

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

ENVIRONMENTAL SCIENCE

第37卷 第1期 2016年1月15日

目 次

碳质大气颗粒物的扫描质子微探针分析 ····································	
中国 8 个城市十年夕泊野芋醚的运流特征 15 上休县雾水亚	1)
	0)
THE TARRY (2) TO THE WHAT WO NO THE WITH THE THE WITH WATER A TARRY HE THE WITH THE THE THE THE THE THE THE THE THE T	()
) 州城区状冬学人气颗粒初中 WSOC 吸尤性研究	6)
南京地区大气 PM ₂ 5潜在污染源硫碳同位素组成特征 石磊,郭照冰,姜文娟,芮茂凌,曾钢(2	2)
青奥会前后南京 PM, 重金属污染水平与健康风险评估 ····································	8)
古里古孙禾十年 DM 中人层元麦宣作性征乃本源公托	5)
南昌市秋季大气 PM _{2.5} 中金属元素富集特征及来源分析 林晓辉,赵阳,樊孝俊,胡恭任,于瑞莲(3	3)
南京北郊冬春季大气能见度影响因子贡献研究 马佳,于兴娜,安俊琳,朱彬,于超,朱俊,夏航(4	1)
边界层低空争流导致北京 PM。迅速下降及其形成机制的个例分析 · · · · · · · · · · · · · · · · · · ·	1)
$\mathbb{Z}_{\mathcal{I}}$	0)
边界层低空急流导致北京 $PM_{2.5}$ 迅速下降及其形成机制的个例分析 ············ 廖晓农, 孙兆彬, 何娜, 赵普生, 马志强(5电厂燃煤烟尘 $PM_{2.5}$ 中化学组分特征 ····································	U)
2014 年 APEC 期间北京市空气质量改善分析	
程念亮, 李云婷, 张大伟, 陈添, 孙峰, 李令军, 李金香, 周一鸣, 杨妍妍, 姜磊 (6	6)
ADDO 人思知同步会担告大排法检查超过,并从不是是一个人的证据,不是是一个人的知识,不是是一个人的知识是一个人的知识是一个人的知识是一个人的证据,	4
APEC 会议期间北京机动车排放控制效果评估	4)
晋城城市扬尘化学组成特征及来源解析 王燕,彭林,李丽娟,王毓秀,张腾,刘海利,牟玲(8	2)
北京市混凝土搅拌站颗粒物排放特征研究 薛亦峰,周震,钟连红,闫静,曲松,黄玉虎,田贺忠,潘涛(8	8)
10.7 中间域上达到17.4 所以 17.5 中, 17	4
长株潭地区人为源氨排放清单及分布特征 ····································	4)
长春城市水体夏秋季温室气体排放特征 温志丹,宋开山,赵莹,邵田田,李思佳(10)2)
查干湖和新立城水库秋季水体悬浮颗粒物和 CDOM 吸收特性 ······· 李思佳,宋开山,赵莹,穆光熠,邵田田,马建行(1)	12)
	12)
不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例	
	23)
大渡河老鹰岩河段的水生生物群落结构及水质评价	32
一个成了之间有了大型分子工厂的用用有了公司分子的	41)
四例比似何沉奥恭附任沉奚姆沉大付任	+1)
合肥城郊典型农业小流域土壤磷形态及淋失风险分析 樊慧慧,李如忠,裴婷婷,张瑞钢(14	48)
辽河人海口及城市段柱状沉积物全属元素含量及分布特征 王维靱 周俊丽 斐淑玮 刘征涛(15	56)
大渡河老鹰岩河段的水生生物群落结构及水质评价 ————————————————————————————————————	(6)
小你小牛儿惊彻中目孙儿系分型付证一门行来厅门 更天体,对《,丈廷应(10	00)
	/ 2 \
北京市凉水河表层沉积物中砷含量及其赋存形态 王鑿慧 单保庆 唐文忠 张超 王闯 (18	30)
此的相针对小球蓝泪唇薄目作用冷久松汁	27)
北京市凉水河表层沉积物中砷含量及其赋存形态 王馨慧,单保庆,唐文忠,张超,王阅(18 紫外辐射对小球藻混凝效果作用途径探讨 王文东,张轲,许洪斌,刘国旗(18 二氧化钛光催化氧化阿散酸 许文泽,杨春风,李静,李建斐,刘会芳,胡承志(19 紫外光照下盐酸环丙沙星的光解性能 投伦超,王风贺,赵斌,陈亚君(19 氢氧化镧-天然沸石复合材料对水中低浓度磷酸盐的吸附作用 林建伟,王虹,詹艳慧,陈冬梅(20	5/)
二氧化钛光催化氧化阿散酸 许文泽,杨春风,季静,李建斐,刘会芳,胡承志(19	93)
紫外光昭下盐酸环丙沙星的光解性能	98)
复复化镧 于好进工气企材料对水山低浓度碳酸盐的吸附作用	10)
《红烟·人 然佛伯友百প科孙小中队依及姆散益的吸附作用 ************************************) (60
纳米 TiO_2 吸附 $HgCl_2$ 水溶液中 $Hg(II)$	20)
好氧生化污水外理厂化学品暴露预测模型构建	28)
7111,7171,7171,7171	
2. 抽某晚米化学具有权复污水协理模拟系统由的欧姆特性	10)
3种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24	40)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24	40)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ··········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ··········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ··········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ··········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ··········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ············· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中多环芳烃的近期分布与来源 ················李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 ·················徐特,曾辉,倪宏刚(26 龙口煤矿区土壤重金属污染评价与空间分布特征····································	40) 47)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ············ 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ···············李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 ··············徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征····································	40) 47) 53) 52) 70)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ············ 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ···············李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 ··············徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征····································	40) 47) 53) 52) 70)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ············ 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ···············李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 ··············徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征····································	40) 47) 53) 52) 70)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ····································	40) 47) 53) 52) 70) 80) 88)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ····································	40) 47) 53) 52) 70) 80) 88)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ····································	40) 47) 53) 52) 70) 80) 88)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ····································	40) 47) 53) 52) 70) 80) 88)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 ····································	40) 47) 53) 52) 70) 80) 88)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88) 93) 91)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88) 93) 91)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 周益奇,刘云霞,傅慧敏(28生物质炭对果园土壤团聚体分布及保水性的影响 罗艳,姬强,赵世翔,王旭东(293种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(32年)	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 ************************************	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处核菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米武军,李强军,李强军,为华峰,李载,黄炳富(35京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36年,为秦宗、张传》纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物版和朱管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物粉燃料电池域非稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处核菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米武军,李强军,李强军,为华峰,李载,黄炳富(35京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36年,为秦宗、张传》纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物版和朱管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物粉燃料电池域非稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米,李强。李强。程亚平,汤华峰,李载、黄炳富(35序批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物级料电池减排稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35运行微生物开处过是由今每写体和田棕排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对运泥生物于处过是由今每写体和田棕排故的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米,李强。李强。程亚平,汤华峰,李载、黄炳富(35序批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物级料电池减排稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35运行微生物开处过是由今每写体和田棕排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对运泥生物于处过是由今每写体和田棕排故的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处核菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米武军,李强军,李强军,为华峰,李载,黄炳富(35京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36年,为秦宗、张传》纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物版和朱管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物粉燃料电池域非稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对远泥生物于化过程中令每气体和甲烷排放的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米,李强。李强。程亚平,汤华峰,李载、黄炳富(35序批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物级料电池减排稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35运行微生物开处过是由今每写体和田棕排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对运泥生物于处过是由今每写体和田棕排故的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米,李强。李强。程亚平,汤华峰,李载、黄炳富(35序批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物级料电池减排稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35运行微生物开处过是由今每写体和田棕排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对运泥生物于处过是由今每写体和田棕排故的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳憨,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(20龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申观和,严地东(25生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(25至地质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝荫根真荫对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李松,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35座库区重金属的生物富集、生物放大及其生物因子的影响 李亚华,孙英杰,刘子梁,马强,杨强,经镇徐杂碳纳水管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(35运所数生物燃料电池减排稻田土壤甲烷的研究 新报江,曾鸿鹤,李强,程亚平,汤华峰,李敏,黄府富(35运河、安村、郑州、淮阳土壤甲宫、黄作江,京城,建筑,北京,北京,北京,北京,北京,北京,北京,北京,北京,北京,北京,北京,北京,	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)
Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳戆,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直链烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李凤梅,曹建兵,彭清静(36处枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬、吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(35克米,李强。李强。程亚平,汤华峰,李载、黄炳富(35序批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强、杨强(36铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(35运行微生物级料电池减排稻田土壤甲烷的研究 邓欢,蔡旅程,姜允斌,钟文辉(35运行微生物开处过是由今每写体和田棕排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(35遍风管略对运泥生物于处过是由今每写体和田棕排故的影响	440) 447) 533) 552) 770) 880) 888) 993) 117) 125) 142) 550)

好氧生化污水处理厂化学品暴露预测模型构建

周林军1,2,刘济宁1*,石利利1,冯洁1,徐炎华2*

(1. 环境保护部南京环境科学研究所,南京 210042; 2. 南京工业大学环境学院,南京 210009)

摘要:污水处理厂是化学品进入环境的重要中转站,污水处理厂中的暴露预测是化学品环境风险评估的重要内容. 以污水处理厂中最简单的传统活性污泥法为基础工艺,基于我国新化学物质登记要求的基础数据(分子量、吸附/解吸附系数、蒸气压、水溶解度、快速或固有生物降解性)、我国的环境条件(温度 = 283K、风速 = 2 m·s $^{-1}$)和污水处理厂典型场景参数(日处理量 = 3.5 万m 3 ·d $^{-1}$ 、进水 BOD $_5$ = 0.15 g·L $^{-1}$ 、进水 SS = 0.2 kg·m $^{-3}$ 、出水 SS = 0.02 kg·m $^{-3}$ 、曝气池 BOD $_5$ 去除率 = 90%、污泥密度(dw) = 1.6 kg·L $^{-3}$ 、污泥有机碳含量为 0.18 ~ 0.19),根据化学品的线性吸附、一级动力学降解、Whitman 双阻力挥发机制以及逸度理论,建立了包含空气、水、悬浮颗粒和沉积污泥 9 箱质量守恒方程的污水处理厂化学品暴露预测模型 C-STP(O),同时确定了快速或固有生物降解性结果外推获得 STP 降解速率的标准. 模型验证结果表明,C-STP(O)模型对已有研究中 26 种化学品预测准确率为 81%,对 5 种酚类化学品,模型预测与实测去除率绝对差值为 2.5% ~ 6.3%,C-STP(O)能准确预测具有快速或固有生物降解性的有机化学品在污水处理厂中挥发、吸附、降解、二级出水的分布比例. 所建模型可为研究化学品在 STP 中的归趋及化学品暴露评估提供技术工具.

关键词:污水处理厂;模型;化学品;暴露;降解

中图分类号: X820.4; X824 文献标识码: A 文章编号: 0250-3301(2016)01-0228-12 **DOI**: 10.13227/j. hjkx. 2016. 01.030

Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters

ZHOU Lin-jun^{1,2}, LIU Ji-ning^{1*}, SHI Li-li¹, FENG Jie¹, XU Yan-hua^{2*}

(1. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; 2. College of Environment, Nanjing Tech University, Nanjing 210009, China)

Abstract: Sewage treatment plant (STP) is a key transfer station for chemicals distributed into different environment compartment, and hence models of exposure prediction play a crucial role in the environmental risk assessment and pollution prevention of chemicals. A mass balance model namely Chinese Sewage treatment plant (C-STP(O)) was developed to predict the fate and exposure of chemicals in a conventional sewage treatment plant. The model was expressed as 9 mixed boxes by compartment of air, water, suspended solids, and settled solids. It was based on the minimum input data required on the notification in new chemicals, such as molecular weight, absorption coefficient, vapor pressure, water solubility, ready or inherent biodegradability. The environment conditions (Temperature = 283 K, wind speed = 2 m·s⁻¹) and the classic STP scenario parameters of China, especially the scenario parameters of water quality and sludge properties were adopted in C-STP(O) model to reflect Chinese characteristics, these parameters were sewage flow of 35 000 m³·d⁻¹, influent BOD₅ of 0.15 g·L⁻¹, influent SS of 0.2 kg·m⁻³, effluent SS of 0.02 kg·m⁻³, BOD₅ removal in aerator of 90%, sludge density of 1.6 kg·L⁻³ and organic carbon content of 0.18-0.19. It adopted the fugacity express for mechanism of linear absorption, first-order degradation, Whitman two resistances. An overall interphase transfer constant which was the sum of surface volatilization and stripping was used to assess the volatilization in aerator. The most important and uncertain input value was the biodegradation rate constant, and determination of which required a tier test strategy from ready or inherent biodegradability data to simulate test in STP. An extrapolated criterion of US EPA to derive biodegradation rate constant using the results of ready and inherent biodegradability was compared with that of EU and was recommended. C-STP(O) was valid to predict the relative emission of volatilization, absorption, degradation and effluent, on ground of both successful simulation of the removal of 26 chemicals from references with an accuracy rate of 81% and consistency of prediction and test with absolute difference of 2.5%-6.3% for 5 phenols. In cases of prediction of three chemicals with different properties, 1,1,2-trichloroethane, Naphthalene and DEHP, the predicted fate well satisfied the monitor data. The model is therefore believed to be a simple, robust and useful tool in fate study and exposure assessment of chemicals.

Key words: sewage treatment plant; model; chemical; exposure; degradation

我国现有化学物质约4.6万种,化学品的广泛 使用带来了大量的环境问题. 为了防控化学品的风

收稿日期: 2015-06-15; 修订日期: 2015-08-27

基金项目: 国家高技术研究发展计划(863)项目(2013AA060A308); 环境保护公益性行业科研专项(201309028)

作者简介:周林军(1986~),男,博士研究生,助理研究员,主要研究方向为环境化学及化学品风险评估,E-mail;zhoulj@nies.org

^{*} 通讯联系人, E-mail: ljn@ nies. org; xuyh@ njtech. edu. cn

险,欧盟、美国和中国都发布了化学品的管理法规, 要求新化学物质在首次生产或进口前必须开展危害 评估和暴露评估相结合的风险评估,我国还要求开 展重点环境管理危险化学品的环境风险评估,依据 风险评估的结果开展相应的管理. 暴露评估主要研 究化学品的排放过程以及在环境中归趋和分布,其 中污水处理厂(sewage treatment plant, STP) 中化学 品的归趋过程和处理效率是风险评估的重要内容, 决定了化学品的暴露浓度和风险水平[1].

虽然部分化学品在污水处理厂的去除率达 70%以上[2],但是由于运行工艺、化学品性质以及 处理不完全等原因,STP 处理后的出水中有机化学 品仍然具有显著的残留浓度 $(>0.1 \mu g \cdot L^{-1})^{[3,4]}$. 此外,化学品在STP中还可能吸附到污泥或者挥发 性进入大气,这两种过程非真正的去除,只是化学品 环境受纳介质的转变,对环境仍然具有较大的风 险[5].

通过实际测定的方式评估化学品在 STP 中的 暴露通常难度很大,一方面是因为环境介质多种多 样(如,水、污泥、大气等),实际测定费时费力,且 个别的实测数据代表性也不强:另一方面,对于新 化学物质,由于还未生产和使用,无法测定其在环境 中的暴露水平. 因此化学品在 STP 中的暴露评估主 要依靠模型进行预测. 国际上针对 STP 的操作条件 建立了不同种类化学品的 STP 预测模型(见表1), 如:国际水协已经建立 STP 中预测碳、氮和磷归趋 的活性污泥数学模型^[6]; Urase 等^[7]、Plósz 等^[8]分 别构建了污水处理过程中药物、抗生素的归趋动态 预测模型;文献[9~12]构建了外源性化学品在 STP中的归趋静态预测模型, SimpleTreat 模型[9]和 STPWIN 模型[10,11]分别被欧盟和美国用于化学品环 境管理登记或风险筛查过程.

目前我国的化学管理中尚缺用于暴露评估的 STP 预测模型或软件,主要原因是尚无与我国化学 物质环境管理要求相匹配、与我国环境条件和 STP 场景特征相匹配的模型或软件. 用于风险管理的 STP 暴露预测模型需要遵循以下原则[1]: 化学品输 入参数尽可能少,且输入参数与管理要求相匹配; STP 基本工艺、暴露场景参数相对固定,具有典型 代表性,可用于评估化学品的个体差异; 疑者从重 的保守原则;简单、易用. 国际水协[3,6~8]等建立的 STP 动态模型不宜用于化学品风险评估, 而 SimpleTreat 和 STPWIN 等模型[9,12] 在建模过程、输 入参数、环境条件和 STP 场景特征等方面都与我国 存在较大差异.

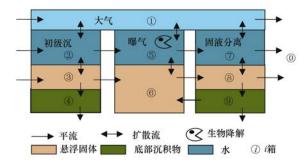
STP 中传统活性污泥好氧处理工艺(O型工 艺),已经有近90年的历史,该工艺有机化学品去 除率高、污泥负荷高、池容积小、运行费用低、稳 定可靠,是我国 STP 工艺的重要工艺,因此根据化 学品在 STP 中的挥发、吸附、降解机制,遵循 STP 暴露预测模型的基本原则,构建以 0 型工艺为基本 过程的 STP 暴露预测模型,对评估化学品在环境中 的暴露情况具有重要意义. 本研究基于 0 型工艺, 参照我国新化学物质申报中所要求的基础数据,根 据化学品的挥发、吸附、降解等特性,依据质量守 恒和逸度理论,研究建立适用于我国的 C-STP(O) 暴露预测模型,以期为研究化学品在 STP 中的归趋 及风险评估提供技术工具.

表 1 已有 STP 模型概述与分析 Table 1 Summary and Analysis of Existing STP models

			Table	1 Sammary and 11					
作者	模型类型	理论算法	化学品类型	污水处理工艺	吸附	挥发	降解	备注	文献
国际水协	动态	非逸度	生物质	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	无初沉、二沉模拟	[6]
Urase	动态	非逸度	药物	O	\checkmark	×	\checkmark	无初沉、二沉模拟	[7]
Plósz	动态	非逸度	抗生素	A/O	\checkmark	×	\checkmark	_	[8]
Cloutier	动态	非逸度	重金属	O	\checkmark	×	×	_	[3]
Struijs	静态	逸度	化学品	O	\checkmark	\checkmark	\checkmark	欧盟参数	[9]
Mackey	静态	逸度	化学品	O	\checkmark	\checkmark	\checkmark	部分参数未给出数值	[10,11]
Byrns	静态	非逸度	化学品	0	\checkmark	$\sqrt{}$	\checkmark	无初沉模拟	[12]

1 材料与方法

1.1 模型概念图及质量守恒方程构建


0型工艺主要处理构筑物为初沉池、曝气池、 二沉池. 化学品从含有悬浮颗粒的废水流入初沉 池,停留一段时间后,一部分悬浮颗粒通过重力自然

沉降为污泥并被排出,其余化学品在悬浮颗粒和水 中达到分配平衡后流入曝气池;在曝气池,由于大 量污泥的存在,化学品可能发生降解,也可能因为曝 气而挥发进入大气; 化学品流入二沉池后,通过重 力沉降后固液分离,沉降的污泥一部分排出系统,一 部分回流至曝气池以保持曝气池的污泥浓度. 未去 除完全的化学品从上层清液即二级出水中流出并排 入受纳水体.

为了方便计算和表示各环境相,构建了模型概念图(图1). 将各池体拆分为水相、悬浮颗粒相、沉积污泥相,由于曝气池在持续的曝气过程中污泥混合比较均匀,没有沉积污泥,因此曝气池只有水相和悬浮颗粒相. STP上方空气流动比较均匀,可整体划分为气相,标记为箱1; STP与外部环境存在气、水的流入流出过程,将外部环境单独标记为箱0. 图1中单向箭头表示从i箱到j箱的平流过程,包括水、水中悬浮颗粒、空气的流动以及初沉池和二沉池污泥的去除,平流过程不可逆;双向箭头代表相邻介质i和j间的扩散,由介质i和j的非稳态浓度驱动的,包括吸附和挥发;假定降解过程主要发生在曝气池. 由此概念模型由9箱、15个平流过程、6个扩散过程和1个降解过程组成.

根据化学品风险筛查的目的,建立化学品不随时间变化的预测模型,即稳态模型足以达到目的. 稳态下,各箱质量守恒见式(1).

$$-k_i c_i V_i + \sum \left[A(i,j) \times c_i \right] + \sum \left[X(i,j) \times c_i \right] = 0$$
(1)

37 卷

图 1 C-STP(O)模型概念示意

Fig. 1 Conception figure of C-STP(O) model

式中, k_i 为第 i 箱中生物降解一级动力学常数 (s^{-1}) ; c_i 为第 i 箱中化学品浓度 $(mol \cdot m^{-3})$; V_i 为第 i 箱的体积 (m^3) ; A(i,j) 为环境介质平流量 $(m^3 \cdot s^{-1})$; X(i,j) 为环境介质扩散流量 $(m^3 \cdot s^{-1})$.

根据概念模型的 9 个箱体,可以写出一个九元一次的总质量守恒方程,具体见表 2. 如果 A(i,j)、X(i,j)、c(0,2)和 c(0,3)已知,解九元一次方程即可求解各箱中化学品浓度,进而计算化学品经污水处理后向大气、地表水、污泥的排放比例及生物降解比例.

表 2 总质量守恒方程矩阵1)

Table 2 Matrixes of total mass balance equation

输出	输入量(未知)	输入量(已知)
$[A(1,0) + X(1,2) + X(1,5) + X(1,7)] \times c_1$	$-[X(2,1) \times c_2 + X(5,1) \times c_5 + X(7,1) \times c_7]$	= 0
$[A(2,5) + X(2,1) + X(2,3)] \times c_2$	$-[X(1,2) \times c_1 + X(3,2) \times c_3]$	$=A(0,2) \times c(0,2)$
$[A(3,6) + A(3,4) + X(3,2)] \times c_3$	$-X(2,3) \times c_2$	$=A(0,3) \times c(0,3)$
$[A(4,0)] \times c_4$	$-A(3,4) \times c_3$	=0
$[A(5,7) + X(5,1) + X(5,6) + k \times V_5] \times c_5$	$-[A(2,5) \times c_2 + X(1,5) \times c_1 + X(6,5) \times c_6]$	= 0
$[A(6,8) + X(6,5)] \times c_6$	$-[A(3,6) \times c_3 + A(9,6) \times c_9 + X(5,6) \times c_5]$	=0
$[A(7,0) + X(7,1) + X(7,8)] \times c_7$	$-[A(5,7) \times c_5 + +X(1,7) \times c_1 + X(8,7) \times c_8]$	= 0
$[A(8,0) + A(8,9) + X(8,7)] \times c_8$	$-[A(6,8) \times c_6 + X(7,8) \times c_7]$	= 0
$[A(9,0) + A(9,6)] \times c_9$	$-[A(8,9)\times c_8]$	= 0

1)c(0,2)为 STP 进水中化学品溶解态浓度 $(g\cdot m^{-3})$; c(0,3)为 STP 进水中化学品吸附态浓度 $(g\cdot m^{-3})$

1.2 模型参数

影响化学品在 STP 中归趋的参数主要有: 化学品固有特性参数、环境条件和 STP 场景参数. 模型应设置较少的与化学品性质相关的输入参数,符合化学品环境管理及风险筛查的要求. 为了在同一尺度下评估不同化学品的风险,模型应选择代表我国环境条件和 STP 工艺特征的场景参数,包括环境介质容量、进水水质等作为模型默认值,使模型简单易用.

1.2.1 化学品固有特性参数

STP 模型需要污泥-水分配系数(K_P , $L \cdot kg^{-1}$)、

空气-水分配系数 $(K_H, \mathbb{T} \pm M)$ 及生物降解速率常数 (k,s^{-1}) 等数据. SimpleTreat 等模型使用吸附/解吸附系数 $(K_{oc}, \mathbb{T} \pm M)$ 或正辛醇/水分配系数 $(K_{ow}, \mathbb{T} \pm M)$ 表征化学品的吸附/解吸附,水溶解度 $(S, g \cdot L^{-1})$ 、摩尔质量 $(M, kg \cdot mol^{-1})$ 、蒸气压 (P, Pa) 或亨利常数 $(H, Pa \cdot m^3 \cdot mol^{-1})$ 表征挥发过程,生物降解性或生物降解半减期 (DT_{50}, d) 表征生物降解过程. 我国"新化学物质环境管理办法"要求提交理化性质及环境行为等参数,包括 K_{oc} 、快速生物降解性或固有生物降解性、 S, M, P, K_{ow} ,未要求提交亨利常数数据,本研究选择 M, K_{oc} ,P, S,快速或固有

生物降解性作为模型输入参数,其测试方法见文献 [15,16].

1.2.2 环境条件

根据文献[17]2014 年全国平均气温 10.1°C, 较常年(9.6°C) 偏高 0.5°C. 我国主要城市年平均风速都在 1~2 m·s⁻¹,少数城市偏高. 温度(T)定为 283 K,风速(W_s)定为 2 m·s⁻¹.

环境条件主要影响化学品的挥发过程. 蒸气压根据温度的变化,差异较大. 有必要将试验温度下的蒸气压校正到 STP 场景温度,校准方法根据克拉贝龙-克劳修斯方程[17].

1.2.3 STP 场景参数

(1)容积参数 欧盟的 SimpleTreat 模型使用服务人口乘以人均废水产生量、人均固废量、人均BOD 产生量等间接数据计算 STP 的日处理能力和进水水质指标. 而在中国由于污水合流处理、地域差异的影响以及数据可获得性,采用平均日处理量 $(Q, m^3 \cdot d^{-1})$ 、进水悬浮固体含量和进水 BOD₅ 可简化模型并增加宜用性. 文献[19]指出,全国4 436家城镇 STP,平均日处理量约为 $3.5~ \text{万} m^3 \cdot d^{-1}$,将 Q 定为 $3.5~ \text{000} \text{ m}^3 \cdot d^{-1}$.

根据"室外排水设计规范"(GB 50014-2006)^[20],初沉池、曝气池、二沉池水力停留时间

(HRT) 分别为 2、10、4 h,高度 (h,m) 分别为 4、3、3 m. 根据水力停留时间可计算各池体积 $(V,m^3):V=Q\times HRT/24$,各池表面积 (A_{rea},m^2) 计算公式为 $A_{rea}=V/h$,加和后的 STP 总面积 $(A_{rea,STP},m^2)$ 为 8 507 m^2 . 水体的体积为相应池体的体积,悬浮颗粒相的体积需要考虑悬浮颗粒浓度 $(SS,kg\cdot m^{-3})$ 及污泥密度 $(R_{HO},kg\cdot L^{-3}):V=V_{\pi}\times SS/(R_{HO}\times 1\,000);$ 假定沉积污泥的厚度为 $0.1\,m$,则沉积相的体积为 $V=0.1\times A_{rea}$. STP 上方空气高度 (h_{air}) 假定为 $10\,m$,则空气总体积 $V_1=A_{rea,STP}\times 10=85\,070\,m^3$.

(2)水质和污泥参数 污水水质以及污泥性质主要影响化学品的吸附过程. 文献[21]中获得 308个进水 SS 资料数据,均值约 200 mg·L⁻¹,见图 2 (a); 281个进水 BOD₅ 资料数据,均值约 150 mg·L⁻¹,见图 2(b). 从文献[22]中获得 274个出水 SS 数据,均值为 12 mg·L⁻¹,见图 2(c); 310个二级出水 BOD₅ 数据,均值为 10 mg·L⁻¹,见图 2(d). 一般 STP 的二级出水都排放进入地表水Ⅲ 类功能水域^[23],因此中国的 STP 普遍执行"城镇污水处理厂污染物排放标准"(GB 18918-2002)^[24]一级 B 标准(BOD₅和 SS 都为 20 mg·L⁻¹). 由于大部分有机化学品都会显著吸附于悬浮固体中随二级出水排出,为了符合风险评估中保守评估的原则,模型中将二

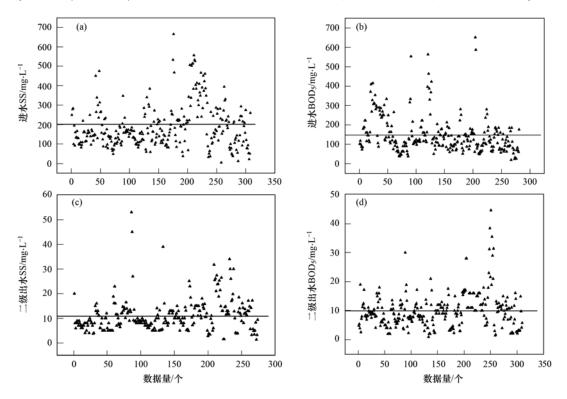


图 2 中国 STP 进水水质文献调研值

Fig. 2 China's water quality of STP influent by documents study

级出水 SS 定为 20 mg·L-1.

假定 STP 运行良好,初沉池有 2/3 的污泥发生沉降,同时 13/36 的 BOD 在初沉过程中被去除,剩余 23/36 的 BOD 进入曝气池,曝气池 BOD₅ 去除率 (F_{BOD}) 为 90% [25]. 好氧污泥在降解 BOD 的过程中会生产污泥,曝气池污泥产生量 $(P_{sludge}, kg \cdot d^{-1})$ [26] 的计算见式(3).

 $P_{\text{sludge}} = Q \times \text{BOD}_{0} \times F_{\text{BOD}} \times Y_{\text{sludge}}$ (3) 式中, Y_{sludge} 为污泥产率($\text{kg} \cdot \text{kg}^{-1}$); BOD_{0} 为曝气池 BOD_{5} ($\text{g} \cdot \text{L}^{-1}$); F_{BOD} 为 BOD_{5} 去除率(无量纲); Y_{sludge} 为污泥产率($\text{kg} \cdot \text{kg}^{-1}$).

Mikkelsen 等[27] 研究表明 Y_{sludge} 的计算见式

(4).

 $Y_{\text{sludge}} = 0.947 + 0.0739 \times \ln k_{\text{SLR}}$ (4) 式中, k_{SLR} 为污泥负荷(kg·kg⁻¹),可根据 F_{BOD} 计算: $\ln k_{\text{SLR}} = (0.818 - F_{\text{BOD}})/0.0422$, 当曝气池 $F_{\text{BOD}} = 0.9$ 时, k_{SLR} 为 0.14 kg·kg⁻¹.

本研究选择北京、南京、上海、沈阳共 10 家污水处理厂,采样测定了活性污泥的密度和有机碳含量. 结果显示,有机碳含量分布在 $18\% \sim 31\%$,均为 20%,初沉池污泥和曝气池污泥稍有差异;污泥密度为 $1.2 \sim 2~{\rm kg}\cdot{\rm L}^{-1}$,均值 $1.6~{\rm kg}\cdot{\rm L}^{-1}$.

模型中采用的环境条件和场景参数见表 3. 如果输入数据缺乏,可推荐使用表 3 中数据.

表 3 C-STP(O)模型和 SimpleTreat 模型环境条件和场景参数¹⁾

Table 3 Parameters of environmental conditions and scenario used in C-STP(O) model

4. ¥h	炊口	符号 原水(RS)		初沉剂	初沉池(PS)		也(0)	二沉池	(SLS)	空气(air)	
参数	付亏	A	В	A	В	A	В	A	В	A	В
温度i	T/K									283	288
日处理量 ⁱ	$Q/m^3 \cdot d^{-1}$	35 000	2 000	_	_	_	_	_	_	_	_
风速 ⁱ	$W_{ m S}/{ m m}\cdot{ m s}^{-1}$	_	_	_	_	_	_	_	_	2	3
水力停留时间 ⁱ	HRT/h	_	_	2	2	10	6.9	6	6	_	_
体积°	V/m^3	_		2 917	167	14 583	575	8 750	500	85 070	4 000
高度 ⁱ	h/m	_	_	4	4	3	3	3	3	10	10
面积°	$A_{\rm rea}/{\rm m}^2$	_	_	729	41.6	4 861	191.7	2 917	167	8 507	400
面积占比°	$F_{ m area}$	_	_	0.086	0. 104	0.571	0.479	0.343	0.418	_	_
曝气速率 ⁱ	$A_{\rm R}/{\rm m}^3\cdot{\rm s}^{-1}$	_	_	_	_	0. 13	0.13	_	_	_	_
悬浮颗粒密度 ⁱ	$R_{\mathrm{HO}}/\mathrm{kg}\cdot\mathrm{L}^{-3}$	1.6	1.5	1.6	1.5	1.6	1.3	1.6	1.3	_	_
悬浮颗粒浓度 ⁱ	SS/kg·m ⁻³	0.2	0.4	0.067	_	3	_	0.02	0.03	_	_
悬浮相体积°	V/m^3	_	_	0.098	0.02	21.88	1.77	0.088	0.01	_	_
沉积相体积°	V/m^3	_	_	7. 29	4. 17	_	_	29. 17	16.67	_	_
5 日生化需氧量 ⁱ	$BOD_5/g \cdot L^{-1}$	0. 15	0. 27	0. 128	_	0.0128	_	0.0128	_	_	_
有机碳含量i	$f_{ m oc}$	0.18	0. 15	0. 18	0.37	0. 19	0.37	0. 19	_	_	_

1) A:C-STP(O) 模型; B: 欧盟 SimpleTreat 模型; 上标中,i: 输入参数; c:模型计算参数; 一: 不适用

1.2.4 中国和欧盟 STP 暴露场景参数差异分析

欧盟 SimpleTreat 和 US EPA 的 STPWIN 模型是国际上常用的 STP 暴露评估模型, STPWIN 模型没有暴露场景参数的介绍, 欧盟 SimpleTreat 模型参数比较系统, 国内现阶段主要使用 SimpleTreat 模型预测化学品的归趋, 中国与欧盟参数场景参数的差异将会对结果差生明显的差异. 中国 STP 进水 BOD、SS、 f_{oc} 显著低于欧盟, 低 BOD 和低 SS 使污泥产量较少, 低 f_{oc} 使污泥吸附化学品量减少, 最终中国场景参数使 C-STP(O)模型预测的污泥对化学品的吸附比例降低, 二级出水中归趋比例增加. 中国平均环境温度为 283 K, 略低于欧盟 288 K, 化学品的挥发性损失略小,对于非挥发性化学品,差异不显著.中国 STP 日处理量平均值为35 000 $m^3 \cdot d^{-1}$, 远高于欧盟 2000 $m^3 \cdot d^{-1}$, 对于相同排放量的化学品, C-

STP(O)预测的 STP 中的化学品浓度将是SimpleTreat 预测值的 1/17.

1.3 质量守恒方程及求解

1.3.1 平流

(1)空气 假定 STP 上方空气流入速度和流出速度相同,则空气流速由风速、污水处理厂的面积和大气高度共同决定,计算公式见式(5).

$$A(0,1) = A(1,0) = \sqrt{A_{\text{rea STP}}} \times h_{\text{air}} \times W_{\text{S}}$$
 (5)

(2)水流 各池体的水流流速与污水日处理量 *Q* 成正比,计算见式(6).

$$A(0,2) = A(2,5) = A(5,7)$$

= $A(7,0) = Q/(24 \times 3600)$ (6)

(3)悬浮颗粒流和污泥流 不同池体之间悬浮 固体的流速用相应的水流速率和悬浮固体浓度计 算,为了统一量纲,计算中引入污泥密度(R_{HO}), A(0,3)、A(6,8)、A(8,0) 计算公式相似,以 A(0,3) 为例,计算见式(7).

$$A(0,3) = A(0,2) \times \frac{SS_{RS}}{R_{HO RS} \times 1000}$$
 (7)

在初沉池中有 2/3 的悬浮颗粒沉降下来,其余 1/3 的悬浮颗粒进入曝气池,则 A(3,6)=1/3A(0,3),A(3,4)=A(4,0)=2/3A(0,3). 进入二沉池的悬浮颗粒,一部分随二级出水流出,一部分沉降为污泥,沉降后的污泥,一部分作为剩余污泥排出,另一部分回流到曝气池,质量守恒方程分别见式(8)、(9)和(10).

$$A(8,9) = A(6,8) - A(8,0)$$
 (8)

$$A(9,6) = A(8,9) - A(9,0)$$
 (9)

$$A(9,0) = \frac{S_{\text{sludge}}}{24 \times 3600 \times 1000 \times R_{\text{HO_SLS}}}$$
 (10)

每日产生的剩余污泥量(S_{sludge})为流入曝气池的污泥和曝气池污泥产生量之和减去二级出水中流出污泥量,计算公式见式(11).

$$\begin{split} S_{\rm sludge} &= P_{\rm sludge} + 1\,000 \times 3\,600 \times 24 \times \\ & \left[A(3,6) \times R_{\rm HO_PS} - A(8,0) \times R_{\rm HO_SLS} \right] \end{split} \tag{11}$$

1.3.2 扩散

扩散过程由两个相邻的环境介质的非平衡浓度决定,STP 中扩散过程包括污泥-水(吸附)和空气-水体系(挥发和曝气). Mackay 创建了描述扩散过程的逸度方法^[13],扩散流量 X(i,j)的计算见式(12).

$$X(i,j) = D(i,j)/Z_i$$
 (12)

式中, D(i, j) 指 i 箱 到 j 箱 的 迁 移 系 数 $[\text{mol}\cdot(\mathbf{s}\cdot\mathbf{Pa})^{-1}]$; Z_i 为 i 相 的 逸 度 容 量 $[Z, \text{mol}\cdot(\mathbf{m}^3\cdot\mathbf{Pa})^{-1}]$ 计算.

逸度容量的概念类似于比热容,Z 值高的相(可能是底泥或鱼)能吸收大量的化学品,却能保持低的逸度. 化学品在两相的迁移系数,可应用惠特曼双阻力理论,该理论假设化学品在相内迁移速度较快,迁移的限速步骤来自于迁移相和被迁移相两相的界面阻力,且总阻力为两相界面阻力之和[14]:1/D= $1/D_1+1/D_2$. 逸度理论认为[14] 化学品在两相(如气-水)中的分配系数(K_H)为气相逸度容量(Z_1)除以水相逸度容量(Z_2). 因此,与浓度模型相比,逸度模型的优点主要为计算与求解比较简单,且适用于由任意多个环境介质构成的环境系统.

(1)吸附

污泥-水分配系数(K_P , $L \cdot kg^{-1}$)为平衡状态下化学品在污泥中逸度容量(Z_s)和水中逸度容量

 (Z_{w}) 之比^[14]:

$$K_{\rm p} = Z_{\rm s}/Z_{\rm w}$$

污泥的逸度容量为:

 $Z_3 = Z_4 = Z_6 = Z_8 = Z_9 = K_p \times R_{HO}/H$ 水的逸度容量为:

$$Z_2 = Z_5 = Z_7 = 1/H$$

化学品在污泥中的吸附主要取决于污泥有机碳含量 (f_{oc}) ,不同性质的污泥其化学品的 K_{p} 值不同,通常采用经 f_{oc} 归一化后的污泥/水吸附系数 (K_{oc}) 表征化学品的吸附行为:

$$K_{\rm oc} = K_{\rm p}/f_{\rm oc}$$

化学品吸附过程有 3 种吸附模型: Langmuir 模型、Freundlich 模型和线性模型,在低浓度时(即浓度 <1 μ g·L⁻¹),可使用线性模型^[28]. 对于 K_{oc} 无法测定的新化学物质或者缺乏数据的现有化学品,可根据 K_{ow} 进行估算^[29],最经典的估算方法为:

$$K_{oc} = 0.5 \times K_{ow}$$

根据惠特曼双阻力公式,假定化学品在水相和 悬浮颗粒相中达到了吸附平衡,污泥-水之间的D值 由吸附速率 (k_{abs},s^{-1}) 决定,

$$k_{\rm abs} = \ln 2/t_{1/2}$$

式中 $t_{1/2}$ 为污泥吸附解析平衡一般所用的时间.由于曝气加剧了吸附解析的速度,可以认为曝气池 $t_{1/2}$ 为 360 s,初沉池和二沉池为 $t_{1/2}$ 为 600 s. 则吸附 D 值 [14] 计算见式(13).

$$D(i,j) = D(j,i) = \frac{k_{\text{abs}}}{1/(V_i Z_i) + 1/(V_j Z_j)}$$
(13)

(2)挥发和曝气

纯物质的挥发性可用蒸气压或者沸点表征,但是这有别于化学品在水中的挥发过程. 水相中,平衡状态下化学品在大气中和水中的分配系数 K_H 计算公式为 $^{[14]}$:

$$K_{\rm H} = P/(RTC_{\rm w})$$

可以看出,化学物质在水气之间的分配不仅与P有关,还与S有关.因此可以使用亨利常数(H):

$$H = P \times M/S$$

表征化学物质在气水界面的分配^[30]. 新化学物质申报中 H 为非基础数据,可根据 P 、M 、S 计算. 由此,空气逸度容量为:

$$Z_1 = 1/(RT)$$

式中 R 为气体常数, $8.314 \text{ J} \cdot (\text{mol} \cdot \text{K})^{-1}$. 水的逸度容量为:

$$Z_2 = Z_5 = Z_7 = 1/H$$

水-气之间的迁移速率 D(1,2) 和 D(1,7) 值计 算见式 $(14)^{[14]}$.

$$D(i,j) = D(j,i) = \frac{A_{\text{rea}}}{\frac{1}{K_{\text{air}} \times Z_i} + \frac{1}{K_{\text{water}} \times Z_j}}$$
(14)

式中, K_{air} 为空气传质系数(2.78×10⁻³m·s⁻¹), K_{water} 为水传质系数(2.78×10⁻⁵m·s⁻¹).曝气池 D 值计算见式(15)^[31]:

$$D(1,5) = D(5,1) = \frac{k_{\text{aerator}}}{\frac{1}{V_1 \times f_{\text{area_0}} \times Z_1} + \frac{1}{V_5 \times Z_5}}$$
(15)

式中, k_{aerator} 为曝气池挥发速率常数,为表面挥发速率常数(k_{surf})和曝气挥发速率常数(k_{strip})两部分之和.

$$k_{\text{aerator}} = k_{\text{surf}} + k_{\text{strip}}$$

这意味着化学品在曝气池中的损失大部分来自于曝气而非表面挥发. 表面挥发速率 k_{surf} 为 $^{[31]}$:

$$k_{\text{surf}} = \frac{K_{\text{H}}/h_{0} + 1/h_{\text{air}}}{K_{\text{H}}/K_{\text{water}} + 1/K_{\text{air}}}$$

气提挥发速率常数根据 Hsieh 等^[32]研究结果, 用曝气速率计算:

$$k_{\text{strip}} = 8.9 \times 10^{-4} (A_{\text{R}}/3\ 600)/V_0 H^{1.04}$$

1.3.3 降解

化学品降解机制比较复杂,污水处理厂中低浓度化学品一般遵守一级动力学方程或 Monod 方程. Monod 方程认为,某一微生物的比生长速率与基质(化学品)浓度相关,即化学品的降解不仅与其本身相关,还与微生物的生长过程相关,Monod 方程中相关参数测定比较复杂. 目前国际上普遍认可的生物降解性测试方法为经济与合作组织(Organization for Economic Co-operation and Development,OECD)提出的生物降解性筛选试验方法,包括快速生物降解性和固有生物降解性. 快速生物降解性是一种严格的

筛选试验,如果化学品在快速生物降解性中达到通过水平,则在 STP 中可以完全矿化. 该测试方法简单、可靠,其结果基本可以外推到 STP 及环境中的降解性[33,34].

本研究中假定化学品的降解遵守一级动力学方程,用一级动力学方程的降解速率(k) 计算化学品的降解过程. 如果无法获得 STP 中化学品的 k, 可依据生物降解性筛选试验结果外推至 STP 中的 k. OECD301、302 试验中接种物浓度为 10~100 mg·L⁻¹范围,而 STP 生化反应池的悬浮固体含量为2000~4000 mg·L⁻¹,化学品在 STP 生化反应池的降解速率将远远高于筛选试验. 有研究认为^[35], STP 中生物降解速率正比于接种物中细胞数量,可以通过接种物浓度的关系计算 STP 中k, 计算见式(16).

$$k = k_{301,302} \times \frac{[细胞浓度]_{STP}}{[细胞浓度]_{301,302}} \times a$$
 (16)

式中, a 为外推系数.

目前欧盟和美国根据快速生物降解性及固有生 物降解性测试结果,制定了外推标准以获得化学品 在STP中的k,分别被用于SimpleTreat和STPWIN 模型. 如表 4 所示. 欧盟外推标准分为 4 级, k 分别 为1、0.3、0.1和0h⁻¹,而美国外推标准分为5级, k 分别为 0.69、0.23、0.069、0.023 和 6.9×10⁻⁵ h⁻¹,分别对应 DT₅₀为1、3、10、30、10 000 h. 欧盟 和美国标准降解速率基本处于相同水平,美国标准 稍微严于欧盟. 根据作者研究经验及已有研究结 果[35,36],由于筛选试验条件的严格性,固有生物降 解率达到 20%, 在污泥浓度较高的 STP 中一定可以 发生降解,如Simonich等[37]发现水杨酸苄酯等4种 具有固有生物降解性的化学品,在STP中降解去除 率可以达到 95.1%~99.8%. 因此欧盟将 k 设为 0 过于苛刻,美国的设置标准更为科学,本模型推荐使 用美国的外推标准获取 k.

表 4 欧盟和美国生物降解性筛选试验结果外推 STP 中降解速率常数的标准 [34]

Table 4 Extrapolation criteria from results of biodegradation screening test to degradation rate constant in STP proposed by US EPA and EU

			美国	
序号	生物降解性	<i>k</i> ∕h ^{−1}	生物降解性	k∕h ⁻¹
1	快速生物降解	1	快速生物降解性	0. 69
2	28 d 生物降解率 > 60% , 10 d 观察期降解率 < 60%	0.3	快速生物降解率≥40%	0. 23
3	固有生物降解率≥70%	0.1	快速生物降解率为20%~40%,或固有降解率≥70%	0.069
4	固有生物降解率为20%~70%	0	固有降解率为 20% ~ 70%	0. 023
5	不降解	0	不降解	6.9×10^{-5}

1.3.4 化学品输入量计算

STP 中化学品的输入主要为原水中化学品向初

沉池的流入,化学品在水和悬浮颗粒中达到吸附平衡,其中溶解态的化学品比例 f_{tis} 为:

$$f_{\rm dis} = 1/(1 + K_{\rm p_RS} \times SS_{\rm RS}/1000)$$

原水中化学品溶解态浓度 c(0,2) 为溶解态比例乘以原水中化学品总浓度 (c_{in}) 为:

$$c(0,2) = c_{\text{in}} \times f_{\text{dis}}$$

式中, c., 根据化学品排放量和污水日处理量计算:

$$c_{\scriptscriptstyle \rm in} \, = \, 1 \, 000 \, \times E_{\scriptscriptstyle \rm RC}/Q$$

式中, E_{RC} 为化学品日排放量, $kg \cdot d^{-1}$. 悬浮颗粒中化学品浓度 $c(0,3) = c(0,2) \times K_{p.RS}$.

1.4 STP 暴露浓度实际采样分析

酚类化学品因具有环境激素类效应、且容易在地表水中检出^[38],对生态环境具有潜在风险.测定了5种不同归趋特性的酚类化学品在以传统活性污泥法为基本工艺的 JinSh 污水处理厂中的去除率.采集上海 JinSh 污水处理厂原水及二级出水水样,将水样置于1 L 棕色玻璃瓶内运回实验室,用盐酸调节 pH 值达到 2±0.2,并用 0.45 μm 孔径玻璃纤维膜抽滤,取 500 mL 水样用固相萃取(Oasis HLB)小柱进行固相萃取. 先用甲醇活化固相萃取小柱,再用 10 mL 的去离子水淋洗 HLB 小柱,上样速度约

为 5 mL·min⁻¹. 上样结束后继续抽真空 30 min 使其干燥,用 10 mL 甲醇溶液洗脱,洗脱液用氮气吹干,然后用甲醇: 水(1:1)定容到 1 mL,涡旋振荡 2 ~3 min,按照文献[39]的方法采用 HPLC-MS/MS (AB Science,Qtrap4500)分析水样中苯酚类化学品浓度. 标准溶液峰面积与质量浓度的线性关系良好 ($R^2 \ge 0.998$),方法定量限为 2. 0 ~ 20 ng·L⁻¹,添加浓度为 20 μg·L⁻¹ 时,方法回收率为 70. 3% ~ 102. 7%.

2 模型验证及应用

2.1 文献数据验证模型

Monteith [40] 和 Hannah 等[41] 研究了 1,1,1-三氯乙烷等 26 个化学品在传统活性污泥中的去除率,本研究收集了这 26 个化学品的 H、 $\lg K_{ow}$ 以及生物降解性筛选试验数据 [42],并按照 US EPA 的外推标准获取了在 STP 中的 k. 26 个化学品的验证数据见表 5.

模型预测差异在 20% 为可接受范围^[43],26 个 化学品中预测偏差绝对值小于20% 的为21个,预

表 5 C-STP(O)模型预测值与文献试验值比较

Table 5 Comparison of model results by C-STP(O) with the measured values reported in literature

性质	验证物质	H^{1}	$\lg K_{\rm ow}^{2)}$	DT ₅₀ ³⁾ /h		C-ST	P(0)预	测值/%	6	文献去除率	预测偏差	
性 灰	短此初灰	$/Pa \cdot m^3 \cdot mol^{-1}$	IgA _{ow}	D1 ₅₀ 7/n	空气	水	污泥	降解	去除率	/%	/%	
	四氯化碳	2 932	2. 64	3	68	11	0.7	20	89	74	- 15	
	1,1,1-三氯乙烷	1 472	2.49	10	74	16	0.6	9	84	85	1	
	溴仿	1357	1. 19	1	41	9	0.1	50	91	65	-26	
	1,1,2-三氯乙烷	1 183	2. 53	10	71	18	0.6	10	82	85	3	
	乙苯	887	3. 13	1	35	10	1.2	54	90	93	3	
	甲苯	679	2. 69	3	57	15	1	28	85	90	5	
挥发性	1,1-二氯乙烯	628	1. 79	1	30	11	0.2	59	89	94	5	
	氯仿	382	1.97	1	23	12	0.3	65	88	86	-2	
	七氯	353	5. 27	100	51	33	17	0	67	65	-2	
	1,4-二氯苯	159	3.4	10	43	35	2.7	19	65	70	5	
	对氯苯	159	3.4	1	13	13	1.7	72	87	94	7	
	1,2-二氯乙烷	121	1.48	3	20	29	0.2	51	71	84	13	
	邻苯二甲酸(2-乙基己基)酯	1.73	7.5	1	0	8	64	28	92	87	-5	
	荧蒽	0. 21	5. 22	3	0	33	16	51	67	95	28	
	芘	0. 92	5. 18	10	0	56	18	26	44	95	51	
	五氯苯酚	0.08	5.05	1	0	16	11	73	84	96	12	
吸附性	邻苯二甲酸二丁酯	0.05	4. 72	1	0	16	7.7	76	84	88	4	
WHI IT	菲	0. 58	4. 57	1	0	16	6.6	77	84	95	11	
	蒽	3.96	4. 54	30	4	73	12	12	27	80	53	
	林丹	0. 15	3.7	100	0	96	4.3	0	4	18	14	
	萘	43	3.37	1	6	15	1.6	77	85	97	12	
	富马酸二甲酯	43	3.37	10	20	50	2.8	26	50	85	35	
	2,4-D	2. 0 × 1	0 -53. 13	3	0	38	1.9	60	62	60	-2	
其它	异佛乐酮	0.58	1.7	1	0	17	0.2	82	83	98	15	
ハロ	苯酚	0.05	1.46	1	0	18	0.2	82	82	86	4	
	双(2-氯乙基)醚	2. 89	1. 12	1	1	17	0.1	82	83	80	-3	

¹⁾H 计算公式: $H = P \times M/S$; 2) $\lg K_{ow}$ 计算公式: $\lg K_{ow} = \lg K_{oc} + 0.3$; 3) \det_{50} 计算公式: $\det_{50} = \ln 2/k$

测准确率为81%. 预测偏差绝对值大于20%的为5个,分别为蒽(53%)、芘(51%)、富马酸二甲酯(35%)、荧蒽(28%)、溴仿(-26%). 以蒽为例,经 STP 处理后,分配比例分别为空气(4%)、水(73%)、污泥(12%)、降解(12%),由于蒽的 H=3.96 Pa·m³·mol⁻¹,挥发性不是特别强,空气中4%的分布比例也较为符合,因此预测值与实测值差异主要为污泥吸附和降解过程. 生物降解影响因素较多,受环境条件、STP 运行状况、化学品毒性、化学品浓度、污泥浓度和微生物构成生物降解性差异较大,很难准确测定化学品在 STP 中的生物降解性.

预测偏差绝对值大于20%的5种化学品中有4 种化学品,文献实测值高于本模型预测值,且这4种 化学品的 DTso 为 3~30 h,属于筛选试验中可降解 但非快速生物降解类物质. 因此根据外推标准,模 型采用了较低的生物降解速率,模型预测出较少的 生物降解去除率. 但在实测中,这些物质可能表现 出较高的生物降解速率,导致实测去除率高于本模 型预测值. 由于快速生物降解试验条件的严格性, 化学品未达到快速生物降解性通过水平并不能表明 其在环境中不可生物降解[16]. Guhl 等[44]比较了快 速生物降解性和固有生物降解试验结果与污水处理 厂模拟试验结果之间的符合性,发现80%的化学品 结果比较一致. 其余 10% ~ 20% 的化学品没有通过 筛选试验,但是在模拟试验中发生降解. Painter 等[45]研究结果表明由于筛选试验结果的严格性,部 分筛选试验中未降解性的化学品在 STP 中的降解 率亦可达到90%以上. 因此可以认为,上述4种化 学品预测结果的差异是因为筛选试验外推得到的降 解速率未能充分反映其在 STP 中的降解性,这种差

异是因为模型输入参数 k 的不确定性引起,非模型预测结果原因,如果输入参数准确,如使用试验测定的活性污泥中生物降解速率常数,则模型本身预测结果应更能符合实际情况.

2.2 实测数据验证模型

JinSh 污水处理厂工艺为传统活性污泥法,5 种酚类化学品去除率结果见表 6. 5 种酚类化学品去除率为 37. 9% ~ 98. 5%,C-STP(O)预测去除率为 44% ~ 96%,SimpleTreat 模型预测去除率为 78% ~ 90%,C-STP(O)模型预测值与实测值绝对差值为 2. 5% ~ 6. 3%,SimpleTreat 模型预测值与实测值绝对差值为 0. 2% ~ 43%. 由于 C-STP(O)模型中BOD、SS、 f_{oc} 等参数小于SimpleTreat 模型,对于5 种中等吸附性的酚类化学品(lgK_{oc} 为 3. 17 ~ 4. 54),C-STP(O)模型 预测的的污泥吸附比例相对于SimpleTreat 模型偏小.

对特辛基苯酚实测值、C-STP(O)预测值、SimpleTreat 预测值分别为 37.9%、44%、81%,相比 SimpleTreat 模型,C-STP(O)预测结果差异较大.一方面,是因为 C-STP(O) 在吸附性参数上更符合中国实际情况,另一方面,对特辛基苯酚 28 d 生物降解率 > 60%,10 d 观察期降解率 < 60%,SimpleTreat 模型 k = 0.3 s $^{-1}$,而 C-STP(O)模型采用的 k = 0.23 s $^{-1}$,说明 C-STP(O)的 k 取值为标准也较为合理.

2-甲基-5-异丙基苯酚在 JinSH STP 进水中检出浓度最高,为2 670 $\operatorname{ng} \cdot \operatorname{L}^{-1}$,2,4-二叔戊基苯酚检出浓度最低,为 34.0 $\operatorname{ng} \cdot \operatorname{L}^{-1}$,虽然不同化学品暴露浓度水平差异较大,但是 C-STP(O)模型预测结果与实测值都较为一致.

表 6 5 种苯酚类化学品在 STP 中去除率实测值和预测值比较

Table 6 Removal comparison of model results with experimental values for 5 phenol	Table 6	Removal cor	nparison of	f model	results	with o	experimental	values	for 5	phenol
---	---------	-------------	-------------	---------	---------	--------	--------------	--------	-------	--------

	化学品	品性质		Jin	Sh 测定值			C-ST	P(0) }	页测值/	%		Simpl	eTreat :	预测值	1%
物质名称	H^{1} /Pa·m ³ ·mol ⁻¹	$\lg\!K_{\rm oc}$	DT ₅₀ ²⁾ /h	二级出水 ng·L ⁻¹	原水 /ng·L ⁻¹	去除率 /%	空气	水	污泥	降解	总去除	空气	水	污泥	降解	总去除
2-甲基-5-异丙基苯酚	1.5	3. 17	1	289	2 670	89. 2	0. 2	4. 6	0.3	95	95	0.3	11	12	77	89
1-萘酚	17	3. 33	1	8. 10	557	98. 5	2.3	4. 3	0.5	93	96	2.3	10	16	72	90
4-仲丁基苯酚	0. 25	3. 23	1	89.7	793	88.7	0.0	4. 6	0.4	95	95	0	11	13	76	89
对特辛基苯酚	3.0	4.00	3	132	212	37. 9	2.6	56	27	15	44	0.5	19	45	36	81
2,4-二叔戊基苯酚	24	4. 54	100	9.60	34. 0	71.8	14	34	53	0	66	3.2	22	75	0	78

1)H 计算公式: $H = P \times M/S$; 2) DT_{50} 计算公式: $DT_{50} = \ln 2/k$

化学品在污水处理厂中除了能够发生吸附、挥发、生物降解外,还可能发生水解和光解,这也会导致模型预测结果与实测结果产生差异. 鉴于大多数 化学品具有较小的水解和光解速率,且在新化学物 质申报中,光解速率非基础数据,因此 C-STP 未考虑 水解和光解的影响.

2.3 化学品在 C-STP(O)中分布规律 为了研究不同吸附性、挥发性化学品在 C-STP

(0)中的归趋. 将化学品降解性设置为 0(持久性有机化学品),然后通过输入不同的 lgK_{ow} 和 H,分析 C-STP(0)模型向水、大气、污泥的排放比例预测值,结果见图 3.

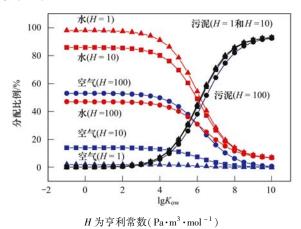
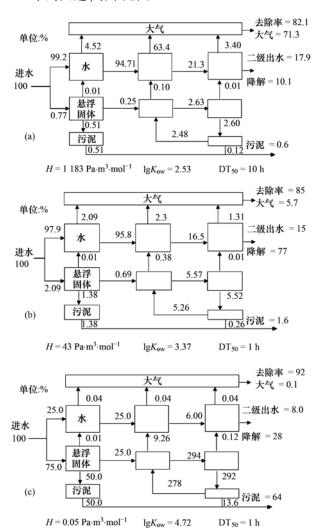


图 3 C-STP(O)模型中 $\lg K_{ow}$ 和 H 对化学品分配比例的影响

Fig. 3 Influence of $\lg K_{ow}$ and H on distribution of chemicals in C-STP(O) model


当疏水性增加时,即 $\lg K_{ow}$ 从 -1 增加到 10,排放到水中化学品比例逐渐减少,排放到污泥的比例相应增加. 在 $\lg K_{ow}$ 为 $3\sim 9$ 范围内,排放到水中的化学品比例迅速减少,排放到污泥的比例迅速增加. 表明,随着 $\lg K_{ow}$ 增加,化学品主要去除过程为污泥吸附,导致向水体和大气的排放比例降低. McCall等[46]研究了化学品在土壤中的迁移能力,同时按照 $\lg K_{oe}$ 值对化学品在土壤中的迁移能力进行了分级,当 $\lg K_{oe}$ > 3. $3(\lg K_{ow}$ > 3) 时,化学品在土壤中具有极低的移动能力,较好的符合 C-STP(O)的预测结果.

C-STP(O)预测结果显示,在无污泥吸附时 (lgK_{xx}为1~3), 当 H 从 1 Pa·m³·mol⁻¹增加到 100 $Pa \cdot m^3 \cdot mol^{-1}$,化学品排放到水中的比例大量减少, 排放到空气中比例的增加,化学品倾向于挥发进行 大气. 根据 Whiteman 双阻力理论, 当 H=25Pa·m³·mol⁻¹时,化学品在液相和气相中的迁移阻力 相等,H > 25 Pa·m³·mol⁻¹时,化学品在气相中的迁 移阻力低于液相,挥发限速步骤为水相的迁移速率. 当 $H = 2.5 \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1}$ 时,水相的阻力为气相阻力 的十分之一,气相迁移速率可以忽略. 由于化学品 在空气中的迁移阻力较小,因此,非挥发性化学品的 迁移阻力都来源于气相,使得化学品不容易从水中 挥发到空气中. 水的 $H = 0.04 \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1}$, 当化学 品 H 低于该值时, 化学品的挥发速率低于水的挥发 速率,在水的蒸发过程中,化学品会在水中浓缩,化 学品成为真正的非挥发性化学品[14].

而在 H 变化的过程中吸附到污泥中的比例变 化不明显,分布曲线几乎重叠在一起,表明亨利常数 的改变几乎不影响污泥对化学品的吸附量.

2.4 3 种化学品的归趋行为预测

选择3种不同性质的化学品:1,1,2-三氯乙烷(易挥发)、萘(易降解)、邻苯二甲酸(2-乙基己基)酯(DEHP)(易吸附),用所建C-STP(O)模型预测在STP中的归趋,结果见图4.

(a)1,1,2-三氯乙烷; (b)萘; (c)邻苯二甲酸(2-乙基己基)酯 **图4 C-STP(O)**模型中不同特性化学品的归趋

Fig. 4 Detailed fate and distribution of chemicals with different properties in C-STP(O) model

1,1,2-三氯乙烷 $\lg K_{ow}=2.53$,吸附性较小 $(\lg K_{ow}<3)$,可以看出原水中化学品在水相中的比例为 99.2%,在悬浮固体中的比例为 0.77%. $H=183~\mathrm{Pa\cdot m^3\cdot mol^{-1}}$,挥发性极大,在初沉池、曝气池、二沉池挥发比例分别为 4.52%、63.4% 和 3.40%,曝气过程中此类化学品的挥发比例非常大. 该物质挥发进入大气后,很难降解,且会消耗臭氧

层,已在全球范围内限制使用.

萘的 $\lg K_{ow} = 3.37$,原水中化学品在悬浮固体中的比例为 2.09%,呈现一定的吸附作用. 萘的 $H = 43 \text{ Pa·m}^3 \cdot \text{mol}^{-1}$,属于易挥发物质,因此初沉池挥发比例为 2.09%,但是由于萘的降解性非常好(DT₅₀ = 1 h),因此,其在曝气池中主要发生降解,挥发比例只有 2.3%.北京 6 家 STP 污泥中萘的检出含量[47]为 $0.01 \sim 0.18 \text{ mg·kg}^{-1}$,该值也表明,由于降解的原因,污泥不是萘主要的归趋介质.

DEHP 的 $H=1.73~{\rm Pa\cdot m^3\cdot mol^{-1}}$,挥发性较小, ${\rm lg}K_{\rm ow}=7.5$,吸附性极强,从图 $3~{\rm pf}$ 出原水中化学品在悬浮固体中的吸附比例高达 75%,因此在初沉池沉降污泥的去除率就达到 50.0%,总的污泥去除率为 64%.此类吸附性化学品从二级出水排放进入地表水中后,会吸附进入水体沉积物中,如 $2000~{\rm fe}$ 在太湖 $12~{\rm rho}$ 完集的沉积物样品中 ${\rm la}$,DEHP 检出含量为 $2.22~23.93~{\rm mg\cdot kg^{-1}}$.长江武汉段干流 ${\rm la}$ 中 DEHP 浓度为 $0.011~54.7~{\rm lho}$ 中含量为 $0.4~323~{\rm mg\cdot kg^{-1}}$,黄河干流 ${\rm la}$,如 ${\rm lo}$ 中 DEHP 浓度为 $0.34~24~{\rm lo}$, ${\rm lo}$

3 结论

- (1)调研了我国 STP 的典型场景参数,温度 = 283 K、风速 = 2 m·s⁻¹、日处理量 = 3.5 万m³·d⁻¹、进水 BOD₅ = 0.15 g·L⁻¹、进水 SS = 0.2 kg·m⁻³、出 水 SS(dw) = 0.02 kg·m⁻³、曝气池 BOD₅ 去除率 = 90%、污泥密度(dw) = 1.6 kg·L⁻³、污泥有机碳含量为 0.18 ~ 0.19.
- (2)以 STP 中最简单的传统活性污泥法为基础工艺,根据化学品的挥发、吸附、降解特性,依据质量守恒和逸度理论,将环境介质划分为9箱,建立了STP 暴露预测模型 C-STP(O).
- (3)模型仅需输入亨利常数、生物降解速率常数、吸附系数即可实现化学品归趋和暴露预测.模型还使用了亨利常数、吸附系数的估算方法以及生物降解性的外推方法.
- (4)模型验证结果表明,C-STP(O)能准确预测化学品在 STP 中挥发、吸附、降解、二级出水的分配过程和分布比例,模型预测结果的不确定性主要为生物降解速率常数.

参考文献:

- [1] van Leeuwen D J, Vermeire T G. Risk assessment of chemicals: an introduction [M]. (2nd ed.). Netherlands: Springer, 2007. 1-16.
- [2] Martin R S, Choubert J M, Budzinski H, et al. Occurrence and fate of relevant substances in wastewater treatment plants regarding Water Framework Directive and future legislations [J]. Water Science and Technology, 2012, 65(7): 1179-1189.
- [3] 陈春丽, 王铁宇, 吕永龙, 等. 河流及污水处理厂全氟化合物排放估算[J]. 环境科学, 2011, **32**(4): 1073-1080.
- [4] Choubert J M, Ruel S M, Esperanza M, et al. Limiting the emissions of micro-pollutants: what efficiency can we expect from wastewater treatment plants? [J]. Water Science and Technology, 2011, 63(1): 57-65.
- [5] 温智皓, 段艳平, 孟祥周, 等. 城市污水处理厂及其受纳水体中5种典型 PPCPs 的赋存特征和生态风险[J]. 环境科学, 2013, 34(3): 927-932.
- [6] Gujer W, Henze M, Mino T, et al. Activated sludge model No. 3[J]. Water Science and Technology, 1999, 39(1): 183-193.
- [7] Urase T, Kikuta T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process [J]. Water Research, 2005, 39 (7): 1289-1300.
- [8] Plósz B G, Leknes H, Thomas K V. Impacts of competitive inhibition, parent compound formation and partitioning behavior on the removal of antibiotics in municipal wastewater treatment [J]. Environmental Science & Technology, 2010, 44(2): 734-742.
- [9] Franco A, Struijs J, Gouin T, et al. Evolution of the sewage treatment plant model simple treat; use of realistic biodegradability tests in probabilistic model simulations [J]. Integrated Environmental Assessment and Management, 2013, 9 (4): 569-579.
- [10] Clark B, Henry G L H, Mackay D. Fugacity analysis and model of organic chemical fate in a sewage treatment plant [J]. Environmental Science & Technology, 1995, 29 (6): 1488-1494.
- [11] Seth R, Webster E, Mackay D. Continued development of a mass balance model of chemical fate in a sewage treatment plant [J]. Water Research, 2008, 42(3): 595-604.
- [12] Byrns G. The fate of xenobiotic organic compounds in wastewater treatment plants [J]. Water Research, 2001, 35(10): 2523-2533.
- [13] Mackay D. Multimedia Environmental Models; The Fugacity Approach[M]. Boca Raton, FL; Lewis Publishers, 1991. 257-258
- [14] Mackay D 著, 黄国兰译. 环境多介质模型: 逸度方法[M]. 北京: 化学工业出版社, 2007. 108-110.
- [15] 刘纯新. 化学品测试方法——理化特性和物理危险性卷 [M]. (第二版). 北京: 中国环境科学出版社, 2013.
- [16] 刘纯新. 化学品测试方法——降解与蓄积卷[M]. (第二版). 北京:中国环境科学出版社, 2013.

- [17] 中国气象局. 2014 年中国气候公报[EB/OL]. http://www.cma. gov. cn/2011zwxx/2011zxxgk/zxgk/201501/P020150129395699895064. pdf, 2015-01-12/2015-01-30.
- [18] 傅献彩. 物理化学[M]. (第五版). 北京: 高等教育出版社, 2006. 277-278.
- [19] 中国环境保护部. 关于公布 2014 年全国投运城镇污水处理设施名单的公告 [EB/OL]. http://www.zhb.gov.cn/gkml/hbb/bgg/201506/t20150609_303209.htm, 2015-05-26/2015-08-05.
- [20] GB 50014-2006, 室外排水设计规范(2014 年版)[S].
- [21] 胡春萍. 广州市大坦沙污水处理厂(三期)工程设计研究 [D]. 天津: 天津大学, 2004. 10-23.
- [22] 陈贻龙. 广州市沥客污水处理厂—期工程的设计及运行 [J]. 中国给水排水, 2010, **26**(12): 70-73.
- [23] GB 3838-2002, 地表水环境质量标准[S].
- [24] GB 18918-2002, 城镇污水处理厂污染物排放标准[S].
- [25] 邵林广. 城市污水处理中初沉池的设置[J]. 给水排水, 2001, 27(9): 5-7.
- [26] Deng Q, Tanner R D. Modeling the dynamics of an activated sludge process using yield and growth functions [J]. Journal of Chemical Engineering of Japan, 2006, 39(8): 846-854.
- [27] Mikkelsen J, Nyholm N, Jacobsen B N, et al. Evaluation and modification of the simpletreat chemical fate model for activated sludge sewage treatment plants [J]. Water Science and Technology, 1996, 33(6): 279-287.
- [28] Limousin G, Gaudet J P, Charlet L, et al. Sorption isotherms: a review on physical bases, modeling and measurement [J]. Applied Geochemistry, 2007, 22(2): 249-275.
- [29] Jacobsen B N, Nyholm N, Pedersen B M, et al. Removal of organic micropollutants in laboratory activated sludge reactors under various operating conditions; sorption [J]. Water Research, 1993, 27(10); 1505-1510.
- [30] Mackay D, Shiu W Y. A critical review of henry's law constants for chemicals of environmental interest [J]. Journal of Physical and Chemical Reference Data, 1981, 10(4): 1175-1199.
- [31] Struijs J. Simple Treat 3.0; a model to predict the distribution and elimination of chemicals by sewage treatment plants [R].

 Netherland; RIVM Report, 1996. 5-15.
- [32] Hsieh C C, Babcock R W, Stenstrom M K. Estimating emissions of 20 VOCs. II: Diffused aeration[J]. Journal of Environmental Engineering, 1993, 119(6): 1099-1118.
- [33] Federle T W, Gasior S D, Nuck B A. Extrapolating mineralization rates from the ready CO₂ screening test to activated sludge, river water and soil[J]. Environmental Toxicology and Chemistry, 1997, 16(2): 127-134.
- [34] Boethling R S, Howard P H, Beauman J A, etal. Factors for intermedia extrapolation in biodegradability assessment [J]. Chemsphere, 1995, 30(4): 741-752.
- [35] Struijs J, van den Berg R. Standardized biodegradability tests: extrapolation to aerobic environments [J]. Water Research, 1995, 29(1): 255-262.

- [36] Gotvajn A Z, Zagorc-Koncan J. Comparison of biodegradability assessment tests for chemical substances in water [J]. Water Science and Technology, 1996, 33(6): 207-212.
- [37] Simonich S L, Federle T W, Eckhoff W S, et al. Removal of fragrance materials during U. S. and European wastewater treatment[J]. Environmental Science & Technology, 2002, 36 (13): 2839-2847.
- [38] 吴正勇, 赵高峰, 周怀东, 等. 三峡库区丰水期表层水中酚 类的分布特征及潜在风险[J]. 环境科学, 2012, **33**(8): 2580-2585.
- [39] 丁洁, 张圣虎, 刘济宁, 等. 液相色谱-串联质谱法测定污水处理厂水样中双酚 A、四溴双酚 A 及烷基酚类化合物[J]. 色谱, 2014, **32**(5): 529-534.
- [40] Monteith H. Fluctuations of Trace Contaminants in Sewage Treatment Plants, Monograph Series 1 on Advances in Water Pollution Research & Technology [M]. Burlington, Ontario: Canadian Association on Water Pollution Research & Control, 1987. 186-193.
- [41] Hannah S A, Austern B M, Eralp A E, et al. Comparative removal of toxic pollutants by six wastewater treatment processes [J]. Water Pollution Control Federation, 1986, 58(1): 27-34.
- [42] Mackay D, Shiu W Y, Ma K C. Illustrated handbook of physicalchemical properties and environmental fate for organic chemicals [M]. Boca Raton, FL: CRC Press, 1992. 195.
- [43] Katsoyiannis A, Zouboulis A, Samara C. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: Model predictions against experimental values [J]. Chemosphere, 2006, 65(9): 1634-1641.
- [44] Guhl W, Steber J. The value of biodegradation screening test results for predicting the elimination of chemicals' organic carbon in waste water treatment plants [J]. Chemosphere, 2006, 63 (1): 9-16.
- [45] Painter H A, King E F. A mathematical model of biodegradability screening tests as an aid to interpretation of observed results [J]. Regulatory Toxicology and Pharmacology, 1983, 3(2): 144-151.
- [46] McCall P J, Swann R L, Laskowski D A, et al. Estimation of chemical mobility in soil from liquid chromatographic retention times[J]. Bulletin Environmental Contamination and Toxicology, 1980, 24(1): 190-195.
- [47] Dai J Y, Xu M Q, Chen J P, et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere, 2007, 66(2): 353-361.
- [48] Wang H, Wang C X, Wu W Z, et al. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment [J]. Chemosphere, 2003, 50 (4): 557-562.
- [49] 王凡,沙玉娟,夏星辉,等. 长江武汉段水体邻苯二甲酸酯 分布特征研究[J]. 环境科学,2008,29(5):1163-1169.
- [50] 沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学,2006,26(1):120-124.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 37 No. 1 Jan. 15, 2016

CONTENTS

Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe	······ BAO Liang-man LIII liang-feng LEI Oian-tao et al	(1)
Atmospheric Polybrominated Diphenyl Ethers in Eight Cities of China; Pollution Characteristics and Human Exposure			
Light Absorption Properties of Water-Soluble Organic Carbon (WSOC) Associated with Particles in Autumn and Winter in the Ur		(-	,
Light thoughton repetites it waster country organic dation (wood) more factor and rathered in radiation and white in the or	HIJANG Huan RI Xin-hui PENG Long et al	(1	16)
Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM2, 5 in Nanjing Region			
Pollution Level and Health Risk Assessment of Heavy Metals in Atmospheric PM _{2.5} in Nanjing Before and After the Youth Olymp		(-)
Totalion bever and reading task resessation of ready steams in Annosphere 1 m _{2.5} in reading before and rated the Total Olymp		()	28)
Enrichment Characteristics and Source Analysis of Metal Elements in PM _{2,5} in Autumn in Nanchang City			
Contributions of Factors That Influenced the Visibility In North Suburb of Nanjing In Winter and Spring			
A Case Study on the Rapid Cleaned Away of PM _{2.5} Pollution in Beijing Related with BL Jet and Its Mechanism			
Characteristics of Chemical Components in PM _{2.5} from the Coal Dust of Power Plants			
Improvement of Air Quality During APEC in Beijing in 2014			
Evaluation on the Effectiveness of Vehicle Exhaust Emission Control Measures During the APEC Conference in Beijing			
Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng			
Characteristic of Particulate Emissions from Concrete Batching in Beijing			
Anthropogenic Ammonia Emission Inventory and Its Spatial Distribution in Chang-Zhu-Tan Region			
Seasonal Variability of Greenhouse Gas Emissions in the Urban Lakes in Changchun, China			
Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn			
Hydrochemical Characteristics and Influencing Factors in Different Geological Background: A Case Study in Darongjiang and Ling		`	,
	SUN Ping-an . YU Shi . MO Fu-zhen . et al.	(1)	23)
Community Structure of Aquatic Community and Evaluation of Water Quality in Laoyingyan Section of Dadu River			
Characteristics of Nitrogen and Phosphorus Losses in Longhong Ravine Basin of Westlake in Rainstorm Runoff			
Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban			
Concentrations and Distribution of Metals in the Core Sediments from Estuary and City Section of Liaohe River			
Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir	· · · · · · · · · · · · · · · · · · ·		
Effect of Low Molecular Weight Organic Acids on the Chemical Speciation and Activity of Mercury in the Soils of the Water-Level		(-	,
	YOU Rui, LIANG Li, OIN Cai-ging, et al.	(1'	73)
Arsenic Content and Speciation in the Surficial Sediments of Liangshui River in Beijing			
Effect of UV Light Radiation on the Coagulation of Chlorella and Its Mechanism			
Photocatalytic Oxidation of p-arsanilic Acid by TiO ₂			
Photodegradation of Ciprofloxacin Hydrochloride in the Aqueous Solution Under UV			
Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution			
Experimental Research of Hg(II) Removal from Aqueous Solutions of HgCl ₂ with Nano-TiO ₂			
Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters			
Degradation Characteristics of Three Aniline Compounds in Simulated Aerobic Sewage Treat System			
Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate			
Recent Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Soils from Yangtze River Delta			
Preliminary Study on Linear Alkylbenzenes as Indicator for Process of Urbanization			
Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City			
Effects of Reduced Water and Diurnal Warming on Winter-Wheat Biomass and Soil Respiration			
Effect of Recycled Water Irrigation on Heavy Metal Pollution in Irrigation Soil	ZHOU Yi-qi, LIU Yun-xia, FU Hui-min	(2	.88)
Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil			
Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Taili			
	····· PENG Xi-zhu, YANG Sheng-xiang, LI Feng-mei, et al.	(3	.01)
Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils			
Distribution Characteristics and Risk Assessment of Phthalic Acid Esters in Agricultural Products Around the Pearl River Delta, S	outh China		
	LI Bin, WU Shan, LIANG Jin-ming, et al.	(3	17)
Bioaccumulation and Biomagnification of Heavy Metals in Three Gorges Reservoir and Effect of Biological Factors			
Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Dryland Origins in Karst Cav	e Wetland		
	JIN Zhen-jiang, ZENG Hong-hu, LI Qiang, et al.	(3	35)
Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill			
Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction			
Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy			
Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying			
Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter			
Application of FCM-qPCR to Quantify the Common Water Pathogens			
Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants			
Compositional Variation of Spent Mushroom Substrate During Cyclic Utilization and Its Environmental Impact			

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编:赵景柱 郝吉明 田 刚

编 委: (按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 刘 毅 汤鸿霄 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环维种草

(HUANJING KEXUE)

(月刊 1976年8月创刊)

2016年1月15日 第37卷 第1期

ENVIRONMENTAL SCIENCE

(Monthly Started in 1976)

Vol. 37 No. 1 Jan. 15, 2016

	2010	十1月15日 初57世 初1朔			<u> </u>
主	管	中国科学院	Superintended	by	Chinese Academy of Sciences
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese
协	办	(以参加先后为序)			Academy of Sciences
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental
		清华大学环境学院			Protection
主	编	欧阳自远			School of Environment, Tsinghua University
编	辑	《环境科学》编辑委员会	Editor-in -Chief		OUYANG Zi-yuan
-110		北京市 2871 信箱(海淀区双清路	Edited	by	The Editorial Board of Environmental Science (HUANJING
		18号,邮政编码:100085)			KEXUE)
		电话:010-62941102,010-62849343			P. O. Box 2871, Beijing 100085, China
		传真:010-62849343			Tel:010-62941102,010-62849343; Fax:010-62849343
		E-mail; hjkx@ rcees. ac. cn			E-mail; hjkx@ rcees. ac. cn
		http://www.hjkx.ac.cn			http://www. hjkx. ac. cn
出	版	结学出版社	Published	by	Science Press
_		北京东黄城根北街 16 号			16 Donghuangchenggen North Street,
		邮政编码:100717			Beijing 100717, China
印刷装	订	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House
发	行	斜华出版社	Distributed	by	Science Press
		电话:010-64017032			Tel:010-64017032
		E-mail:journal@mail.sciencep.com			E-mail; journal@ mail. sciencep. com
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China
国外总统	发行	中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji
		(北京 399 信箱)			Shudian), P. O. Box 399, Beijing 100044, China

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:120.00元

国外发行代号: M 205

国内外公开发行