

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

ENVIRONMENTAL SCIENCE

第37卷 第1期 2016年1月15日

目 次

碳质大气颗粒物的扫描质子微探针分析 ····································	
中国 8 个城市十年夕泊野芋醚的运洗特征 15 上休星雾 12 亚	1)
	0)
THE TARRY (2) TO THE WOLLD THE WOLLD THE WIND THE WIND THE WIND THE WOLLD TH	()
) 州城区状冬学人气颗粒初中 WSOC 吸尤性研究	6)
南京地区大气 PM ₂ 。潜在污染源硫碳同位素组成特征 石磊,郭照冰,姜文娟,芮茂凌,曾钢(2	2)
青奥会前后南京 PM、重金属污染水平与健康风险评估 ····································	8)
古里古孙禾十年 DM 中人层一支宣传性征乃本项公析 ************************************	5)
南昌市秋季大气 PM _{2.5} 中金属元素富集特征及来源分析 林晓辉,赵阳,樊孝俊,胡恭任,于瑞莲(3	3)
南京北郊冬春季大气能见度影响因子贡献研究 马佳,于兴娜,安俊琳,朱彬,于超,朱俊,夏航(4	1)
边界层低空争流导致北京 PM。迅速下降及其形成机制的个例分析 · · · · · · · · · · · · · · · · · · ·	1)
上	0)
边界层低空急流导致北京 $PM_{2.5}$ 迅速下降及其形成机制的个例分析 ··········· 廖晓农, 孙兆彬, 何娜, 赵普生, 马志强(5电厂燃煤烟尘 $PM_{2.5}$ 中化学组分特征 ····································	U)
2014 年 APEC 期间北京市空气质量改善分析	
程念亮, 李云婷, 张大伟, 陈添, 孙峰, 李令军, 李金香, 周一鸣, 杨妍妍, 姜磊 (6	6)
ADDO 人思知同步会担当大排外检测范围等任	4
APEC 会议期间北京机动车排放控制效果评估	4)
晋城城市扬尘化学组成特征及来源解析 王燕,彭林,李丽娟,王毓秀,张腾,刘海利,牟玲(8	2)
北京市混凝土搅拌站颗粒物排放特征研究 薛亦峰,周震,钟连红,闫静,曲松,黄玉虎,田贺忠,潘涛(8	8)
10.7 中国的风上达到 74.7 内面 97.7 内面 97.7 内面 97.7 内面 97.7 内面 10.7 中国 11.7 中国	4
长株潭地区人为源氨排放清单及分布特征 ····································	4)
长春城市水体夏秋季温室气体排放特征 温志丹,宋开山,赵莹,邵田田,李思佳(10)2)
查干湖和新立城水库秋季水体悬浮颗粒物和 CDOM 吸收特性 ······· 李思佳,宋开山,赵莹,穆光熠,邵田田,马建行(1)	12)
	,
不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例	
大渡河老鹰岩河段的水生生物群落结构及水质评价	23)
大渡河老鹰岩河段的水生生物群落结构及水质评价	32
一个成了之间有几分的分子工厂的用用用的交通分子的	41)
四例龙泓洞流域泰附侄流剡解流矢特և	+1)
合肥城郊典型农业小流域土壤磷形态及淋失风险分析 樊慧慧,李如忠,裴婷婷,张瑞钢(14	48)
订河人海口及城市段柱状沉积物全属元素含量及分布特征 王维 製 周俊丽 裴淑玮 刘征涛(14	56)
之后,以后,从后,从后,从后,从后,从后,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	(()
小你小件机械物中昌乔儿系分布特征与冶泉评价 ————————————————————————————————————	00)
	/ 2 \
北京市凉水河表层沉积物中砷含量及其赋存形态 王燮彗 单保庆 唐文忠 张超 王闯 (18	80)
地角后针对小球游洞熔效用作用全分大幅17万位 上海水平市 大下市水平市 大下市水平市 大下市水平市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下	27)
系外抽別列小环裸化娛效米作用述任休り	5/)
北京市凉水河表层沉积物中砷含量及其赋存形态	93)
紫外光昭下盐酸环丙沙星的光解性能	98
与与心阔 工体地工厅 全社划工作 电极 中深 磁性 的 服 附 佐 田	10)
玄 氧化网-人杰佛· 口发 古 的 件)6)
纳米 TiO_2 吸附 $HgCl_2$ 水溶液中 $Hg(II)$ 周雄,张金洋,王定勇,覃蔡清,徐凤,罗程钟,杨熹(22 好氧生化污水处理厂化学品暴露预测模型构建 周林军,刘济宁,石利利,冯洁,徐炎华(22	20)
好氧生化污水外理厂化学品暴露预测模型构建	28)
7111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2. 独基胺米化类具大权复定业协理费利系统由的收额性性 上文 图4.8 刘文户 陈冠拟 工利利 须来化 (2)	10)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24	40)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24	40)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 "徐特,曾辉,倪宏刚(26 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ))活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ))活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88) 93) 91)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88) 93) 91)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直接烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25克上壤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任隹憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 水刀煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李水,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张夭彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李看(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 宗批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(36 运行微生物开处过程由令复写体和田悰排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风客略对污泥生物干处过程中令复写体和田悰排故的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任隹憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 水刀煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李水,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张夭彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李看(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 宗批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(36 运行微生物开处过程由令复写体和田悰排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风客略对污泥生物干处过程中令复写体和田悰排故的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文、周林军、刘济宁、陈国松 石利利,徐炎华(22Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松楠、周振、顾凌云、蒋海涛、往佳憨、王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅、吴迪、许芸松、李向东、王喜龙、曾超华、付晓芳、刘文新(25直链烷基苯指示城市化过程初步研究 涂特、曾辉、倪宏刚(20龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕、吴泉源、曹学江、王集宁、张龙龙、蔡东全、周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周、陈健、胡正华、谢燕、陈书涛、张雪松、申双和、陈曦(22生物质炭对果园土壤团聚体分布及保水性的影响 吴杨周、陈健、胡正华、谢燕、陈书涛、张雪松、申双和、陈曦(22生物质炭对果园土壤团聚体分布及保水性的影响 安艳、姬强、赵世翔、王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱、杨胜香、李风楠、曹建兵、彭清静(30丛枝荫根真菌对铈污染土壤上玉米生长和铈吸收的影响 芜芳,郭伟、马朋坤、潘亮、张君(30珠江三角洲典型区域农产品中邻苯二甲酸酯(PAES)污染分布特征 李彬、吴山、梁金明、邓杰帆、王珂、梁文立、曾彩明、彭四清、张天彬、杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽、周琼、谢从新、王军、李君(32定诉客场运输、管/纤维复合物制备及其催化氧还原的效果 韦丽丽、周琼、谢从新、王军、李君(35克旗、李强、维亚平、汤华峰、李敏、黄炳富(35克纸、泰碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷、朱能武、为豆、吴平曾(35克纸、泰碳纳、特广河、安峰、李镇、建筑、大沙、东、北、大沙、东、北、北、北、北、北、北、北、北、北、北、北、北、北、北、北、北、北、北、	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)

合肥城郊典型农业小流域土壤磷形态及淋失风险分析

樊慧慧¹,李如忠^{1*},裴婷婷¹,张瑞钢²

(1. 合肥工业大学资源与环境工程学院,合肥 230009; 2. 合肥工业大学土木与水利工程学院,合肥 230009)

摘要:为掌握合肥城郊二十埠河某农业小流域土壤磷形态及淋失风险水平,在汇水区采集 132 份表层土壤样. 在分析测试基础上,利用 ArcGIS 软件中 Kriging 插值模拟技术,解析总磷(TP)、生物有效性磷(Bio-P)的空间分布特征及土壤有效磷(OIsen-P)和易解吸磷($CaCl_2-P$)的空间变异性;剖析土壤磷素富集水平;并通过确定土壤磷素的淋失临界值,评估汇水区土壤磷素流失风险. 结果表明,汇流区土壤 TP 和 Bio-P 含量较高的采样点位主要出现在左支流的上游和两支流交汇处的右侧局部区域;土壤磷形态富集系数由大到小排序为: $Ca-P(15.01) > OP(4.16) > TP(3.42) > IP(2.94) > Ex-P(2.76) > Fe/Al-P(2.43) > OIsen-P(2.34);土壤有效磷淋失临界值为 <math>18.388 \text{ mg·kg}^{-1}$,超过临界值的样本数占样本总数的 16.6%,高淋失风险区主要分布在左支流上游、右支流中游及两支流汇流处下游的局部地区.

关键词:农业小流域;有效磷;磷素淋失风险;富集率;磷形态

中图分类号: X522; X820.4 文献标识码: A 文章编号: 0250-3301(2016)01-0148-08 DOI: 10.13227/j. hjkx. 2016. 01.020

Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban

FAN Hui-hui¹, LI Ru-zhong^{1*}, PEI Ting-ting¹, ZHANG Rui-gang²

(1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; 2. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl₂-P) were analyzed using the Kriging technology of ArcGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP(4.16) > TP (3.42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg·kg⁻¹, and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

Key words; agricultural catchments; available phosphorus (Olsen-P); phosphorus leaching risk; enrichment rate; phosphorus forms

磷是植物生长发育不可缺少的主要营养元素之一^[1,2].毫无疑问,农业生产中化肥、磷肥的大量施用有效提高了农作物的产量,但也同时带来了严重的水环境污染和生态危害.可以说,由农业流域非点源输入的过量营养元素,已成为引起地表水体富营养化、威胁城乡供水安全的重要因素.目前有关农业非点源污染的研究,主要集中在营养元素污染特征和流失负荷量估算等方面^[3,4].尽管磷素流失风险也成为人们关注的重要内容,但截至目前,有关营养元素流失风险仍没有统一、公认的评价模型与方法可循.农田土壤磷素流失主要通过两个途径^[5,7],即地表径流和地下淋失.由于大多数土壤都具有较强的固定磷能力,因此地表径流往往被视为土壤磷素进入河湖水体的主要途径^[6,7],然而,英国

洛桑试验站的长期定位试验结果显示,当土壤中有效磷(Olsen-P)含量超过某一临界值时,从土体排出水的磷浓度将会迅速增加,尽管不同土壤可能存在着差异性,但土体所排出的水足以引起水体富营养化^[8].因此,在非点源污染控制稳步推进的过程中,来自淋失途径的土壤磷素流失风险同样值得关注^[5].

巢湖位于安徽省中部,是一个富营养化十分严重的淡水湖泊. 巢湖流域总面积 1.35×10⁴ km²,其中耕地面积 4.4×10⁵ hm²,是安徽省重要的粮食主

收稿日期: 2015-07-31; 修订日期: 2015-08-31

基金项目: 国家自然科学基金项目(51179042, 41301537)

作者简介: 樊慧慧(1990~),女,硕士研究生,主要研究方向为非点源污染特征,E-mail;1184557683@qq.com

* 通讯联系人, E-mail: lrz1970@163. com

产区,耕地复种指数高,化肥、农药超量使用现象严重.目前,来自农业非点源的氮磷负荷已成为制约巢湖水环境质量改善的重要因素,控制非点源污染成为整个流域迫切的工作任务.尽管已有学者针对巢湖流域开展了非点源磷流失关键源区的识别,但所采用的磷指数评价方法未能考虑淋失途径带来的影响^[9].南淝河是巢湖重要入湖河流之一,汇水区既包括合肥市的绝大部分城区,也有大面积的农田、林地,是合肥地区点源、非点源氮磷营养物进入巢湖的主要通道.本研究拟以南淝河流域的某一小型农业汇水区为对象,尝试从土壤磷形态分布特征及磷素淋失角度,开展汇水区土壤磷流失风险评估和淋失高风险区识别,以期为科学、全面地评估巢湖流域非点源磷素污染风险状况提供指导和借鉴.

1 研究区概况

合肥市位于巢湖西半湖北侧,江淮分水岭南侧,属于亚热带季风性湿润气候区. 年均气温 15.7℃,降水量约1 000 mm,降水主要集中在春夏季,秋冬季节降水偏少. 从合肥市城区穿城而过的南淝河是巢湖的主要人湖河流之一,全长约 70 km,流域总面积约1 464 km². 作为南淝河的重要支流之一的二十埠河地处合肥城区北部和东部,发源于长丰县三十头乡南部,全长 27.0 km,流域面积 136 km²,尽管该流域内大部分土地已为城市建设用地和工业用地,但仍有相当一部分土地处于耕作或半耕作状态,有些甚至转化为人工林地使用,这在巢湖流域都非常具有代表性. 考虑在二十埠河位于合肥东北部城郊的磨店乡境内,筛选一个由两条交汇源头溪流形成的农业耕作区为对象,开展土壤磷形态及淋失风险分析,大体情况见图 1.

总的来看,研究区域属丘陵平原类型,地形起伏较为明显,沟壑、土丘较为普遍,一些坡度稍大的地区存在明显的水土流失,整个汇水区大致表现出由东北向西南倾斜的演变态势. 区域内以农田、林地和村落居住用地为主,农田抛荒现象明显. 左支流(A)左侧大部分土地已为城市建设用地,右边支流(B)两侧土地基本以农业和林业用地为主,主要作物有水稻、小麦、油菜等. 整个汇水区土壤以黄棕壤为主,土壤较为黏重. 两支流交汇点下方 2 km 为合肥市城区,由于有工业废水和城市生活污水排入,导致溪流水质较上游两支流明显变差. 根据多次的水质采样分析结果,两溪流交汇处以上溪水 NH₄⁺、PO₄⁴⁻浓度分别为 0.58 mg·L⁻¹、0.157 mg·L⁻¹,交

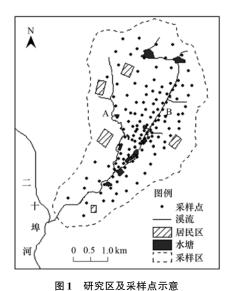


图1 别儿匠及木件点小总

Fig. 1 Map of the study area and sampling sites

汇处下游浓度分别为 7.98 mg·L⁻¹、1.402 mg·L⁻¹.

2 材料与方法

2.1 样品的采集及预处理

2014年10月,根据汇水区溪流两侧的土地开发利用状况,在耕地、荒地、湿地、林地及居民点等用地类型,大致均匀地布设132个采样点位(见图1),并进行GPS定位,同时记录采样点及其周边的地形地貌特征和土地利用类型.在每个采样点,采用铁铲采集表层土壤(0~10 cm 深度)样品约300g.在实验室阴凉处,经自然风干、研磨后,过120目筛,并装入密封袋内待测.

可交换态磷(Ex-P)、铁铝磷(Fe/Al-P)和钙磷(Ca-P)含量,采用SMT法 $^{[10]}$ 测定;将 0.2 g 土样于坩埚中450 $^{\circ}$ 煅烧 3 h,采用碱熔-钼锑抗分光光度法测量总磷(TP);称 0.3 g 土样于离心管中加入 1 $\mathrm{mol}\cdot \mathrm{L}^{-1}$ HCl 溶液恒温振荡(25 $^{\circ}$ C,220 $\mathrm{r}\cdot \mathrm{min}^{-1}$) 16 h 后离心取适量上清液测无机磷(IP) $^{[10]}$;有机磷 OP由 TP 减去 IP 后得到;土壤 pH 按土水比 1:5,以便携式 pH 仪测定. 土壤有机质(OM)采用烧失量(LOI/%)方法 $^{[11]}$ 进行分析.

2.2 土壤有效磷的测定

有效磷是土壤磷贮库中对作物最为有效的部分,可以为作物直接吸收利用,是评价土壤供磷能力的一项重要指标. 其中,土壤有效磷(Olsen-P)和易解吸磷(CaCl₂-P)是人们关注较多的两种累积态磷素. 采用《土壤有效磷的测定 碳酸氢钠浸提-钼锑抗分光光度法》(HJ 704-2014)推荐的方法,利用 pH = 8.5 的 0.5 mol·L⁻¹ NaHCO₃ 溶液(水土比 20:1、振

荡 30 min), 浸提 Olsen-P; 对于环境形态的 $CaCl_2$ -P, 考虑采用 $0.01 \text{ mol} \cdot L^{-1}$ $CaCl_2$ 为浸提剂(水土比 5:1、振荡 2 h)进行测定[12].

2.3 土壤磷素富集系数

为揭示研究区土壤受人为活动的影响,考虑采用富集率(ER)来衡量不同土地利用方式下磷素富集水平[13]:

$$ER = (C - C_R)/C_R \tag{1}$$

式中,C 为土地受人为影响较大的土壤有效磷含量, $mg \cdot kg^{-1}$; C_B 为受人为影响较小的土壤有效磷含量, $mg \cdot kg^{-1}$.

2.4 淋失风险评估

2.4.1 土壤磷素淋失临界值

土壤 CaCl₂-P 含量往往随 Olsen-P 的增加而不断提高,并在 Olsen-P 含量超过某一定值后, CaCl₂-P 将会迅速增加,该定值所在的点称之为"拐点"或"临界点". 此时,对应的 Olsen-P 含量称为土壤磷素淋失临界值^[6]. 由于磷素淋失突变点受土壤类型、质地、人为活动等因素影响很大,使得不同区域土壤样本的淋失临界值存在差异性. 目前,土壤磷酸盐淋失临界值已大量应用于土壤磷素淋失风险的分析和预测^[14]. 有关土壤磷素淋失临界值的确定方法,大体可以概括为经验方法^[15]、数学方法^[16]等. 根据土壤样本 Olsen-P 与 CaCl₂-P 含量,采用双线性模型或其它关系曲线模拟土壤磷素淋失突变点

是较为常用的方法.

2.4.2 相对风险系数

土壤磷素富集的生态风险程度高低,可以采用相对风险系数进行评价[17],即:

相对风险系数 =

根据土壤 Olsen-P 实测值和模拟得到的土壤 磷素淋失临界值,可以计算出土壤样本的相对风 险系数值. 据此,可以评估土壤磷素淋失风险 程度.

2.5 数据分析与图形处理

数据处理采用 Crystal Ball 软件中提供的 Monte Carlo 模拟工具,图形绘制采用 ArcGIS 9.3 软件的地统计分析模块进行插值模拟.

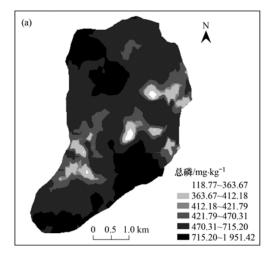
3 结果与分析

3.1 土壤各形态磷含量

研究区土壤 pH 变化范围为 5.30 ~ 8.51,平均值为 6.99,土壤为中性;土壤 OM 变化范围为 0.17% ~ 11.94%,平均值为 5.14%,高于巢湖周边表土有机质含量(2.01%)^[18].根据分析测试得到的土壤各形态磷含量数据,采用 Crystal Ball 软件进行统计分析,结果见表 1.其中,偏度、峰度和概率分布模型由该软件中 Monte Carlo 模拟工具的 Fit Distrition 功能模块获得.

表 1 土壤各形态磷含量统计结果

Table 1 Statistical results of soil phosphorus in various forms


统计参数	TP	OP	Ex-P	Fe/Al-P	Ca-P	IP
最大值/mg·kg ⁻¹	1 951. 428	772. 68	91. 981	524. 961	667. 578	1 407. 254
最小值/mg·kg ⁻¹	118. 787	22. 90	1. 797	23. 743	6. 582	86. 150
中位数/mg·kg ⁻¹	464. 134	209. 65	3. 928	85. 286	82. 919	262. 198
平均值/mg·kg ⁻¹	566. 296	248. 170	8. 220	114. 892	110. 961	318. 126
变异系数/%	54. 82	57. 84	171. 01	76. 57	90. 85	64. 52
偏度(Skewness)	2.09	1. 03	4. 14	2.72	2.71	2.44
峰度(Kurtosis)	8.03	3. 95	20. 97	11.39	12. 24	10.66
概率分布模型	Gamma	Logistic	Beta	Gamma	Gamma	Logistic

由表 1 可见,6 种形态磷的变异系数都较大,特别是 Ex-P 的变异系数高达 171.01%, TP 的变异系数虽然最小,但也达到 54.84%,表明研究区土壤磷素的空间分布均匀性较差. 从偏度和峰度上可以看出,6 种形态磷的偏度和峰度均较大,且 Ex-P 的偏度和峰度也最大,表明 Ex-P 不仅分布离散程度最高,且分布与正态分布相比更为陡峭一些. 从概率分布模型上看,6 种形态磷主要呈 Gamma、Logistic

和 Beta 分布,没有明显的标准正态分布. 这里,土壤 TP 含量平均值为 566. 296 mg·kg^{-1} ,稍高于巢湖流 域表层土壤 TP 平均含量 $(540.0 \text{ mg·kg}^{-1})^{[18]}$.

在磷营养物中,可以被生物直接利用的不同形态磷称之为生物有效性磷(Bio-P),通常是指 Ex-P和 Fe/Al-P两部分^[19].应用 ArcGIS软件中的Kriging插值模拟技术,得到TP和Bio-P空间分布大体情况,见图 2.不难看出,TP含量的空间分布差异

性较大,在东南、西北方向的局部区域以及两支流交汇后的下游局部地区,TP 含量相对较高.在所有 132 个采样点位中,TP 含量低于 200、200~400、400~600、600~800 及高于 800 mg·kg^{-1} 的样本数目,分别占总样本数的 4.5%、28%、37.8%、17.4%和12.1%,而且约70%的样本 TP 含量低于平均值水平,

说明研究区土壤 TP 含量并不高. 对照现场采样记录发现,TP 含量较高的采样点主要分布在人工林地、耕地及居民点附近的菜地,含量低于 200 mg·kg⁻¹的区域主要集中在地势较高、坡度稍大的岗坡,这可能与岗坡存水保肥能力较差,加之大部分都已处于抛荒状态、缺乏农业施肥补给有很大关系.

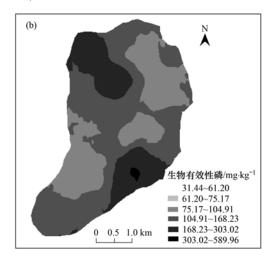


图 2 TP 和 Bio-P 的空间分布

Fig. 2 Spatial distribution of TP and Bio-P contents

整个研究区土壤 Bio-P 平均含量为 123.113 mg·kg⁻¹,空间分布情况见图 2(b).可以看出,Bio-P 含量在汇流区的东南、西北方向局部区域相对较高.具体地说,Bio-P 含量较高样本主要分布在左支流(A)的上游及两支流交汇处右侧的局部区域,相应的土壤用地类型主要为自然林地、荒地和湿地.总体上,Bio-P 占 TP 含量的 5.91% ~ 36.95%,平均值 21.7%,且在 Bio-P 含量大小方面大体表现出:耕地 > 林地 > 荒地 > 湿地.

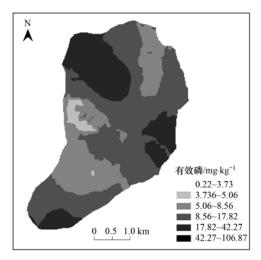


图 3 土壤 Olsen-P 含量空间分布特征

Fig. 3 Spatial distribution of soil Olsen-P contents

3.2 土壤有效磷的空间变异性

整个研究区土壤磷素 Olsen-P 和 CaCl₂-P 含量的统计结果见表 2. 可以看出, Olsen-P 和 CaCl₂-P 的变异系数都较大, 意味着两者的空间分布均匀性都较差. 汇水区土壤 Olsen-P 和 CaCl₂-P 含量的空间分布特征, 分别见图 3 和图 4. 不难看出, 尽管Olsen-P 也表现出西北、东南方向含量相对较高的特点, 但含量较高的样本大部分分布在左支流(A)的上游, 少部分出现在右支流(B)的右侧局部区域

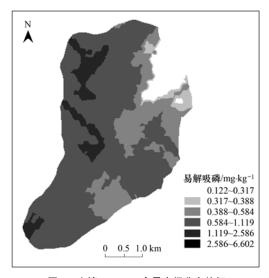


图 4 土壤 $CaCl_2$ -P 含量空间分布特征

Fig. 4 Spatial distribution of soil CaCl2-P contents

及两支流交汇后的下游局部地区. CaCl₂-P 含量最高样本则几乎都集中在左支流的上、中游.

半方差分析也称空间半变异函数分析,是地统 计学中进行空间异质性研究的重要方法,通过比较 特定滞后距离分隔的同一随机变量的不同值,可以 在多个尺度上对区域化随机变量的变异性进行量 度^[20-22]. 经对数转换后的 Olsen-P 和 $CaCl_2$ -P 实测数据,满足正态分布要求. 采用 GS+9.0 软件,分别对 Olsen-P 和 $CaCl_2$ -P 含量进行半方差分析和插值模型选择. 不妨选取决定系数 R^2 足够大且残差平方和 RSS 足够小模型作为最佳拟合模型^[23],得到半方差函数分析结果,见表 3.

表 2 土壤磷素 Olsen-P 和 CaCl,-P 含量统计结果

Table 2 Statistical results of Olsen-P and CaCl2-P in soils

项目	最小值 /mg·kg ⁻¹	最大值 /mg·kg ⁻¹	平均值 /mg·kg ⁻¹	标准差 /mg·kg ⁻¹	变异系数 /%
Olsen-P	0. 233	106. 862	12. 533	17. 671	70. 91
CaCl ₂ -P	0. 122	6. 602	0. 672	0. 801	83. 79

表 3 土壤 Olsen-P 和 CaCl₂-P 的半方差函数模型及参数

Table 3 Semi-variance model and its parameters of Olsen-P and CaCl2-P in soil

			· · · · · · · · · · · · · · · · · · ·		<u>Z</u>		
項目	具供摂到	块金值	基台值	变程	决定系数	残差平方和	基台效应
项目	最优模型	C_0	$C_0 + C$	A_0	R^2	RSS	$C_0/(C_0+C)$
Olsen-P	Spherical	94. 3	327. 8	417. 0	0. 308	38 326	71. 2
CaCl ₂ -P	Exponential	0. 102	0.708	216.0	0.056	0. 228	85. 6

可以看出,Olsen-P 的块金值 C_0 远大于 $CaCl_2$ -P,说明 $CaCl_2$ -P 在最小间距内,由测量误差和空间变异引起的误差较小. 基台效应 $C_0/(C_0+C)$ 反映的是系统变量的空间相关程度,块金值越低,土壤养分的空间相关性越强. 这里,Olsen-P 和 $CaCl_2$ -P 的基台效应均大于 70%,说明两者均具有中等程度的空间相关性[23]. 这可能是由于该区域的人为活动干扰较大,削弱了结构性因素(如气候、母质、地形、土壤类型等)对于 Olsen-P 的空间相关程度,增强了随机性因素(如施肥、耕作措施、种植制度等各种人为活动)对于土壤养分空间相关性的削弱作

用. Olsen-P 和 $CaCl_2$ -P 的变程长度分别为 417.0 和 216.0,即在该变程值范围内,两者均存在一定的空间自相关性.

3.3 土壤磷素富集特征

目前,本研究区尚没有土壤磷素含量的背景值数据.为此,考虑在受人为生产、生活活动影响较小且距离溪流稍远一些的岗地坡面,筛选两处相距约1000 m的点位,分别挖掘一个直径约40 cm、深度为60 cm 的小坑,并在坑底部的3个不同方向各采集1份土样(共计6份),分析测试相应的TP、Ex-P、Fe/Al-P、Ca-P、IP、OP和Olsen-P含量,见表4.

表 4 研究区土壤各形态磷含量背景值

Table 4 Background values of soil phosphorus contents in the study area

				PP			
样本	TP ∕mg•kg ⁻¹	OP ∕mg•kg ⁻¹	Ex-P /mg•kg ⁻¹	Fe/Al-P /mg•kg ⁻¹	Ca-P /mg•kg ⁻¹	IP ∕mg•kg ⁻¹	Olsen-P /mg·kg ⁻¹
1	137. 205	55. 493	8. 188	27. 886	7. 174	81.712	4. 162
2	132. 601	47. 931	8. 011	31. 436	6. 582	84. 670	7. 236
3	132. 601	50. 889	6. 590	37. 946	5. 991	81.712	6. 478
4	127. 996	49. 243	3. 395	33. 803	25. 519	78. 753	7. 970
5	132. 601	49. 410	5. 703	38. 537	7. 766	83. 191	4. 370
6	109. 578	35. 263	6. 058	34. 395	7. 174	74. 315	3. 870
平均值	128. 763	48. 038	6. 324	34. 000	10. 034	80. 725	5. 681

不妨将表 4 中各指标的平均值,作为研究区土壤磷素背景值. 于是,得到 132 份土样中 TP、Ex-P、Fe/Al-P、Ca-P、IP、OP 和 Olsen-P 指标含量超过各自背景值水平的样本数,分别为 131、29、129、131、132、129 和 79 个,分别占样本总数的 99.2%、21.9%、97.7%、99.2%、100%、97.7%和

59.8%. 显然,表层土壤中易于为植物吸收利用的 Ex-P 和 Olsen-P 含量超过背景值情况并不严重,显 著低于其它各项指标.

由式(1)得到 TP、Ex-P、Fe/Al-P、Ca-P、IP、OP和 Olsen-P的土壤磷素富集系数分别为 3.42、2.76、2.43、15.01、2.94、4.16 和 2.34、表明人为

活动的长期干扰导致该区域土壤磷素富集现象颇为显著.由此,得到土壤磷形态富集率由高到低的排序为:Ca-P>OP>TP>IP>Ex-P>Fe/Al-P>Olsen-P.显然,易于为植物吸收利用的 Ex-P、Fe/Al-P和 Olsen-P的富集水平相对较低,意味着植物的吸收利用影响着农业区土壤 Ex-P、Fe/Al-P和 Olsen-P的富集.总体上,各形态磷富集程度较高的样本主要分布在左支流上游及两支流交汇处的右侧局部区域.

3.4 土壤磷素淋失风险评估

3.4.1 淋失临界值的确定

根据 Olsen-P 和 $CaCl_2$ -P 的含量情况绘制相关曲线,并将曲线折点所对应的横坐标值作为土壤磷素临界值 $^{[16]}$,即 18. 388 $mg \cdot kg^{-1}$ (见图 5). 其中,低浓度直线方程为 y=0.0082x+0.3724, $R^2=0.0284$; 高浓度直线方程为 y=0.0447x-0.1783, $R^2=0.7139$. 不难看出, Olsen-P 含量低于 18. 388 $mg \cdot kg^{-1}$ 的样本占绝大多数,且这些样本所对应的 $CaCl_2$ -P 含量基本也都很低,有些甚至近乎为零,致使得到的可决系数 R^2 值较小;当 Olsen-P 含量高于 18. 388 $mg \cdot kg^{-1}$ 时,土样 $CaCl_2$ -P 浓度随 Olsen-P 浓度的增加而快速升高,并呈显著的线性变化趋势.

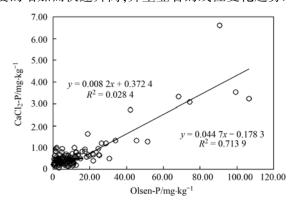


图 5 土壤 CaCl₂-P 和 Olsen-P 含量关系曲线

Fig. 5 Relationship between the contents of soil $CaCl_2$ -P and Olsen-P in the studied area

土壤磷素淋失临界值受土壤成土母质、土地利用类型、地形地貌特征等自然因素和人为因素的影响很大,导致不同区域、不同土壤的磷素淋失临界值差异明显.一般地,土壤质地越黏重、土壤胶体越多,则土壤吸附面积越大,磷素越不容易发生淋失,即磷素淋失拐点值也就越大.柏兆海等[14]在对北京郊外土壤磷素淋失风险研究中发现,砂壤土、轻壤土和重壤土的淋失临界值分别是 23.1、40.1和51.5 mg·kg⁻¹. 赵伟明等[16]在对石灰岩土壤为

主的天目山两块山核桃林地研究中,得到磷素淋失 临界值分别为 19.3、29.3 mg·kg⁻¹. 杨文等^[23]对湖 南省丘陵地区红壤、水稻土的磷淋失研究中,得到 临界值分别为 69. 97 mg·kg⁻¹、98. 40 mg·kg⁻¹. 聂 敏等[24]的研究表明,中国南方亚热带地区的稻田土 壤磷素淋失临界值范围大致集中为89.8~142.0 mg·kg⁻¹,显著高于红壤等旱地土壤类型(20.8~ 75.7 mg·kg⁻¹). 合肥地区土壤以黄棕壤、水稻土两 类为主要土壤类型,约占全部土壤的85%;其余为 石灰(岩)土、紫色土和砂黑土. 本研究区以旱地为 主,黄棕壤土占据了绝对优势. 调查结果显示,研究 区土壤 Olsen-P 的变化范围为 0.233 ~ 106.862 mg·kg⁻¹ (平均值 12.533 mg·kg⁻¹)、淋失临界值为 18.388 mg·kg⁻¹,远低于中国南方地区的稻田土壤, 也低于英国洛桑试验站土壤磷素淋失临界值(60 mg·kg⁻¹)^[8],但与一些地区的旱地砂壤土、石灰岩 土壤等较为接近.

需要特别指出的是,由于汇流区地处合肥市城郊结合部,有被城市建设用地蚕食的趋势. 虽然研究区还在很大程度上保持着农业小流域特点,但由于农民种地积极性不高,农田抛荒现象明显,并有很大一部分土地改为种植经济林木或观赏苗木,使得农业化肥、磷肥的施用量有所下降,这在一定程度上影响了汇流区土壤磷素淋失临界值水平.

3.4.2 淋失风险评价

目前,针对土壤磷素流失风险仍没有标准的、 权威的评价模型与评价方法,一些学者都是直接将 淋失临界值作为判据,根据土壤样本 Olsen-P 含量 超过该阈值的具体情况,划分风险等级、评估磷素 的淋失风险水平[23,25]. 本研究中,土壤淋失临界值 为18.388 mg·kg⁻¹,据此可知含量高于该临界值的 样本数仅有22个,占样本总量的16.6%,相应的相 对风险系数变化范围为0~4.811,平均值仅为 1.265,表明该区域土壤磷素的实际淋失风险水平并 不很高. 张瑜等[17]在对南方丘陵地区土壤磷素淋 失风险的研究中,根据相对风险系数大小将风险等 级划分为高风险区(0.489~0.150),中风险区 (0.150~0.125),低风险区(0.125~0)等3个等 级. 参照该标准,可以判定研究区超过临界值的22 个样本中,属于高风险的有8个(相对风险系数范 围为 4.811~1.061), 中风险有 3个(相对风险系数 为 1.061~0.051), 低风险有 11 个(相对风险系数 为 0.051~0). 有必要指出的是,尽管本研究得到 的土壤磷素实际淋失风险水平并不高,但较低的淋

失临界值的存在,意味着区域土壤具有较高的潜在磷素淋失风险.可以预见,随着人为活动影响(特别是施肥)的增强,汇水区土壤磷素的实际淋失风险水平可能将有较大幅度的提高.

为了直观展示研究区淋失风险相对较高点位的空间分布特征,采用 Kriging 技术对上述 22 个样本进行空间插值模拟. 不妨将其它土壤的 Olsen-P 实测值低于淋失临界值的 110 个样本的相对风险系数全部取值为 0,则可得到插值模拟结果,见图 6.

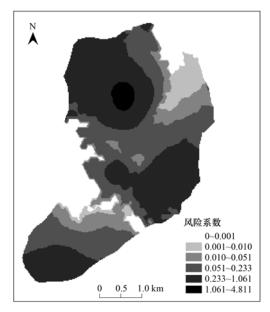


图 6 土壤磷素淋失风险分布

Fig. 6 Distribution of phosphorus leaching risk in soil

对照图 2 的 TP、Bio-P 空间分布情况,不难看出, 土壤磷素淋失风险发生区(即超过淋失临界值的采样 点位)也主要集中在左支流上游、右支流中游及两支 流交汇处下游的局部区域,而且土壤磷素淋失风险最 大值出现在左支流上游菜地. 总的来看,这些点位基 本都处于靠近居民区的耕地、菜地和林地,说明在人 为活动较频繁地区,土壤磷素淋失更为严重一些. 因 此,为了更好地适应当地水环境保护和水体富营养化 防治的需要,有必要针对不同土地利用类型,采取差 别化的管理方式,从而有效减少和调控汇水区土壤磷 素流失负荷量、降低淋失风险水平. 另外,尽管本研 究针对的仅是面积较小的汇流区域,但相关的技术方 法同样可以应用于巢湖流域其它不同空间尺度的汇 水区域,从而为科学、全面地评估巢湖流域非点源磷 素污染风险状况提供技术指导.

4 结论

(1) 汇水区土壤 TP 含量平均值为 566.296

- mg·kg⁻¹,稍高于巢湖流域表层土壤 TP 平均含量; 且土壤各形态磷的空间分布均匀性较差.
- (2) Olsen-P 和 CaCl₂-P 的基台效应都较高,属于中等的空间相关性,表明来自人为干扰活动减弱了自然因素对 Olsen-P 和 CaCl₂-P 的作用.
- (3)研究区土壤 TP、Ex-P、Fe/Al-P、Ca-P、IP、OP和 Olsen-P 富集系数分别为 3.42、2.76、2.43、15.01、2.94、4.16和2.34,高低排序为: Ca-P > OP > TP > IP > Ex-P > Fe/Al-P > Olsen-P;各形态磷富集程度较高的样本主要分布在左支流上游及两支流交汇处的右侧局部区域.
- (4) 研究区土壤磷素淋失临界值为 18.388 mg·kg⁻¹,超过临界值的样本数为 22,占样本总数的 16.6%,表明该区域土壤磷素实际淋失风险水平并不很高,且超过临界值的采样点也主要分布在左支流上游、右支流中游及两支流汇流处的下游局部地区.

参考文献:

- [1] Delpla I, Baurès E, Jung A V, et al. Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas[J]. Science of the Total Environment, 2011, 409 (9): 1683-1688.
- [2] Smith K A, Jackson D R, Withers P J A. Nutrient losses by surface run-off following the application of organic manures to arable land. 2. Phosphorus[J]. Environmental Pollution, 2001, 112(1): 53-60.
- [3] 乔飞, 孟伟, 郑丙辉, 等. 长江流域污染负荷核算及来源分析[J]. 环境科学研究, 2013, **26**(1): 80-87.
- [4] 李如忠, 邹阳, 徐晶晶, 等. 瓦埠湖流域庄墓镇农田土壤氮磷分布及流失风险评估[J]. 环境科学, 2014, **35**(3): 1051-1059
- [5] 钟晓英,赵小蓉,鲍华军,等. 我国23个土壤磷素淋失风险评估I. 淋失临界值[J]. 生态学报, 2004, **24**(10): 2275-2280.
- [6] Lemunyon J L, Gilbert R G. The concept and need for a phosphorus assessment tool [J]. Journal of Production Agriculture, 1993, 6(4): 483-496.
- [7] 陆海明, 尹澄清, 王夏晖, 等. 于桥水库周边农业小流域氮素流失浓度特征[J]. 环境科学学报, 2008, **28**(2): 349-355
- [8] Heckrath G, Brookes P C, Poulton P R, et al. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment [J]. Journal of Environmental Quality, 1995, 24(5): 904-910.
- [9] 周惠平,高超. 巢湖流域非点源磷流失关键源区识别[J]. 环境科学, 2008, **29**(10): 2696-2702.
- [10] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine-sediments [J]. Limnology and Oceanography, 1992, 37(7): 1460-1482.
- [11] Heiri O, Lotter AF, Lemcke G. Loss on ignition as a method for

- estimating organic and carbonate content in sediments; reproducibility and comparability of results $[\ J\]$. Journal of Paleolimnology, 2001, 25(1); 101-110.
- [12] Sánchez-Alcalá I, del Campillo M C, Torrent J. Extraction with 0.01 M CaCl₂ underestimates the concentration of phosphorus in the soil solution[J]. Soil Use and Management, 2014, 30(2): 297-302.
- [13] 陈璐, 党廷辉, 杨绍琼, 等. 黄土旱塬施肥对土壤颗粒组成及其有效磷富集的影响研究[J]. 水土保持学报, 2011, 25 (3): 151-153, 159.
- [14] 柏兆海,万其宇,李海港,等. 县域农田土壤磷素积累及淋失风险分析——以北京市平谷区为例[J]. 农业环境科学学报,2011,30(9):1853-1860.
- [15] Hesketh N, Brookes P C. Development of an indicator for risk of phosphorus leaching [J]. Journal of Environmental Quality, 2000, 29(1): 105-110.
- [16] 赵伟明,王艳艳,马嘉伟,等. 临安山核桃林地土壤磷素状况及其淋失风险分析[J]. 浙江农业学报,2014,26(1):154-158.
- [17] 张瑜, 张黎明, 周碧青, 等. 基于 GIS 技术的耕地有效磷富集与生态风险评价——以福建省泰宁县为例[J]. 农业环境科学学报, 2015, **34**(2); 326-336.
- [18] 周慧平,高超,孙波,等. 巢湖流域土壤全磷含量的空间变

- 异特征和影响因素[J]. 农业环境科学学报, 2007, **26**(6): 2112-2117.
- [19] 李如忠,李峰,周爰佳,等.巢湖十五里河沉积物氮磷形态分布及生物有效性[J]. 环境科学,2012,33(5):1503-1510.
- [20] Roger A, Libohova Z, Rossier N, et al. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland [J]. Geoderma, 2014, 217-218: 26-36.
- [21] Wang Y Q, Zhang X C, Huang C Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China [J]. Geoderma, 2009, 150(1-2); 141-149.
- [22] 祝锦霞,许红卫,王珂,等. 基于 GIS 和地统计学的低丘红 壤地区三种土壤性质空间变异性研究[J]. 土壤,2008,40 (6):960-965.
- [23] 杨文,周脚根,焦军霞,等.亚热带丘陵小流域土壤有效磷空间变异与淋失风险研究[J].环境科学学报,2015,35(2):541-549.
- [24] 聂敏,肖和艾,廖敦秀,等.亚热带可变电荷土壤磷素淋失临界点及其与土壤特性的关系[J].环境科学学报,2013,33(2):579-586.
- [25] 王彩绒, 胡正义, 杨林章, 等. 太湖典型地区蔬菜地土壤磷素淋失风险[J]. 环境科学学报, 2005, **25**(1): 76-80.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 37 No. 1 Jan. 15, 2016

CONTENTS

Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe	······ BAO Liang-man LIII liang-feng LEI Oian-tao et al	(1)
Atmospheric Polybrominated Diphenyl Ethers in Eight Cities of China; Pollution Characteristics and Human Exposure			
Light Absorption Properties of Water-Soluble Organic Carbon (WSOC) Associated with Particles in Autumn and Winter in the Ur		(-	,
Light thoughton repetites it waster country organic dation (wood) more factor and rathered in radiation and white in the or	HIJANG Huan RI Xin-hui PENG Long et al	(1	16)
Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM2, 5 in Nanjing Region			
Pollution Level and Health Risk Assessment of Heavy Metals in Atmospheric PM _{2.5} in Nanjing Before and After the Youth Olymp		(-)
Totalion bever and reading task resessation of ready steams in Annosphere 1 m _{2.5} in reading before and rated the Totali Olymp		(:	28)
Enrichment Characteristics and Source Analysis of Metal Elements in PM _{2,5} in Autumn in Nanchang City			
Contributions of Factors That Influenced the Visibility In North Suburb of Nanjing In Winter and Spring			
A Case Study on the Rapid Cleaned Away of PM _{2.5} Pollution in Beijing Related with BL Jet and Its Mechanism			
Characteristics of Chemical Components in PM _{2.5} from the Coal Dust of Power Plants			
Improvement of Air Quality During APEC in Beijing in 2014			
Evaluation on the Effectiveness of Vehicle Exhaust Emission Control Measures During the APEC Conference in Beijing			
Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng			
Characteristic of Particulate Emissions from Concrete Batching in Beijing			
Anthropogenic Ammonia Emission Inventory and Its Spatial Distribution in Chang-Zhu-Tan Region			
Seasonal Variability of Greenhouse Gas Emissions in the Urban Lakes in Changchun, China			
Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn			
Hydrochemical Characteristics and Influencing Factors in Different Geological Background: A Case Study in Darongjiang and Ling		`	,
	SUN Ping-an . YU Shi . MO Fu-zhen . et al.	(1)	23)
Community Structure of Aquatic Community and Evaluation of Water Quality in Laoyingyan Section of Dadu River			
Characteristics of Nitrogen and Phosphorus Losses in Longhong Ravine Basin of Westlake in Rainstorm Runoff			
Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban			
Concentrations and Distribution of Metals in the Core Sediments from Estuary and City Section of Liaohe River			
Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir	· · · · · · · · · · · · · · · · · · ·		
Effect of Low Molecular Weight Organic Acids on the Chemical Speciation and Activity of Mercury in the Soils of the Water-Level		(-	,
	YOU Rui, LIANG Li, OIN Cai-ging, et al.	(1'	73)
Arsenic Content and Speciation in the Surficial Sediments of Liangshui River in Beijing			
Effect of UV Light Radiation on the Coagulation of Chlorella and Its Mechanism			
Photocatalytic Oxidation of p-arsanilic Acid by TiO ₂			
Photodegradation of Ciprofloxacin Hydrochloride in the Aqueous Solution Under UV			
Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution			
Experimental Research of Hg(II) Removal from Aqueous Solutions of HgCl ₂ with Nano-TiO ₂			
Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters			
Degradation Characteristics of Three Aniline Compounds in Simulated Aerobic Sewage Treat System			
Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate			
Recent Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Soils from Yangtze River Delta			
Preliminary Study on Linear Alkylbenzenes as Indicator for Process of Urbanization			
Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City			
Effects of Reduced Water and Diurnal Warming on Winter-Wheat Biomass and Soil Respiration			
Effect of Recycled Water Irrigation on Heavy Metal Pollution in Irrigation Soil	ZHOU Yi-qi, LIU Yun-xia, FU Hui-min	(2	.88)
Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil			
Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Taili			
	····· PENG Xi-zhu, YANG Sheng-xiang, LI Feng-mei, et al.	(3	.01)
Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils			
Distribution Characteristics and Risk Assessment of Phthalic Acid Esters in Agricultural Products Around the Pearl River Delta, S	outh China		
	LI Bin, WU Shan, LIANG Jin-ming, et al.	(3	17)
Bioaccumulation and Biomagnification of Heavy Metals in Three Gorges Reservoir and Effect of Biological Factors			
Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Dryland Origins in Karst Cav	e Wetland		
	JIN Zhen-jiang, ZENG Hong-hu, LI Qiang, et al.	(3	35)
Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill			
Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction			
Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy			
Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying			
Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter			
Application of FCM-qPCR to Quantify the Common Water Pathogens			
Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants			
Compositional Variation of Spent Mushroom Substrate During Cyclic Utilization and Its Environmental Impact			

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编:赵景柱 郝吉明 田 刚

编 委:(按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 刘 毅 汤鸿霄 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环维种草

(HUANJING KEXUE)

(月刊 1976年8月创刊)

2016年1月15日 第37卷 第1期

ENVIRONMENTAL SCIENCE

(Monthly Started in 1976)

Vol. 37 No. 1 Jan. 15, 2016

主	管	中国科学院	Superintended	by	Chinese Academy of Sciences
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese
协	办	(以参加先后为序)			Academy of Sciences
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental
		清华大学环境学院			Protection
主	编	欧阳自远			School of Environment, Tsinghua University
编	辑	《环境科学》编辑委员会	Editor-in -Chief	•	OUYANG Zi-yuan
<i>9</i> ⊞	邗	"	Edited	by	The Editorial Board of Environmental Science (HUANJING
		北京市 2871 信箱(海淀区双清路			KEXUE)
		18号,邮政编码:100085)			P. O. Box 2871, Beijing 100085, China
		电话:010-62941102,010-62849343			Tel:010-62941102,010-62849343; Fax:010-62849343
		传真:010-62849343			E-mail; hjkx@ rcees. ac. cn
		E-mail; hjkx@ rcees. ac. cn			http://www.hjkx.ac.cn
ılı	ue	http://www.hjkx.ac.cn	Published	by	Science Press
出	版	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•	16 Donghuangchenggen North Street,
		北京东黄城根北街 16 号 邮政编码:100717			Beijing 100717, China
印刷装	= 1 T	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House
发	行	4 4 4 K 社	Distributed	by	Science Press
X.	11	电话:010-64017032		,	Tel:010-64017032
		E-mail: journal@ mail. sciencep. com			E-mail: journal@ mail. sciencep. com
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China
国外总统		中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji
二八 心の	~ 11	(北京399信箱)	r or eign		Shudian), P. O. Box 399, Beijing 100044, China
		(ADAY VAA INTE)			Shudian / ,1. O. Box 399, beijing 100044, China

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:120.00元

国外发行代号: M 205

国内外公开发行