻¹	1 556. 67 ± 11. 22
NO_3^- -N/mg·L $^{-1}$	15.50 ± 0.29		

1.2 试验装置

本试验所用模拟反应柱结构见图 1.

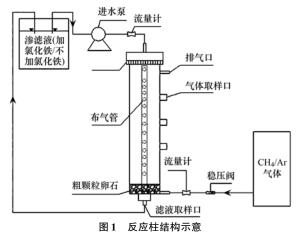


Fig. 1 Schematic of the reaction columns

反应柱采用 Φ16 cm(不包括壁厚)的圆柱形硬质 PVC 管制成,高1 m,其底部设穿孔板和锥斗收集渗滤液,反应器上部留出 10 cm 的气室. 柱内放置一根 Φ2 cm,长约 70 cm 的 PVC 细孔管,用于导排气体.

反应柱装填时,先在穿孔板上装填6~10 cm 的石砾,然后填入约65 cm 左右的矿化垃圾,最后再铺3~5 cm 厚的细沙. 反应柱上方设置布水器和气体排放孔,布水器外接渗滤液进水管,气体排放孔外接气体排放管. 反应柱右侧均匀设置3个取样口. 进气时,将底部的进气管与高压钢瓶相接,通过稳压阀和流量计控制 CH4 通入.

1.3 试验设计与运行

本研究共设3个反应柱(B1、B3为对照,B2为

处理),每个反应柱填入约 10 kg 矿化垃圾,填埋垃圾湿密度约为 807.7 kg·m⁻³. B1 中充入约 3.9 L CH₄ 以维持柱内初始 CH₄ 含量约为 30% (体积比),并回灌渗滤液; B3 不充 CH₄,仅回灌添加1 000 mg·L⁻¹ FeCl₃·6H₂O(以Fe 计)的渗滤液; B2 中充入约 3.9 L CH₄ 且回灌添加1 000 mg·L⁻¹ FeCl₃·6H₂O的渗滤液.

反应柱气密性检查合格后,先用 Ar 气多次冲洗 3 个反应柱,取气样,气相色谱检测,至氧气低于检测限后停止冲洗,B1、B2 充入 CH₄. CH₄ 充气流速为 1 L·min⁻¹,通气约 4 min 后,停止进气. 2 h 后,从各取样口抽气检测 CH₄ 浓度,并根据检测结果进行相应调整,以确保 CH₄ 浓度达到试验要求. 开始运行时,用蠕动泵将 0.5 L 渗滤液定时从反应柱上方泵入矿化垃圾中,进水速率为 0.1 L·min⁻¹. 每 2~3 d 从反应柱底部收集渗滤液并回灌至矿化垃圾中. 当 CH₄ 消耗殆尽时,再次用 Ar 气洗柱,充入 CH₄,进行下一周期的运行.

反应柱运行过程中,根据渗滤液出水中 Fe(III)浓度和 CH_4 去除情况适时回灌的渗滤液中补充氯化铁.由于渗滤液在运行过程中会有所损失,所以当渗滤液体积低于 150~mL 时,补充渗滤液原液至 500~mL. 另考虑到矿化垃圾中本底 Fe(III) 和 NO_3^- -N较高,为更好地比较研究Fe(III) 和 NO_3^- -N间相互关系,B1 反应柱预先通入 CH_4 、回灌蒸馏水,预运行一个月左右,以消耗 NO_3^- -N至相对低的水平.

1.4 指标分析

1.4.1 气体测定

每 2 ~ 3 d 从各个取样口分别抽取 1 mL 滞留气体用气相色谱法测定 N_2 、 N_2 O、 CO_2 和 CH_4 体积分数. 本研究中使用福立 GC9790 型气相色谱仪,TCD 检测器,载气为 99.999% 氩气,流速为 30 mL·min $^{-1}$. 进样口、色谱柱和检测器的温度分别为 50、50 和 85 $^{\circ}$ C.

1.4.2 渗滤液分析

每 7 d 取渗滤液样,测定 pH、 NO_3^- -N、 NO_2^- -N、 NH_4^+ -N和 SO_4^{2-} ,每 15 d 左右测定渗滤液中Fe(\blacksquare),每 30 d 左右测定Fe(\blacksquare) 和总铁. pH 值采用 pH 计测定;COD 采用重铬酸钾法; NH_4^+ -N采用纳氏试剂光度法; NO_3^- -N、 NO_2^- -N和 SO_4^{2-} 采用离子色谱法;Fe 采用微波消解-ICP 法;Fe(\blacksquare)和Fe(\blacksquare)采用邻菲啰啉分光光度法(HJ-T 345-2007).

1.4.3 垃圾理化性质

矿化垃圾中总有机碳(TC)测定采用重铬酸钾外加热法;NO $_3^-$ -N、NO $_2^-$ -N和NH $_4^+$ -N测定采用氯化钾溶液提取-分光光度法(国家环境保护标准 HJ 634-2012);SO $_4^2$ - 用水提取后,离子色谱法测定;Fe 微波消解后用 ICP; Fe(\blacksquare) 用 0.5 mol·L $^{-1}$ HCl 提取,提取液经 0.22 μm 滤膜过滤,邻菲啰啉分光光度法测定 Fe(\blacksquare);Fe(\blacksquare) 经盐酸羟胺还原为Fe(\blacksquare)后测总Fe(\blacksquare)量,总Fe(\blacksquare)即得Fe(\blacksquare).

38 卷

1.5 数据与统计与分析

文中数据分析采用 SPSS 20.0 软件,作图采用 Origin Version 9.0 软件.

2 结果与分析

2.1 气体变化

反应柱运行期间 N_2 、 CH_4 和 CO_2 的量变化见图 2.

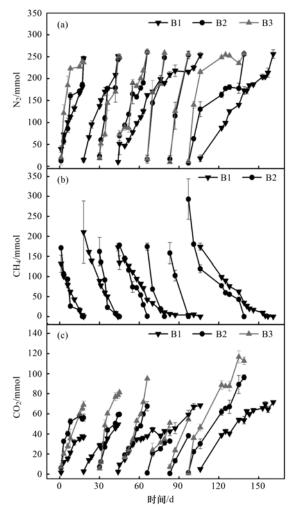


图 2 N_2 、 CH_4 和 CO_2 的量变化

Fig. 2 Variations of N2, CH4 and CO2 contents

由图 2 可知,添加Fe(\blacksquare) 明显促进了 CH_4 的去除. 约 160 d 的运行时间内, B1 完成了 4 个周期, 而 B2 在 139 d 内完成了 6 个周期,分别累积去除 CH_4 688. 57 mmol 和1 136. 55 mmol. 而且, B1 去除 CH_4 速率随运行周期增加总体呈递减趋势,各周期内去除 CH_4 的平均速率(以 CH_4 /干垃圾计)依次为 0.70、0.77、0.26 和 0.30 mmol·(kg·d) $^{-1}$; B2 的 CH_4 去除速率稳定在一定的范围内,依次为 0.91、1.03、0.81、1.28、1.08 和 0.58 mmol·(kg·d) $^{-1}$ (其中第 6 周期去除速率

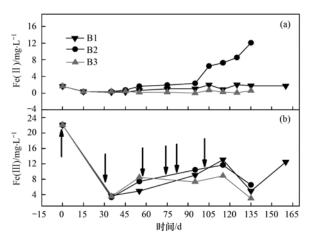
较低为未及时补充外源氯化铁所致). Fe(\blacksquare) 促进 CH₄ 去除的同时,也促进了 CO₂ 的产生. B1、B2、B3 分别累积产生 CO₂ 225. 91,350. 48 和 463. 51 mmol. 各反应柱单个周期内 N₂ 产生量基本一致,均约 250 mmol. 各反应柱中 CH₄ 去除量、CO₂ 和 N₂ 累积产生量的相关性分析结果表明: B1、B2 中 CH₄ 去除与 CO₂、N₂产生量正相关 (B1:r=0.975,P=0;r=0.999,P=0. B2:r=0.976,P=0;r=0.998,P=0). 各反应柱中 CH₄、CO₂ 随时间变化的动力学拟合结果见表 3.

表 3 各反应柱中 CH_4 去除和 CO_2 生成的动力学方程 $^{1)}$

Table 3 Kinetic equations of CH₄ removal and CO₂ production in columns

反应柱	$\mathrm{CH_4}$	CO ₂
B1	$c_t = -0.40 \ t + 11.89 (R^2 = 0.97)$	$c_t = 0.11 \ t + 0.31 (R^2 = 0.93)$
B2	$c_t = -0.72 t + 13.18 (R^2 = 0.90)$	$c_t = 0.19 \ t + 0.33 (R^2 = 0.90)$
В3	/	$c_t = 0.26 \ t + 0.40 (R^2 = 0.95)$

1) 动力学方程为 $c_t = -kt + c_0$, c_t , t, k 和 c_0 分别表示底物浓度(mmol·L⁻¹)、反应时间(d)、反应速率常数[mmol·(L·d)⁻¹]以及初始浓度(mmol·L⁻¹),其中 k 和 c_0 分别为运行周期下的反应速率平均值和初始浓度平均值


由表 3 可知, CH_4 去除和 CO_2 生成都符合零级 反应动力学. B2 的 CH_4 去除及 CO_2 生成速率常数 都明显大于 B1, 即添加外源氯化铁后 CH_4 去除与 CO_2 生成同步进行,说明 B1、B2 中 CO_2 产生与 CH_4 去除直接相关,反应柱内可能进行 AOM 反应. 此外, B3 的 CO_2 生成速率常数明显高于 B1、B2,说明在无 CH_4 的厌氧环境下, Fe(III) 也可能利用其它有机物作为电子供体进行厌氧氧化反应,生成 CO_2 .

2.2 反应柱渗滤液中离子变化

2.2.1 Fe(Ⅱ)和Fe(Ⅲ)

反应器运行期间渗滤液中Fe(Ⅱ)和Fe(Ⅲ)的变化见图 3.

由图 3 可知, 矿化垃圾具有持铁能力. 渗滤液中的Fe(Ⅲ) 及外加的 FeCl, 被矿化垃圾持留,3 个反应柱出水渗滤液中Fe(Ⅲ)浓度均始终低于渗滤液背景值(22.1 mg·L⁻¹). 但是,3 个反应柱出水中Fe(Ⅱ)的变化明显不同. B2 的Fe(Ⅱ)浓度从 45 d开始有所增加,95 d以后明显增加,达到 12.06 mg·L⁻¹;B1 的Fe(Ⅱ)浓度随反应柱运行后期略有增加,达到 2.04 mg·L⁻¹;而 B3 的Fe(Ⅱ)浓度在运行过程中基本不变,始终低于渗滤液背景值(1.66 mg·L⁻¹). 比较 B1、B2 和 B3 出水中Fe(Ⅱ)浓度变化差异可推知 CH₄ 共存明显有利于 Fe 的活化,B1、B2 反应柱内 Fe(Ⅲ)还原产生了溶解性的活性Fe(Ⅱ). 另外,从矿化垃圾中Fe(Ⅱ)、Fe(Ⅲ)含量变化来看(数据未列出),B1 中Fe(Ⅱ)含量 50 d 时

箭头表示 B2 和 B3 添加氯化铁 图 3 Fe(II)和 Fe(III)浓度变化

Fig. 3 Variations of Fe(II) and Fe(III) concentrations

已由 1 197. 72 mg·kg⁻¹ 增加到 1 575. 67 mg·kg⁻¹、100 d 时为 2 155. 78 mg·kg⁻¹,B2 柱 100 d 时 Fe(Ⅱ)含量为 1 496. 32 mg·kg⁻¹,139 d 时为 1 963. 92 mg·kg⁻¹;而 B3 反应器中Fe(Ⅱ)含量虽然 随反应柱运行有所增加,但试验结束时Fe(Ⅱ)含量 仍低于初始值,为1 037. 12 mg·kg⁻¹. B1、B2 和 B3 中Fe(Ⅲ)含量随反应器运行逐渐减少,至 100 d 时 B1 减少至2 100. 00 mg·kg⁻¹左右;B2 试验结束时才降至 2 175. 0 mg·kg⁻¹左右,B3 则为 3 081. 12 mg·kg⁻¹. 由此也可印证,CH₄ 共存的确促进了Fe(Ⅲ)还原为Fe(Ⅱ). 结合外加Fe(Ⅲ)量计算,B1和 B2中Fe(Ⅲ)还原量差异不大;而 B3中Fe(Ⅲ)虽

可能利用矿化垃圾中其他电子供体进行还原,但反应活性明显低于 B1、B2,且 Fe 可能被固定成其他不易利用的形态,因此运行后测得的Fe(II)含量反而低于初始值.

2.2.2 NO_3^- -N、 NO_2^- -N、 NH_4^+ -N和 SO_4^{2-}

各反应柱渗滤液中 NO_3^- -N、 NO_2^- -N和 NH_4^+ -N变化见图 4, SO_2^{4-} 变化见图 5.

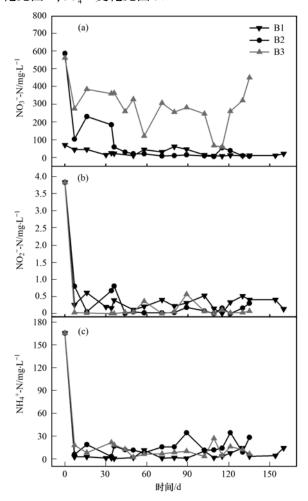


图 4 NO₃-N、NO₂-N 和 NH₄+N 浓度变化

Fig. 4 Variations of NO_3^- -N, NO_2^- -N and NH_4^+ -N concentrations

由图 4 可知,B1、B2 反应柱中 NO_3^- -N浓度逐渐降低,B2 由 586. 20 mg·L⁻¹ 降至 6. 66 mg·L⁻¹,B1 由 70. 00 mg·L⁻¹ 降至 10. 00 mg·L⁻¹ 左右,B3 中 NO_3^- -N浓度波动较大,试验后期反而由 65. 00 mg·L⁻¹ 增加至 449. 57 mg·L⁻¹. 从矿化垃圾中的 NO_3^- -N变化来看(数据未列出),B1 50 d 时为 35. 00 mg·kg⁻¹左右,160 d 才降至 10. 00 mg·kg⁻¹以下;B2 迅速消耗,50 d 时已降至 10. 00 mg·kg⁻¹左右,而 B3 较慢,100 d 时仍有 100. 00 mg·kg⁻¹左右,139 d 时迅速减少至 35. 00 mg·kg⁻¹. 反应初期,B1、B2、B3 出水中 NH_4^+ -N迅速降低,但后续运行期间 3 个反应

柱内 NH_4^+ -N浓度均在一定范围内波动. 而从矿化垃圾中 NH_4^+ -N 变化来看(数据未列出),3 个反应柱(尤其是 B1)运行后期(100 d 后)矿化垃圾中 NH_4^+ -N有所累积. 可见,有 CH_4 共存时,外加Fe(\blacksquare)明显加速了 NO_3^- -N的去除;而无 CH_4 共存时,加入Fe(\blacksquare)也明显影响矿化垃圾中 N 的转化. 结合外源 Fe(\blacksquare)添加,可推测 3 个反应柱内在Fe(\blacksquare)相对丰富的情况下可能发生Fe(\blacksquare)还原耦合的 NH_4^+ -N氧化,Fe(\blacksquare)还原与 NO_3^- -N还原能进行耦合,且在有 CH_4 共存时,耦合作用更明显.

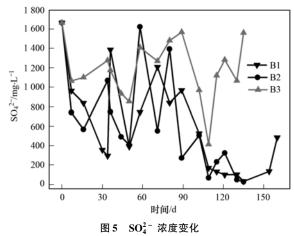


Fig. 5 Variation of SO₄²⁻ concentration

由图 5 可知, B1、B2 的 SO_4^{2-} 浓度总体呈波浪式下降趋势,且 B2 波动幅度更大,而 B3 大幅波动但未明显降低. 对照矿化垃圾中 SO_4^{2-} 含量的变化(数据未列出), B1、B2、B3 分别由初始的1 315. 15 $mg \cdot kg^{-1}$ 降低到 106. 56、63. 36 和 484. 80 $mg \cdot kg^{-1}$. 可见, CH_4 共存促进了 SO_4^{2-} 的消耗,此时外加 Fe(III) 也同时促进了 SO_4^{2-} 的消耗.

此外,B2、B3 能较好地去除渗滤液中的有机污染物. 在 102 d 之前,B2、B3 出水 COD 浓度均低于 100 mg·L⁻¹,后期升高至 250 mg·L⁻¹ 左右;而 B1 整个运行过程出水 COD 浓度均维持在 300 ~ 500 mg·L⁻¹ 之间(数据未列出). 可见,Fe(\blacksquare)有利于去除有机物.

2.3 气体和离子变化的相互关系

反应柱中各指标的统计分析结果表明: B2 中 CH_4 去除分别与 NO_3^- -N、 SO_4^{2-} 减少正相关(r=0.666,P=0.005;r=0.57,P=0.021),与Fe(II)增加正相关(r=0.87, P=0.00),表明 B2 中 NO_3^- 、 SO_4^{2-} 和Fe(II)能同时促进 CH_4 去除. B2 中 N_2 产生和 NO_3^- -N、 SO_4^{2-} 减少正相关(r=0.97,P=0.01; r=0.54, P=0.03),与Fe(II)增加正相关(r=0.97)

0.88, P = 0.01),与 NH_4^+ -N减少不相关(P > 0.05); NO₅、NO₇ 减少与Fe(Ⅱ)增加正相关(r=0.65,P =0.04; r = 0.64, P = 0.05); 表明 SO_4^{2-} 、Fe(III)、 和NO3-N还原过程相互促进. B1 中 CH4 去除也与 NO_3^- -N、 SO_4^{2-} 减少正相关(r = 0.57, P = 0.01; r =0.63, P=0.01), 与Fe(Ⅱ)增加呈正相关(r=0.81, P = 0.00),与NH₄+N减少负相关(r = -0.54,P =0.02); N, 产生与NO₃-N、SO₄-减少呈正相关(r= 0.57, P=0.01; r=0.63, P=0.01), 与Fe(II)增加 呈正相关(r = 0.54, P = 0.02),与 NH_4^+ -N减少负相 关(r = -0.76, P = 0.01);SO₄²⁻ 减少和Fe(Ⅲ)减少 负相关(r = -0.84, P = 0.04),与 NO_3 减少正相关 (r=0.69, P=0.00);表明低 NO_3^--N 含量下, SO_4^{2-} 和 Fe(Ⅲ)相互作用明显,活性Fe(Ⅲ)减少会影响 SO_4^{2-} 的消耗. B3 中 N_2 累积产量与 NO_3^{-} -N、 NO₂-N、NH₄+-N、SO₄- 以及Fe(Ⅲ)、Fe(Ⅱ)变化 均不相关(P>0.05). 但是NO, -N增加和Fe(Ⅱ)增 加正相关(r=0.70,P=0.03),这可能是 B3 中发生 了以Fe(Ⅲ)为电子受体的厌氧氨氧化所致.

3 讨论

综合 3 个反应柱运行情况可知,Fe 明显参与了矿化垃圾中 C、N、S 的转化,其中可能同时进行以Fe(\blacksquare)为电子受体的厌氧氨氧化、厌氧甲烷氧化耦合铁还原、以有机物为电子供体的异化铁还原、SO₄²与 Fe 互作、Fe(\blacksquare)还原与 NO₃ 还原相互耦合等各种反应,且底物条件决定反应柱内的主导过程. 从电子传递的角度来看,B1、B2 有 CH₄ 共存,电子供体相对充足,B2 同时外加Fe(\blacksquare),且矿化垃圾中本身含有较高的NO₃ -N和 SO₄²,电子受体也相

对充分,而 B1 中未添加外源铁,且NO,-N含量较 低,电子受体相对较少. 比较 B1、B2 运行数据可 知,在矿化垃圾这种异质性介质中,CH4可能同时耦 合电子受体(SO₄²⁻、NO₃⁻-N、Fe(Ⅲ))还原进行厌 氧氧化. 根据 CH4 去除速率数据拟合符合零级动力 学方程,可假设反应柱中 CH₄ 去除主要受制于底物 浓度. 由于电子供体 CH4 较充分,因此添加电子受 体氯化铁可明显促进 CH₄ 去除. Fe(Ⅲ) 对促进 CH_4 去除的贡献与体系中其他共存电子供体 SO_4^{2-} 、 NO, -N量密切相关. 虽然 B1 出水中第 50 d 时 Fe(Ⅱ)仍低于背景值,但矿化垃圾中的Fe(Ⅱ)已有 所增加,此时,矿化垃圾中NO3-N含量约为 35.00 mg·kg⁻¹, SO₄²⁻ 含量约为 268. 80 mg·kg⁻¹, 出水中 NO₃-N和 SO₄- 浓度约为 10.00 mg·L⁻¹ 和 393.60 mg·L⁻¹;50~100 d 矿化垃圾中NO₃-N和 SO₄-含 量分别降至 17.50 mg·kg⁻¹和 76.80 mg·kg⁻¹左右, 出水中 SO₄ - 浓度降至约 201.60 mg·L⁻¹. B2 运行 中3种电子受体消耗过程为:前44 d, NO3-N和 SO₄ 大量消耗 (两者分别从 585.20 mg·L⁻¹、 1 660. 80 mg·L⁻¹ 降到 30. 10 mg·L⁻¹、492. 48 mg·L⁻¹);44~109 d,SO₄²⁻ 大量消耗量(NO₃-N和 SO₄- 分别继续降低到 5.46 mg·L⁻¹ 和 70.08 mg·L⁻¹):95 d 后Fe(Ⅱ)明显累积量. 然而,B2 矿 化垃圾中Fe(Ⅱ)第50 d时Fe(Ⅱ)没有增加,但 NO₃-N和 SO₄- 含量已迅速降至 10.00 mg·kg⁻¹和 422. 40 mg·kg⁻¹;50~100 d 矿化垃圾中 SO₄²⁻ 含量 进一步降至 96.00 mg·kg⁻¹,此时,矿化垃圾中 Fe(Ⅱ)明显增加. 根据热力学规律, CH4 耦合3种 电子受体反应由易到难的顺序为NO₃-N > Fe(Ⅲ) >SO²⁻. 然而,从试验数据来看,虽然矿化垃圾中 Fe(Ⅲ)含量大量减少,但Fe(Ⅱ)并未相应积累,这 可能是由于生成的Fe(Ⅱ)参与NO; -N、SO4 或其 他物质的转化反应,被固定为不易被盐酸提取的 Fe 形态. 值得注意的是,CH₄ 共存时,外加Fe(Ⅲ)明显 加速了NO₃-N和 SO₄- 的消耗. 从Fe(Ⅲ) 与NO₃-N 的耦合关系看,有相关文献报道表明活性Fe(Ⅱ)可 通过非生物作用将 NO₂ 转化为 N₂,通过生物作用 NO₃ 转化为 N₂^[25];因此Fe(Ⅲ) 对NO₃-N消耗可能 是由于外加 Fe(Ⅲ) 促进更具活性的、溶解性 Fe(Ⅱ)的生成所致. 而就Fe(Ⅲ)与 SO₄²⁻ 的关系而 言,一般认为二者相互竞争, B1 中 SO₄ - 减少和 Fe(Ⅲ)减少负相关的结果也与此吻合. 唐冰培 等[26]报道在通 N₂条件下,土壤环境的 Eh 值下降,

pH 值上升,当土壤环境处于极还原状态,土壤中的铁被活化,大部分以 Fe^{2+} 的形式存在;但是添加硫酸盐会降低氧化铁的活化度.因此可以推测,B2 中添加Fe(II)加速 SO_4^{2-} 的消耗与体系中 CH_4 共存促进活性Fe(II)形成有关,但具体机制需要进一步进行研究. Fe(III)还原对 CH_4 去除及与其他电子受体的相互作用可能主要与活性Fe(II)相关.

CH4 厌氧去除耦合电子受体还原过程中,Fe 与 N、S 互作与是否有 CH4 共存以及氧化态 N、S 浓度 密切相关. 由反应柱运行各指标的相关性分析可推 测,初始NO,⁻-N浓度较高时(B2),SO₄²⁻、Fe(Ⅲ)和 NO、-N主要以NO、-N作为媒介互作,形成相互促进 的良性循环. N,产生与NO, -N、SO4 减少和 Fe(Ⅱ)增加正相关,NO,、NO,减少与Fe(Ⅱ)增加 正相关. 而当初始NO; -N较低时(B1), N, 产生与 NO₃-N、SO₄- 减少及Fe(Ⅱ)增加正相关,与NH₄-N 减少负相关;SO₄ 减少和Fe(Ⅲ)减少负相关、与 NO、减少正相关. 另外, B1 中 CH4 去除除了与 NO₃-N、SO₄-和Fe(Ⅱ)相关外,和NH₄-N减少也负 相关. 可见,共存NO;-N浓度不但可能影响NH;-N 转化,也可能影响Fe(Ⅲ)与SO₄²⁻的相互作用. 当 体系内NO₃-N和Fe(Ⅲ)均比较充足时,两者竞争 CH₄ 时, NO₃ -N更具竞争优势, Fe(Ⅲ)可能转而与 NH, 反应;而当体系中NO, -N较少, Fe(Ⅲ)可作为 电子受体与 CH4 和 NH4 反应,根据热力学规律判 断,该竞争中 CH4 占据绝对优势,因而可能导致 NH₄ -N积累. B1 中 CH₄ 去除与NH₄ -N减少负相关, B2 运行后期,未添加Fe(Ⅲ)后矿化垃圾中NH₄-N 积累的结果都与该假设吻合. 另外,NO;-N浓度较 低时,其与 SO₄ 的耦合作用减弱, Fe(III) 转为与 SO₄²⁻ 直接相互作用,Fe(Ⅲ)不但可能与 SO₄²⁻ 竞争 电子供体,而且可能氧化 SO₄ 还原的中间产物 HS^- 或 S^0 , 生成 SO_4^{2-} , 因此表现为负相关的关系. B3 柱中由于未添加 CH₄, Fe(Ⅲ) 可能更多利用矿化 垃圾中的残余有机质进行异化铁还原,可能不利于 活性态Fe(Ⅱ)的形成,因此Fe(Ⅲ)与NO₃-N、SO₄-主要形成互相竞争电子供体的关系,柱内NO, -N、 SO₄ - 削减较慢. B3 中 CO₅ 产生量远高于 B1、B2 的试验现象也与该推测吻合. 参考 CH4 和水铁矿的 反应方程式: CH₄ +8Fe(OH)₃ +15H⁺ → HCO₃ + 8Fe²⁺ +21H₂O,即 C/Fe 为 1/8,C 为 -4 的最低价 态,等摩尔的Fe(Ⅲ)可以氧化更多有机物(C/Fe≥

4 结论

 CH_4 共存的厌氧条件下,添加 $FeCl_3$ 不但可明显促进矿化垃圾中的 CH_4 去除,而且可以加速电子受体 NO_3^- -N、 SO_4^{2-} 的消耗. CH_4 去除可同时耦合 NO_3^- -N、 SO_4^{2-} 和Fe(III)还原,三者间的相互促进可能主要依赖于活性Fe(III)的形成.

参考文献:

- [1] Blake D R, Rowland F S. Continuing worldwide increase in tropospheric methane, 1978 to 1987 [J]. Science, 1988, 239 (4844): 1129-1131.
- [2] Simpson I J, Rowland F S, Meinardi S, et al. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane [J]. Geophysical Research Letters, 2006, 33(22): L22808.
- [3] Kumar S, Gaikwad S A, Shekdar A V, et al. Estimation method for national methane emission from solid waste landfills [J]. Atmospheric Environment, 2004, 38(21): 3481-3487.
- [4] Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics [J]. Environmental Science & Technology, 2010, 44(1): 15-23.
- [5] Müller D B, Wang T, Duval B, et al. Exploring the engine of anthropogenic iron cycles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (44): 16111-16116.
- [6] 朱勇, 段振菡, 陆文静, 等. 大型厌氧填埋场中铁的分布特征及迁移行为研究[J]. 北京大学学报(自然科学版), 2012, 48(1): 147-152.
 - Zhu Y, Duan Z H, Lu W J, et al. Distribution characteristic and migration behavior of Fe in large-scale anaerobic landfill [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48 (1): 147-152.
- [7] Zehnder A J B, Brock T D. Anaerobic methane oxidation: occurrence and ecology [J]. Applied and Environmental Microbiology, 1980, 39(1): 194-204.
- [8] Beal E J, House C H, Orphan V J. Manganese-and irondependent marine methane oxidation [J]. Science, 2009, 325 (5937): 184-187.
- [9] Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms [J]. Environmental Science

- & Technology, 2008, 42(18): 6791-6799.
- [10] Crowe S A, Katsev S, Leslie K, et al. The methane cycle in ferruginous Lake Matano [J]. Geobiology, 2011, 9(1): 61-78.
- [11] Amos R T, Bekins B A, Cozzarelli I M, et al. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer [J]. Geobiology, 2012, 10(6): 506-517.
- [12] Norði K À, Thamdrup B, Schubert C J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment [J]. Limnology and Oceanography, 2013, 58(2); 546-554.
- [13] Sivan O, Alder M, Pearson A, et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane [J]. Limnology and Oceanography, 2011, 56(4): 1536-1544.
- [14] Segarra K E A, Comerford C, Slaughter J, et al. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments [J]. Geochimica et Cosmochimica Acta, 2013, 115: 15-30.
- [15] Ettwig K F, Zhu B L, Speth D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796.
- [16] Han D, Zhao Y C, Xue B J, et al. Effect of bio-column composed of aged refuse on methane abatement—a novel configuration of biological oxidation in refuse landfill [J]. Journal of Environmental Sciences, 2010, 22(5): 769-776.
- [17] 钟庄敏, 龙焰, 尹华, 等. 矿化垃圾中的甲烷氧化-反硝化耦合特性研究[J]. 环境科学学报, 2013, **33**(3): 787-795.

 Zhong Z M, Long Y, Yin H, *et al.* Characteristics of the methane oxidation-denitrification coupling in the aged refuse[J]. Acta Scientiae Circumstantiae, 2013, **33**(3): 787-795.
- [18] 张伟, 刘同旭, 李芳柏, 等. 铁还原菌介导的氧化铁还原与硝酸盐还原的竞争效应研究[J]. 生态环境学报, 2013, 22 (1): 123-128.
 - Zhang W, Liu T X, Li F B, et al. Competitive effects of iron reducing bacteria-mediated reductions of iron oxides and nitrate

- [J]. Ecology and Environmental Sciences, 2013, 22(1): 123-
- [19] Hansen H C B, Koch C B, Nancke-Krogh H, et al. Abiotic nitrate reduction to ammonium: key role of green rust [J]. Environmental Science & Technology, 1996, 30 (6): 2053-2056.
- [20] González P J, Correia C, Moura I, et al. Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction [J]. Journal of Inorganic Biochemistry, 2006, 100 (5-6): 1015-1023.
- [21] Weber K A, Picardal F W, Roden E E. Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe (II) compounds[J]. Environmental Science & Technology, 2001, 35 (8): 1644-1650.
- [22] Clément J C, Shrestha J, Ehrenfeld J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils [J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328.
- [23] Sawayama S. Possibility of anoxic ferric ammonium oxidation [J]. Journal of Bioscience and Bioengineering, 2006, 101(1): 70-72.
- [24] Friedrich M W, Finster K W. How sulfur beats iron [J]. Science, 2014, 344(6187): 974-975.
- [25] 王弘宇,杨开,张倩,等. 1 株铁基质自养反硝化菌的脱氮特性[J]. 环境科学, 2014, 35(4); 1437-1442.

 Wang H Y, Yang K, Zhang Q, et al. Nitrate removal by a strain of nitrate-dependent Fe (II)-oxidizing bacteria [J].

 Environmental Science, 2014, 35(4); 1437-1442.
- [26] 唐冰培,杨世杰,王代长,等. 硫素对氧化还原条件下水稻 土氧化铁和砷形态影响[J]. 环境科学,2014,35(10); 3851-3861.
 - Tang B P, Yang S J, Wang D C, et al. Effect of sulfur on the species of Fe and As under redox condition in paddy soil [J]. Environmental Science, 2014, 35(10); 3851-3861.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 38 No. 4 Apr. 15, 2017

CONTENTS

CONTENTS	
Dry and Bulk Nitrogen Deposition in Suburbs of Xining City	
Day-Night Variation and Source Apportionment of Carbonaceous Aerosols in PM ₁₀ During Spring and Summer of Lanzhou	
Characteristics of the Size Distribution of Water Soluble Inorganic Ions in Sanya, Hainan	
Pollution Characteristics of NH ₄ ⁺ , NO ₃ ⁻ , SO ₄ ²⁻ in PM _{2,5} and Their Precursor Gases During 2015 in an Urban Area of Beijing	
Pollution Characteristics of PCDD/Fs in Ambient Air and Exposure Risk Assessment Around a Municipal Solid Waste Incinerator i	
Community Characteristics of Cultivable Bacteria in Fine Particles(PM _{2.5}) of Beijing and Baoding	
Emission Characteristics of Vehicle Exhaust in Artery and Collector Roads in Nanjing Based on Real-time Traffic Data	
Catalytic Combustion of Soot Particulates over Rare Earth Pyrochlore Oxides Doped with Transition Metals	
Water Quality Analysis of Beijing Segment of South-to-North Water Diversion Middle Route Project	
Hanfeng Pre-reservoir Commissioning Time Variation Feature of the Hydrology and Water Quality in Three Gorges Reservoir	
Modeling of Water Quality Response to Land-use Patterns in Taizi River Basin Based on Partial Least Squares · · · · · · · · · · · · · · · · · · ·	
Distribution Characteristics of Water Temperature and Water Quality of Fuxian Lake During Thermal Stratification Period in Summe	
Vertical Stratification Characteristics of Dissolved Oxygen and Phytoplankton in Thousand-Island Lake and Their Influencing Factor	
Community Structure Characteristics of Eukaryotic Planktonic Algae in Liaohe River Through High-throughput Sequencing	
Effects of Coastal Organic Pollution on Bacterioplankton Community in Sanmen Bay	
Nitrate Source Identification and Nitrification-denitrification at the Sediment-water Interface	9.
Residues of Organochlorine Pesticides (OCPs) in Water and Sediments from Nansha Mangrove Wetland	
Pollution Characteristics and Risk Assessment of Heavy Metals from River Network Sediment in Western Area of Taihu Lake	
Efficacy of Phoslock® on the Reduction of Sediment Phosphorus Release in West Lake, Hangzhou, China	
Identification and PAC Adsorption of Foulants Responsible for Irreversible Fouling During Ultrafiltration of Dongjiang River Water	
Efficiency and Kinetics of Triclosan Degradation in Aqueous Solution by UV/Sodium Persulfate	
Influencing Factors on the Degradation of PFOS Through VUV-SO ₃ ² -	
Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of SSA by Carbon Nitride	
Modification of Diatomite by Zirconium and Its Performance in Phosphate Removal from Water	
Reducing Effect of Three Disinfection Technologies for Sulfonamides Resistance Genes	
Removal of Estrogenic Effect by Typical Domestic Wastewater Treatment Processes	
Effect of SRT on Stability of Yeast-SBR in Treating Oil-containing Wastewater	
Degradation of the Disperse Dye Neocron Black(NB) by Biological Treatment	
Function of Polyphosphate Kinase Gene in Biological Phosphate Removal During the Wastewater Treatment Process	
Short-cut Nitrification Recovery and Its Transformation into CANON Process in a Biofilm Reactor	
Nitrogen Removal Characteristics and Diversity of Microbial Community in ANAMMOX Reactor	
Effect of Environment Adjustment Layers on Nitrogen Transformation in Anaerobic Bioreactor Landfills	
Characteristics of Anaerobic Methane Removal Coupled to Fe(■) Reduction in Aged Refuse	
Assessment of Heavy Metal Pollution and Tracing Sources by Pb & Sr Isotope in the Soil Profile of Woodland in Quanzhou Accumulation and Migration Characteristics in Soil Profiles and Bioavailability of Heavy Metals from Livestock Manure	
Pollution Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Agricultural Soils from Shandong	•
Distribution Characteristics and Influencing Factors of Organophosphorus Pesticides in Typical Soil Environment of Jianghan Plain	WANG lian wai 7HANG Cai niong DAN 7han shop at al. (1507)
Characteristics and Influencing Factors of Biologically-based Phosphorus Fractions in the Farmland Soil	
Effect of Straw Application on the Dynamics of Exogenous Nitrogen and Microbial Activity in Paddy Soil	
Effects of Biochar on Surface Albedo and Soil Respiration in Suburban Agricultural Soil	
N ₂ O Consumption Ability of Submerged Paddy Soil and the Regulatory Mechanism	
Non-CO ₂ Greenhouse Gas Release from Different Biological Wastewater Treatment Processes	
Effect of Application of Sewage Sludge Composts on Greenhouse Gas Emissions in Soil	
Effect of Nano Zeolites on pH, CEC in Soil and Cd Fractions in Plant and Soil at Different Cadmium Levels	
Dynamic Differences of Uptake and Translocation of Exogenous Selenium by Different Crops and Its Mechanism	•
Alleviation Effects of Exogenous Melatonin on Ni Toxicity in Rice Seedings	
Forms Distribution and Ecotoxicity of Three Forms of Sulfonamides in Root-Soil Interface of Maize	
Effect of Sediments on Bioaccumulation of Mercury in Fish Body in the Water-Level-Fluctuating Zone of the Three Gorges Reservoir	
Bioaccumulation and Correlation of Heavy Metals in Human Hairs From Urban and Rural Areas of Chongqing	
Microbial Community Structure and Diversity in Cellar Water by 16S rRNA High-throughput Sequencing	
Performance Improvement of Microbial Fuel Cell with Polyaniline Dopped Graphene Anode	
Brief Introduction of Pollution Sites Remediation and Risk Assessment and Its Policy Making in United States	
DEAL IMPORTAGE OF LOURISH SHOP REPRESENTED AND ASSESSMENT AND ITS LOURS MAKING III CHIRCU STATES	Nono rue (1/20)