

(HUANJING KEXUE)

ENVIRONMENTAL SCIENCE

ENVIRONMENTAL SCIENCE

第37卷 第1期 2016年1月15日

目 次

碳质大气颗粒物的扫描质子微探针分析 ····································	
中国 8 个城市十年夕泊野芋醚的运洗特征 15 上休星雾 12 亚	1)
	0)
THE TARRY (2) TO THE WOLLD THE WOLLD THE WIND THE WIND THE WIND THE WOLLD TH	()
) 州城区状冬学人气颗粒初中 WSOC 吸尤性研究	6)
南京地区大气 PM ₂ 。潜在污染源硫碳同位素组成特征 石磊,郭照冰,姜文娟,芮茂凌,曾钢(2	2)
青奥会前后南京 PM、重金属污染水平与健康风险评估 ····································	8)
古里古孙禾十年 DM 中人层一支宣传性征乃本项公析 ************************************	5)
南昌市秋季大气 PM _{2.5} 中金属元素富集特征及来源分析 林晓辉,赵阳,樊孝俊,胡恭任,于瑞莲(3	3)
南京北郊冬春季大气能见度影响因子贡献研究 马佳,于兴娜,安俊琳,朱彬,于超,朱俊,夏航(4	1)
边界层低空争流导致北京 PM。迅速下降及其形成机制的个例分析 · · · · · · · · · · · · · · · · · · ·	1)
上	0)
边界层低空急流导致北京 $PM_{2.5}$ 迅速下降及其形成机制的个例分析 ··········· 廖晓农, 孙兆彬, 何娜, 赵普生, 马志强(5电厂燃煤烟尘 $PM_{2.5}$ 中化学组分特征 ····································	U)
2014 年 APEC 期间北京市空气质量改善分析	
程念亮, 李云婷, 张大伟, 陈添, 孙峰, 李令军, 李金香, 周一鸣, 杨妍妍, 姜磊 (6	6)
ADDO 人思知同步会担当大排外检测范围等任	4
APEC 会议期间北京机动车排放控制效果评估	4)
晋城城市扬尘化学组成特征及来源解析 王燕,彭林,李丽娟,王毓秀,张腾,刘海利,牟玲(8	2)
北京市混凝土搅拌站颗粒物排放特征研究 薛亦峰,周震,钟连红,闫静,曲松,黄玉虎,田贺忠,潘涛(8	8)
10.7 中国的风上达到 74.7 内面 97.7 内面 97.7 内面 97.7 内面 97.7 内面 10.7 中国 11.7 中国	4
长株潭地区人为源氨排放清单及分布特征 ····································	4)
长春城市水体夏秋季温室气体排放特征 温志丹,宋开山,赵莹,邵田田,李思佳(10)2)
查干湖和新立城水库秋季水体悬浮颗粒物和 CDOM 吸收特性 ······· 李思佳,宋开山,赵莹,穆光熠,邵田田,马建行(1)	12)
	,
不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例	
大渡河老鹰岩河段的水生生物群落结构及水质评价	23)
大渡河老鹰岩河段的水生生物群落结构及水质评价	32)
一个成了之间有几分的分子工厂的用用用的交通分子的	41)
四例龙泓洞流域泰附侄流剡解流矢特և	+1)
合肥城郊典型农业小流域土壤磷形态及淋失风险分析 樊慧慧,李如忠,裴婷婷,张瑞钢(14	48)
订河人海口及城市段柱状沉积物全属元素含量及分布特征 王维 製 周俊丽 裴淑玮 刘征涛(14	56)
之后,以后,从后,从后,从后,从后,从后,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	(()
小你小件机械物中昌乔儿系分布特征与冶泉评价 ————————————————————————————————————	00)
	/ 2 \
北京市凉水河表层沉积物中砷含量及其赋存形态 王燮彗 单保庆 唐文忠 张超 王闯 (18	80)
地角后针对小球游洞熔效用作用全分大幅17万位 上海水平市 大下市水平市 大下市水平市 大下市水平市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下市 大下	27)
系外抽別列小环裸化娛效米作用述任休り	5/)
北京市凉水河表层沉积物中砷含量及其赋存形态	93)
紫外光昭下盐酸环丙沙星的光解性能	98
与与心阔 工体地工厅 全社划工作 电极 中深 磁性 的 服 附 佐 田	10)
玄 氧化网-人杰佛· 口发 古 的 件)6)
纳米 TiO_2 吸附 $HgCl_2$ 水溶液中 $Hg(II)$ 周雄,张金洋,王定勇,覃蔡清,徐凤,罗程钟,杨熹(22 好氧生化污水处理厂化学品暴露预测模型构建 周林军,刘济宁,石利利,冯洁,徐炎华(22	20)
好氧生化污水外理厂化学品暴露预测模型构建	28)
7111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2. 独基胺米化类具大权复定业协理费利系统由的收额性性 上文 图4.8 刘文户 陈冠拟 工利利 须来化 (2)	10)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24	40)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24	40)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 ············· 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 ·········· 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中炙环苦烃的近期分布与来源 ····································	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 "徐特,曾辉,倪宏刚(26 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27	40) 47)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ))活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24 Fe(Ⅱ))活化过硫酸钠深度处理工业园区污水处理厂出水	40) 47) 53) 52) 70) 80) 88)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88) 93) 91)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性	40) 47) 53) 52) 70) 80) 88) 93) 91)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直接烷基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25克上壤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28生物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(24Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任佳慜,王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25直烧是基苯指示城市化过程初步研究 徐特,曾辉,倪宏刚(26龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28年物质炭对果园土壤团聚体分布及保水性的影响	40) 47) 53) 52) 70) 80) 88) 93) 91) 99)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任隹憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 水刀煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李水,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张夭彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李看(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 宗批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(36 运行微生物开处过程由令复写体和田悰排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风客略对污泥生物干处过程中令复写体和田悰排故的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任隹憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 水刀煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李水,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张夭彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李看(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 宗批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦昱,吴平霄(36 运行微生物开处过程由令复写体和田悰排故的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风客略对污泥生物干处过程中令复写体和田悰排故的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文、周林军、刘济宁、陈国松 石利利,徐炎华(22Fe(Ⅱ)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松楠、周振、顾凌云、蒋海涛、往佳憨、王罗春(24长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅、吴迪、许芸松、李向东、王喜龙、曾超华、付晓芳、刘文新(25直链烷基苯指示城市化过程初步研究 涂特、曾辉、倪宏刚(20龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕、吴泉源、曹学江、王集宁、张龙龙、蔡东全、周历媛、刘娜(27水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周、陈健、胡正华、谢燕、陈书涛、张雪松、申双和、陈曦(22生物质炭对果园土壤团聚体分布及保水性的影响 吴杨周、陈健、胡正华、谢燕、陈书涛、张雪松、申双和、陈曦(22生物质炭对果园土壤团聚体分布及保水性的影响 安艳、姬强、赵世翔、王旭东(253种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱、杨胜香、李风楠、曹建兵、彭清静(30丛枝荫根真菌对铈污染土壤上玉米生长和铈吸收的影响 芜芳,郭伟、马朋坤、潘亮、张君(30珠江三角洲典型区域农产品中邻苯二甲酸酯(PAES)污染分布特征 李彬、吴山、梁金明、邓杰帆、王珂、梁文立、曾彩明、彭四清、张天彬、杨国义(31三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽、周琼、谢从新、王军、李君(32定诉客场运输、管/纤维复合物制备及其催化氧还原的效果 韦丽丽、周琼、谢从新、王军、李君(35克旗、李强、维亚平、汤华峰、李敏、黄炳富(35克纸、泰碳纳米管/纤维复合物制备及其催化氧还原的效果 杨婷婷、朱能武、为豆、吴平曾(35克纸、泰碳纳、特广河、安建、安全、张、泰、龙、、龙、龙、、龙、龙、、龙、龙、、龙、、龙、、龙、、龙、、龙、、龙、、龙	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)
3 种苯胺类化学品在好氧污水处理模拟系统中的降解特性 古文,周林军,刘济宁,陈国松,石利利,徐炎华(22 Fe(II)活化过硫酸钠深度处理工业园区污水处理厂出水 朱松梅,周振,顾凌云,蒋海涛,任住憋,王罗春(22 长江三角洲区域表土中多环芳烃的近期分布与来源 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 直链烷基苯指示城市化过程初步研究 李静雅,吴迪,许芸松,李向东,王喜龙,曾超华,付晓芳,刘文新(25 龙口煤矿区土壤重金属污染评价与空间分布特征 刘硕,吴泉源,曹学江,王集宁,张龙龙,蔡东全,周历媛,刘娜(27 水分减少与增温处理对冬小麦生物量和土壤呼吸的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 中水浇灌对土壤重金属污染的影响 吴杨周,陈健,胡正华,谢燕,陈书涛,张雪松,申双和,陈曦(28 生物质炭对果园土壤团聚体分布及保水性的影响 安艳,姬强,赵世翔,王也东(29 3 种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响 彭禧柱,杨胜香,李风梅,曹建兵,彭清静(36 丛枝菌根真菌对铈污染土壤上玉米生长和铈吸收的影响 王芳,郭伟,马朋坤,潘亮,张君(36 珠江三角洲典型区域农产品中邻苯二甲酸酯(PAEs)污染分布特征 李彬,吴山,梁金明,邓杰帆,王珂,梁文立,曾彩明,彭四清,张天彬,杨国义(36 三峡库区重金属的生物富集、生物放大及其生物因子的影响 韦丽丽,周琼,谢从新,王军,李君(36 京批式生物反应器填埋场脱氮微生物多样性分析 李卫华,孙英杰,刘子梁,马强,杨强(36 疾须掺杂碳纳米管,纤维复合物制备及其催化氧还原的效果 杨婷婷,朱能武,芦星,吴平霄(36 运行微生物厅化过程由令每写体和田悰排放的影响 邓欢,蔡旅程,姜允斌,钟文辉(36 通风管略对运泥生物干化过程由令每写体和田悰排放的影响	440) 447) 533) 552) 770) 5380) 680) 688) 693) 699)

广州城区秋冬季大气颗粒物中 WSOC 吸光性研究

黄欢1,2,毕新慧1*,彭龙1,2,王新明1,盛国英1,傅家谟1

(1. 中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东省环境资源利用与保护重点实验室,广州 510640; 2. 中国科学院大学,北京 100049)

摘要:主要对广州秋季(2014年9月)和冬季(2014年12月~2015年1月)大气 $PM_{2.5}$ 和不同粒径段颗粒物样品中水溶性有机碳(WSOC)的吸光性进行了研究.结果表明, $PM_{2.5}$ 上 WSOC 的光吸收波长指数(AAE_{abs})秋、冬季分别为 3.72±0.41 和 3.91±0.70,低于北京和北美地区测量结果.WSOC 在 365 nm 波长的质量吸收效率(MAE)秋、冬季分别为 0.52 m²·g⁻¹和 0.92 m²·g⁻¹,两个季节具有明显的差异.冬季 WSOC 的 MAE 值呈现随粒径增大而降低的趋势;而秋季所有粒径段颗粒 MAE_{wsoc}都比冬季低,特别是 <0.95 μ m 粒径段颗粒降低得更多,这表明秋季颗粒物中 WSOC 二次源的贡献更大一些,而且主要是富集在亚微米级颗粒物上。此外,对比本研究以及文献中报道的元素碳(EC)和 WSOC 的 MAE 值,可以发现在颗粒物受一次源排放影响较大的情况下,WSOC 对于颗粒消光的贡献是不容忽视的.

关键词:水溶性有机碳; 棕碳; 质量吸收效率; 光吸收; 粒径分布

中图分类号: X513 文献标识码: A 文章编号: 0250-3301(2016)01-0016-06 **DOI**: 10.13227/j. hjkx. 2016. 01.003

Light Absorption Properties of Water-Soluble Organic Carbon (WSOC) Associated with Particles in Autumn and Winter in the Urban Area of Guangzhou

 $HUANG\ Huan^{1,2},\ BI\ Xin-hui^{1\,*}\ ,\ PENG\ Long^{1,2}\ ,\ WANG\ Xin-ming^{1}\ ,SHENG\ Guo-ying^{1}\ ,\ FU\ Jia-mo^{1}\ ,$

(1. State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Light absorption properties of water-soluble organic carbon (WSOC) were investigated in the urban area of Guangzhou. The fine particulate matter (PM_{2.5}) and size-segregated samples were collected in September and December of 2014 and January of 2015. The variation of absorption with wavelength of WSOC was characterized by the absorption Ångström exponent (AAE_{abs}). The AAE values of WSOC in PM_{2.5} were 3.72 ±0.41 in autumn and 3.91 ±0.70 in winter, which were lower than those in Beijing and north America. The mass absorption efficiency (MAE) of WSOC at 365 nm wavelength was 0.52 m²·g⁻¹ in autumn and 0.92 m²·g⁻¹ in winter, exhibiting distinct variations between autumn and winter. In winter, the MAE_{wsoc} values exhibited a decreasing trend with increasing particle size, and all size-segregated MAE_{wsoc} values in autumn were lower than those in winter, particularly for the particles <0.95 μ m, suggesting more contribution of the secondary formation to WSOC. Comparing the MAE values of elemental carbon (EC) and WSOC, it could be found that the contribution of WSOC to the light extinction of particles couldn't be ignored when the particles were mainly emitted from primary sources.

Key words: WSOC; brown carbon; mass absorption efficiency; light absorption; size distribution

近年来,有机气溶胶因其对能见度、区域及全球气候变化和人体健康有重要影响而受到广泛关注.水溶性有机碳(WSOC)占气溶胶有机碳(OC)的20%~70%^[1].WSOC的来源比较广泛,机动车尾气排放、化石燃料和生物质燃烧被认为是WSOC的重要一次排放源^[1-3].同时,大气光化学氧化过程和颗粒表面的多相化学反应也是WSOC的另一主要来源^[4-6].不同地区由于环境及气候等因素往往造成WSOC的物理和化学性质出现明显差异.

棕碳是指具有吸光性的一类 OC,其吸收光谱与 波长的关系比黑碳(BC)更强. Chen 等[7] 研究发

现, 棕碳在 350 nm 对于气溶胶总的光吸收贡献达到了 20%~40%, 说明在短波区内棕碳的光吸收贡献不容忽视. 传统的光学仪器很难将气溶胶中的 BC 和棕碳区分开, 有研究用溶剂先把 BC 和棕碳分离, 再对萃取液进行分析, 这为棕碳吸光性的测定提供了新方法. 研究发现 WSOC 中有很多物质都具有吸光性, 所以可用其进行棕碳性质的研究.

收稿日期: 2015-05-14; 修订日期: 2015-08-20

基金项目: 中国科学院战略性先导科技专项(B类)(XDB05020205);

广东省科技项目(2014B030301060)

作者简介: 黄欢(1991~),男,硕士研究生,主要研究方向为大气气溶胶,E-mail:1195146483@qq.com

* 通讯联系人,E-mail:bixh@gig.ac.cn

近期一些研究报道 WSOC 的质量吸收效率 (MAE)呈现明显的季节性差异. Hecobian 等^[8]在美国东南部 15 个地区采集了 PM_{2.5}样品,研究发现其 MAE_{wsoc}值均为冬季远高于夏季. 而 Cheng 等^[9]在亚洲东部城市的研究亦得到类似的结果. 目前对于 MAE_{wsoc}粒径分布的研究较少. 粒径分布特征是影响有机物在大气中干、湿沉降、迁移和化学转化等过程的重要因素之一. 不同粒径段的 WSOC 由于来源或者形成机制不同,有可能造成其不同的光学性质.

广州地区气溶胶中 WSOC 含量较高且来源广泛 $^{[10]}$,但对其吸光性能的研究相对较少. 本研究通过分析广州城区秋、冬两季 $PM_{2.5}$ 和不同粒径段颗粒样品中 WSOC 的 MAE 值,并结合在线痕量气体数据,探讨引起 MAE $_{wsoc}$ 季节性变化的原因,通过更加深入地认识广州市大气 $PM_{2.5}$ 的光学性质,以期为深入研究灰霾的成因机制提供参考.

1 材料与方法

1.1 样品采集与处理

采样地点设置在广州市天河区中国科学院广 州地球化学研究所标本楼九楼楼顶 (40 m). 采样 点距离高速公路 100 m(广园快速路). 本研究于 2014年9、12月和2015年1月采集PM,5样品和 4 个粒径段(<0.49、0.49~0.95、0.95~1.5 和 1.5~3.0 μm)的颗粒物样品,每天采集一套样品, 每次连续采集 24 h,共采集样品 125 个. 采样仪器 为 Anderson PM25和 Anderson SA235 大流量采样 器(流量均为 1.13 m3·min-1). 采样前将石英纤 维滤膜(QFFs, Whatman) 于 500℃下灼烧 4 h,以 除去残留碳和其它杂质. 采样后,放入-40℃冰柜 中储存,尽快完成所有分析. 将部分样品膜用 > 18 $M\Omega \cdot cm$ 超纯水超声萃取,再用一次性注射器加上 0.45 μm 水系滤头进行过滤,最终得到 WSOC 分 析样品. 另有部分样品膜用于 OC 和元素碳(EC) 分析.

1.2 OC/EC 和 WSOC 吸收波长指数的测定

本研究中 OC/EC 采用 Sunset Laboratory 热光碳分析仪(TOT)分析; WSOC 质量浓度用总有机碳分析仪(TOC, Elementar,德国)分析; WSOC 的吸光系数测定主要是应用 Hecobian 等^[8]的方法. 将 WSOC 萃取 液 通 过紫 外 分 光 光 度 计 (He\(\lambda\) ios UV-VIS, Thermo,美国)测定其紫外吸光系数,即 Abs\(\lambda\),单位Mm^{-1[11]}.

WSOC 的吸光系数与波长有关,二者的关系可用以下公式表达:

$$Abs_{\lambda} = K \times \lambda^{-AAE} \tag{1}$$

式中,K是常数, AAE 是吸收波长指数. 根据公式 (1),通过测定不同波长的 Abs,之后对其进行对数 函数的线性拟合即可得到 AAE 值. 本研究中, λ 选取 8 个波段:300、330、365、390、420、450、480、500 nm. 其中 365 nm 波段 WSOC 的吸光系数用于下面 MAE 值的计算.

1.3 MAE 值测定

本研究中, WSOC 的 MAE 值(单位: $\mathbf{m}^2 \cdot \mathbf{g}^{-1}$)可通过下面的公式计算:

式中,MAE_{wsoc}指的是 WSOC 在 365nm 波长的质量 吸 收 效 率; c_{wsoc} 是 WSOC 的 浓 度 (单 位: $\mu g \cdot mL^{-1}$).

EC 的 MAE 值(MAE_{EC})主要根据 Cheng 等^[9]的 方法计算得到:

$$MAE = \frac{b_{abs}}{EC} = \frac{ATN}{EC \cdot C \cdot R(ATN)} \times \frac{A}{V}$$
$$= \frac{ATN}{EC_{s} \cdot C \cdot R(ATN)}$$
(3)

式中, b_{abs} 为光吸收系数,EC 为颗粒物中元素碳质量浓度($\mu g \cdot m^{-3}$),C(散射效应系数)和 R(ATN)(遮蔽效应系数)是常数,A 和 V 分别为滤膜面积(cm^2)和空气采样体积(m^3),光衰减 ATN = $\ln(I_0/I) \times 100$ (I 和 I_0 为分析前后的透射光强度),EC_s 为热-光碳分析仪测定的单位滤膜面积上的元素碳质量($\mu g \cdot cm^{-2}$).

2 结果与讨论

2.1 PM, 5中 WSOC 光吸收 AAE 值

WSOC 的 AAE 值可通过公式(1)拟合指数曲线得到. 本研究测得的秋季和冬季 PM_{2.5}样品中WSOC 的 AAE 值分别为 3.72 ± 0.41 和 3.91 ± 0.70. 洛杉矶地区气溶胶水萃取液 AAE 值大约7.60^[12],北京地区不同季节气溶胶水萃取液 AAE 值都在 5.80~11.70 范围内^[11],美国东南部地区不同季节气溶胶水萃取液 AAE 值也均在 6.20~8.30之间^[8],印度德里地区测得 AAE 值为 5.10 ± 2.00^[13]. 之前文献报道,不同地区 PM_{2.5}样品中有机酸类等 WSOC 的种类和含量存在一定差别^[14-16],这可能是造成 AAE 值出现地区差异的重要原因. 一些源解析研究发现,生物质燃烧排放的

类腐殖质物质水萃取液 AAE 值为 $7.10^{[17]}$; 大气氧化形成的新、老二次有机气溶胶(SOA)水萃取液的 AAE 值分别在 7.00 和 4.70 左右^[18]; 受煤燃烧和生物质燃烧排放影响的气溶胶中 WSOC 的 AAE 值约为 $3.50^{[19]}$; 生物质燃烧排放颗粒物的 AAE 值约为 $2.00^{[20]}$. 由此可见,广州城区 $PM_{2.5}$ 中 WSOC 的 AAE 值与煤燃烧、生物质燃烧排放以及老化的 SOA 相对接近,表明这些可能是广州 $PM_{2.5}$ 中 WSOC 的主要贡献者.

2.2 秋季和冬季 PM_{2.5}的 MAE_{wsoc}差异

图 1 为各地市区不同季节 MAE_{wsoc} 值. 根据报道北美地区和北京地区均为冬季 MAE_{wsoc} 值高于夏季^[8,21]. 本研究中,广州地区秋季 MAE_{wsoc} 为 0. 52 $m^2 \cdot g^{-1}$,冬季为 0. 92 $m^2 \cdot g^{-1}$,两个季节存在明显的差异见图 1.

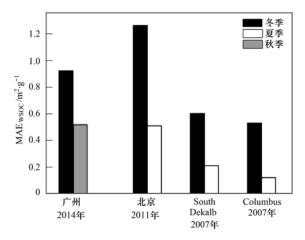
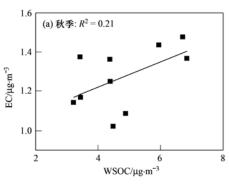



图 1 各地市区不同季节 MAE_{wsoc}值

Fig. 1 $\ \ \mathrm{MAE_{WSOC}}$ values in different seasons in different cities

有研究报道不同源排放 WSOC 的 MAE 值不同,生物质燃烧源为 1. 19 $\text{m}^2 \cdot \text{g}^{-1}$,柴油机车排放源为 1. 33 $\text{m}^2 \cdot \text{g}^{-1}$,混合性一次源为 2. 89 $\text{m}^2 \cdot \text{g}^{-1}$;二次源影响比较大的地区 MAE_{wsoc}要低很多,例如北京受光化学氧化影响较大的地区,PM_{2.5}的 MAE_{wsoc}

仅为 $0.33 \text{ m}^2 \cdot \text{g}^{-1[11]}$. 这样,本研究得到的秋季 MAEwsoc低于冬季,可能说明秋季有更多二次形成 的 WSOC. 图 2 是广州城区站点在线痕量气体季节 平均浓度变化数据. 从中可知,秋季 0。平均浓度较 高,这可能是因为广州秋季光照强度高,大气光化学 反应频繁,大气中的前体有机物也比较多,因此产生 大量的 $O_3^{[22^{-24}]}$. 同样,这阶段 WSOC 很可能受二 次源影响较大;冬季数据 0,平均浓度不高,但是 NO, 、SO, 和 PM, 、浓度高. 秋冬季相比, WSOC 冬季 一次源的贡献可能更大一些. 图 3 为 PM, 5 中 EC 质 量浓度与 WSOC 质量浓度的线性关系图. 从中可 知,秋季 EC 质量浓度与 WSOC 质量浓度相关性较 低($R^2 = 0.21$),而冬季 EC 质量浓度与 WSOC 质量 浓度相关性较高($R^2 = 0.54$). 表明秋季 WSOC 受 一次排放源影响较小,而冬季 WSOC 主要受一次源 影响. 两个季节 WSOC 来源不同,从而造成它们的 MAE_{wsoc}不同.

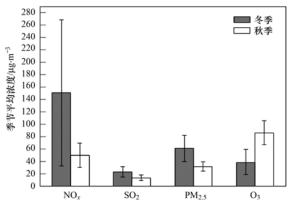


图 2 广州地区在线痕量气体和 PM_{2.5} 秋冬季 平均浓度及方差变化情况

Fig. 2 Seasonal variations in average concentration and variance of ambient trace gases and PM_{2.5} in Guangzhou

2.3 MAE_{wsoc}的粒径分布特征

在颗粒物的不同粒径段上, WSOC 的含量和种类分布往往不同, 其吸光性大小也会存在差异. 为

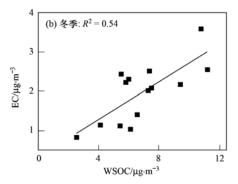
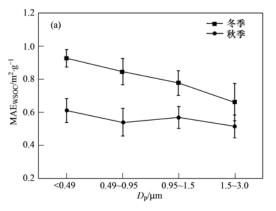


图 3 WSOC 与 EC 浓度的相关性

Fig. 3 Correlation between WSOC and EC


了探究不同粒径段 WSOC 吸光性差异的大小,本研 究对两个季节 4 个粒径段颗粒的 MAE wsoc 和 MAE EC 进行了分析. 4 个粒径段(<0.49、0.49~0.95、 0.95~1.5 和 1.5~3.0 μm)的 MAE_{wsoc}平均值分别 为冬季 0.93、0.85、0.79 和 0.66 m²·g⁻¹, 秋季 0.61、0.54、0.57 和 0.51 m²·g⁻¹; MAE_{EC}平均值分 别为冬季 13.06、9.99、8.00 和 5.47 m²·g⁻¹, 秋季 14.46、10.36、8.66 和 7.26 m²·g⁻¹. 图 4(a)为 MAE_{wsoc}值的粒径分布. 从中可见,冬季各粒径段 MAE_{wsoc}值均高于秋季;两个季节,均以 < 0.49 μm 段 MAE_{wsoc} 值最高(冬季占28.79%,秋季占

27. 35%),且整体呈现 MAE_{wsoc} 值随粒径增大而降 低的趋势.

EC 主要来自于一次源排放. 图 4(b)为 MAE_{EC} 值的粒径分布. 从中可知,两个季节颗粒物的 MAE_{FC}值随粒径增大呈递减趋势. 冬季 MAE_{wsoc}值 随粒径的变化趋势与 MAE_{EC}值相似,再次说明冬季 颗粒物中 WSOC 一次源贡献可能更大一些. 但秋季 MAE_{wsoc}值的变化趋势与 MAE_{EC}值存在一定差异, 并没有呈明显的降低趋势; < 0.95 μm 粒径段颗粒

MAE 值相对冬季降低了很多. 这表明小颗粒上

WSOC 二次源的贡献更大一些.

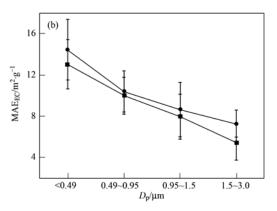


图 4 MAE_{WSOC}和 MAE_{EC}的粒径分布

Size distribution of the MAE_{WSOC} and MAE_{EC}

2.4 颗粒物中 EC 和 WSOC 吸光性对比

本研究中, PM, 5的 MAE EC 值分别为秋季 13.53 m²·g⁻¹和冬季 12.82 m²·g⁻¹, MAE_{wsoc}值分 别为秋季 $0.52 \text{ m}^2 \cdot \text{g}^{-1}$ 和冬季 $0.92 \text{ m}^2 \cdot \text{g}^{-1}$, MAE_{EC}/MAE_{WSOC}比值为秋季 26.02,冬季 13.93. 吸光性最强的 < 0.49 μm 粒径段颗粒物(PM_{0.49}) 的 MAE_{EC} 值分别为秋季 14.46 m²·g⁻¹和冬季 13.06 m²·g⁻¹, MAE_{wsoc} 值分别为秋季 0.61 m²·g⁻¹和冬季 0.93 m²·g⁻¹, MAE_{EC}/MAE_{WSOC}比值 为秋季23.70,冬季14.04. 本研究和已有报道的 MAE_{EC}值和 MAE_{wsoc}值如表 1 所示,在北京、广州 等地冬季的 MAE_{EC}值普遍低于夏、秋季,而相应的 MAEwsoc 值却为冬季远高于夏秋季, MAEcc/ MAEwsoc 比值均为夏、秋季远高于冬季[9]. 表 2 为 已有报道的源排放结果,表明受生物质燃烧影响 地区 PM_{2.5}中 MAE_{EC}/MAE_{WSOC}比值为 2.10,柴油机 车排放 MAE_{EC}/MAE_{wsoc}比值为 8.95,混合型一次 源 MAE_{EC}/MAE_{wsoc}比值为 1.83,木柴和农作物秸 秆燃烧 MAE_{EC}/MAE_{WSOC} 比值分别为 2.47~3.81 和 5.24 ~ 7.24, 而受二次源影响地区 PM_{2.5} 中 MAE_{EC}/MAE_{WSOC}比值高达41.00^[9,11,25,26]. 因此, 在冬季或者是一次源影响较大时, MAE_{EC}/ MAE_{wsoc}比值相对较小, WSOC 的吸光性能不容 忽略.

表 1 本研究与文献中不同季节的 PM_{2.5}和 PM_{0.49}中 MAE_{EC}值和 MAE_{WSOC}值 Table 1 MAEWSOC and MAEEC values in PM2.5 and PM0.49 in various seasons in previous reports and this work

羊地区	样品说明	$\mathrm{MAE}_{\mathrm{EC}}/\mathrm{m}^2\cdot\mathrm{g}^{-1}$	MAE _{WSOC} /m ² · g ⁻¹	MAE_{EC}/MAE_{WSOC}	文献
一州	市区 秋季(PM _{0.49})	14. 46	0. 61	23. 70	本研究
一州	市区 冬季(PM _{0.49})	13. 06	0. 93	14. 04	本研究
一州	市区 秋季	13. 53	0. 52	26. 02	本研究

采样 广 Γ. 广州 市区 冬季 12.82 0.92 13.93 本研究 北京 市区 夏季 13.70 0.71 19.30 [9] 市区 冬季 北京 12.30 1.79 6.87 [9]

表 2	文献中不同源排放	WSOC 和 EC	C的 MAE 信	盲

TE 11 0	MATE 1 C	WICOC LT	10 11	c 1:cc .			. 1.	1 . 1
Table 2	MAE values of	WSOC and E	LC emitted	from different	sources in	previous re	eports and t	his work

样品源	$MAE_{WSOC}/m^2 \cdot g^{-1}$	文献	样品源	$MAE_{EC}/m^2 \cdot g^{-1}$	$\mathrm{MAE}_{\mathrm{EC}}/\mathrm{MAE}_{\mathrm{WSOC}}$	文献
生物质燃烧源	1. 19	[11]	生物质燃烧源	2. 50	2. 10	[26]
受二次源影响的 PM _{2.5}	0. 33	[11]	受二次源影响的 PM _{2.5}	13. 53	41.00	本研究
混合型一次源	2. 89	[11]	混合型一次源	5. 30	1. 83	[26]
柴油机排放	1. 33	[11]	柴油机排放	11. 90	8. 95	[9]
木柴	0. 97	[11]	木柴	2. 40 ~ 3. 70	2. 47 ~ 3. 81	[25]
秸秆	1.05	[11]	秸秆	5. 50 ~ 7. 60	5. 24 ~ 7. 24	[25]
柴草	0. 90	[11]	生物质颗粒	6. 70 ~ 12. 00	_	[25]
_	_	_	煤	4.80 ~11.00	_	[25]

3 结论

- (1)广州城区 $PM_{2.5}$ 上 WSOC 的光吸收波长指数 AAE 值秋冬季分别为 3. 72 ± 0. 41 和 3. 91 ± 0. 7, 低于北京和北美地区测量结果.
- (2) WSOC 的单位质量吸收效率 MAE_{wsoc}两个季节分别为 $0.52 \text{ m}^2 \cdot \text{g}^{-1}(\text{秋})$ 和 $0.92 \text{ m}^2 \cdot \text{g}^{-1}(\text{冬})$,具有明显的差异,这是由于两个季节 WSOC 的主要来源和形成机制不同造成的.
- (3) WSOC 的 MAE 值在冬季呈现随粒径增大 而降低的趋势,而秋季所有粒径段颗粒 MAE_{wsoc}都 比冬季有所降低,特别是 < 0.95 μm 粒径段颗粒降 低更多,表明二次形成的 WSOC 主要集中在小颗粒上.
- (4) PM_{2.5}上 MAE_{EC}值分别为秋季 13. 53 m²·g⁻¹ 和冬季 12. 82 m²·g⁻¹, MAE_{WSOC}值分别为秋季 0. 52 m²·g⁻¹和冬季 0. 92 m²·g⁻¹, MAE_{EC}/MAE_{WSOC}比值为秋季 26. 02,冬季 13. 93. 当颗粒物受到一次源影响较大时, MAE_{EC}/MAE_{WSOC}比值相对较小, WSOC 对于颗粒吸光性的贡献不容忽略.

参考文献:

- [1] Park S S, Cho S Y. Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea [J]. Atmospheric Environment, 2011, 45 (1): 60-72.
- [2] Park S S, Cho S Y, Kim K W, et al. Investigation of organic aerosol sources using fractionated water-soluble organic carbon measured at an urban site[J]. Atmospheric Environment, 2012, 55: 64-72.
- [3] Wonaschütz A, Hersey S P, Sorooshian A, et al. Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County [J]. Atmospheric Chemistry and Physics, 2011, 11 (16): 8257-8270.
- [4] Kondo Y, Miyazaki Y, Takegawa N, et al. Oxygenated and water-soluble organic aerosols in Tokyo [J]. Journal of

- Geophysical Research, 2007, 112(D1): D01203.
- [5] Weber R J, Sullivan A P, Peltier R E, et al. A study of secondary organic aerosol formation in the anthropogenicinfluenced southeastern United States[J]. Journal of Geophysical Research, 2007, 112(D13): D13302.
- [6] 崔虎雄,吴迓名,段玉森,等.上海市浦东城区二次气溶胶 生成的估算[J].环境科学,2013,34(5):2003-2009.
- [7] Chen Y, Bond T C. Light absorption by organic carbon from wood combustion [J]. Atmospheric Chemistry and Physics, 2010, 10(4): 1773-1787.
- [8] Hecobian A, Zhang X, Zheng M, et al. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States [J]. Atmospheric Chemistry and Physics, 2010, 10 (13): 5965-5977.
- [9] Cheng Y, He K B, Zheng M, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China[J]. Atmospheric Chemistry and Physics, 2011, 11(22): 11497-11510.
- [10] Huang H, Ho K F, Lee S C, et al. Characteristics of carbonaceous aerosol in PM_{2.5}: Pearl Delta River region, China [J]. Atmospheric Research, 2012, 104-105; 227-236.
- [11] Du Z Y, He K B, Cheng Y, et al. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties
 [J]. Atmospheric Environment, 2014, 89: 235-241.
- [12] Zhang X L, Lin Y H, Surratt J D, et al. Sources, composition and absorption Ångstroöm exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin [J]. Environmental Science & Technology, 2013, 47 (8): 3685-3693.
- [13] Kirillova E N, Andersson A, Tiwari S, et al. Water-soluble organic carbon aerosols during a full New Delhi winter: Isotopebased source apportionment and optical properties [J]. Journal of Geophysical Research: Atmospheres, 2014, 119 (6): 3476-3485.
- [14] Ho K F, Cao J J, Lee S C, et al. Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China[J]. Journal of Geophysical Research, 2007, 112 (D22), doi: 10.1029/2006JD008011.
- [15] Ho K F, Ho S S H, Lee S C, et al. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in

- PM_{2.5} in Pearl Delta River region, China [J]. Atmospheric Chemistry and Physics, 2011, 11(5); 2197-2208.
- [16] 谭吉华,赵金平,段菁春,等.广州秋季灰霾污染过程大气颗粒物有机酸的污染特征[J]. 环境科学,2013,34(5):1982-1987.
- [17] Hoffer A, Gelencsér A, Guyon P, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols [J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3563-3570.
- [18] Bones D L, Henricksen D K, Mang S A, et al. Appearance of strong absorbers and fluorophores in limonene-O₃ secondary organic aerosol due to NH₄⁺-mediated chemical aging over long time scales [J]. Journal of Geophysical Research, 2010, 115 (D5), doi: 10.1029/2009JD012864.
- [19] Yang M, Howell S G, Zhuang J, et al. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China-interpretations of atmospheric measurements during EAST-AIRE[J]. Atmospheric Chemistry and Physics, 2009, 9(6): 2035-2050.
- [20] Marley N A, Gaffney J S, Tackett M, et al. The impact of biogenic carbon sources on aerosol absorption in Mexico City[J]. Atmospheric Chemistry and Physics, 2009, 9 (5): 1537-1549.
- [21] Zhang X, Hecobian A, Zheng M, et al. Biomass burning impact

- on $PM_{2.5}$ over the southeastern US during 2007; integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis [J]. Atmospheric Chemistry and Physics, 2010, $\mathbf{10}(14)$: 6839-6853.
- [22] Li Y, Lau A K H, Fung J C H, et al. Importance of NO_x control for peak ozone reduction in the Pearl River Delta region [J]. Journal of Geophysical Research-Atmospheres, 2013, 118(16): 9428-9443.
- [23] Wang T, Wei X L, Ding A J, et al. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007 [J]. Atmospheric Chemistry and Physics, 2009, 9 (16): 6217-6227.
- [24] Guo H, Jiang F, Cheng H R, et al. Concurrent observations of air pollutants at two sites in the Pearl River Delta and the implication of regional transport[J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7343-7360.
- [25] Shen G F, Chen Y C, Wei S Y, et al. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions[J]. Atmospheric Environment, 2013, 79: 79-84.
- [26] Xing Z Y, Deng J J, Mu C, et al. Seasonal variation of mass absorption efficiency of elemental carbon in the four major emission areas in China[J]. Aerosol and Air Quality Research, 2014, 14(7): 1897-1905.

HUANJING KEXUE

Environmental Science (monthly)

Vol. 37 No. 1 Jan. 15, 2016

CONTENTS

Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe	······ BAO Liang-man LIII liang-feng LEI Oian-tao et al	(1)
Atmospheric Polybrominated Diphenyl Ethers in Eight Cities of China; Pollution Characteristics and Human Exposure			
Light Absorption Properties of Water-Soluble Organic Carbon (WSOC) Associated with Particles in Autumn and Winter in the Ur		(-	,
Light thoughton repetites it waster country organic dation (wood) more factor and rathered in radiation and white in the or	HIJANG Huan RI Xin-hui PENG Long et al	(1	16)
Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM2, 5 in Nanjing Region			
Pollution Level and Health Risk Assessment of Heavy Metals in Atmospheric PM _{2.5} in Nanjing Before and After the Youth Olymp		(-)
Totalion bever and reading task resessation of ready steams in Annosphere 1 m _{2.5} in reading before and rated the Totali Olymp		(:	28)
Enrichment Characteristics and Source Analysis of Metal Elements in PM _{2,5} in Autumn in Nanchang City			
Contributions of Factors That Influenced the Visibility In North Suburb of Nanjing In Winter and Spring			
A Case Study on the Rapid Cleaned Away of PM _{2.5} Pollution in Beijing Related with BL Jet and Its Mechanism			
Characteristics of Chemical Components in PM _{2.5} from the Coal Dust of Power Plants			
Improvement of Air Quality During APEC in Beijing in 2014			
Evaluation on the Effectiveness of Vehicle Exhaust Emission Control Measures During the APEC Conference in Beijing			
Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng			
Characteristic of Particulate Emissions from Concrete Batching in Beijing			
Anthropogenic Ammonia Emission Inventory and Its Spatial Distribution in Chang-Zhu-Tan Region			
Seasonal Variability of Greenhouse Gas Emissions in the Urban Lakes in Changchun, China			
Absorption Characteristics of Particulates and CDOM in Waters of Chagan Lake and Xinlicheng Reservoir in Autumn			
Hydrochemical Characteristics and Influencing Factors in Different Geological Background: A Case Study in Darongjiang and Ling		`	,
	SUN Ping-an . YU Shi . MO Fu-zhen . et al.	(1)	23)
Community Structure of Aquatic Community and Evaluation of Water Quality in Laoyingyan Section of Dadu River			
Characteristics of Nitrogen and Phosphorus Losses in Longhong Ravine Basin of Westlake in Rainstorm Runoff			
Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban			
Concentrations and Distribution of Metals in the Core Sediments from Estuary and City Section of Liaohe River			
Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir	· · · · · · · · · · · · · · · · · · ·		
Effect of Low Molecular Weight Organic Acids on the Chemical Speciation and Activity of Mercury in the Soils of the Water-Level		(-	,
	YOU Rui, LIANG Li, OIN Cai-ging, et al.	(1'	73)
Arsenic Content and Speciation in the Surficial Sediments of Liangshui River in Beijing			
Effect of UV Light Radiation on the Coagulation of Chlorella and Its Mechanism			
Photocatalytic Oxidation of p-arsanilic Acid by TiO ₂			
Photodegradation of Ciprofloxacin Hydrochloride in the Aqueous Solution Under UV			
Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution			
Experimental Research of Hg(II) Removal from Aqueous Solutions of HgCl ₂ with Nano-TiO ₂			
Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters			
Degradation Characteristics of Three Aniline Compounds in Simulated Aerobic Sewage Treat System			
Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate			
Recent Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Soils from Yangtze River Delta			
Preliminary Study on Linear Alkylbenzenes as Indicator for Process of Urbanization			
Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City			
Effects of Reduced Water and Diurnal Warming on Winter-Wheat Biomass and Soil Respiration			
Effect of Recycled Water Irrigation on Heavy Metal Pollution in Irrigation Soil	ZHOU Yi-qi, LIU Yun-xia, FU Hui-min	(2	.88)
Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil			
Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Taili			
	····· PENG Xi-zhu, YANG Sheng-xiang, LI Feng-mei, et al.	(3	.01)
Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils			
Distribution Characteristics and Risk Assessment of Phthalic Acid Esters in Agricultural Products Around the Pearl River Delta, S	outh China		
	LI Bin, WU Shan, LIANG Jin-ming, et al.	(3	17)
Bioaccumulation and Biomagnification of Heavy Metals in Three Gorges Reservoir and Effect of Biological Factors			
Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Dryland Origins in Karst Cav	e Wetland		
	JIN Zhen-jiang, ZENG Hong-hu, LI Qiang, et al.	(3	35)
Analysis on Diversity of Denitrifying Microorganisms in Sequential Batch Bioreactor Landfill			
Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction			
Application of Microbial Fuel Cells in Reducing Methane Emission from Rice Paddy			
Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying			
Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter			
Application of FCM-qPCR to Quantify the Common Water Pathogens			
Effect of Acetonitrile and n-hexane on the Immunoassay of Environmental Representative Pollutants			
Compositional Variation of Spent Mushroom Substrate During Cyclic Utilization and Its Environmental Impact			

《环境科学》第6届编辑委员会

主 编:欧阳自远

副主编:赵景柱 郝吉明 田 刚

编 委:(按姓氏笔画排序)

万国江 王华聪 王凯军 王绪绪 田 刚 田 静 史培军

朱永官 刘志培 刘 毅 汤鸿霄 孟 伟 周宗灿 林金明

欧阳自远 赵景柱 姜 林 郝郑平 郝吉明 聂永丰 黄 霞

黄耀 鲍强潘纲潘涛魏复盛

环维种草

(HUANJING KEXUE)

(月刊 1976年8月创刊)

2016年1月15日 第37卷 第1期

ENVIRONMENTAL SCIENCE

(Monthly Started in 1976)

Vol. 37 No. 1 Jan. 15, 2016

主	管	中国科学院	Superintended	by	Chinese Academy of Sciences
主	办	中国科学院生态环境研究中心	Sponsored	by	Research Center for Eco-Environmental Sciences, Chinese
协	办	(以参加先后为序)			Academy of Sciences
		北京市环境保护科学研究院	Co-Sponsored	by	Beijing Municipal Research Institute of Environmental
		清华大学环境学院			Protection
主	编	欧阳自远			School of Environment, Tsinghua University
编	辑	《环境科学》编辑委员会	Editor-in -Chief	•	OUYANG Zi-yuan
<i>9</i> ⊞	邗	"	Edited	by	The Editorial Board of Environmental Science (HUANJING
		北京市 2871 信箱(海淀区双清路			KEXUE)
		18号,邮政编码:100085)			P. O. Box 2871, Beijing 100085, China
		电话:010-62941102,010-62849343			Tel:010-62941102,010-62849343; Fax:010-62849343
		传真:010-62849343			E-mail; hjkx@ rcees. ac. cn
		E-mail; hjkx@ rcees. ac. cn			http://www.hjkx.ac.cn
ılı	ue	http://www.hjkx.ac.cn	Published	by	Science Press
出	版	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•	16 Donghuangchenggen North Street,
		北京东黄城根北街 16 号 邮政编码:100717			Beijing 100717, China
印刷装	= 1 T	北京北林印刷厂	Printed	by	Beijing Bei Lin Printing House
发	行	4 4 4 K 社	Distributed	by	Science Press
X.	11	电话:010-64017032		,	Tel:010-64017032
		E-mail: journal@ mail. sciencep. com			E-mail: journal@ mail. sciencep. com
订 购	处	全国各地邮电局	Domestic		All Local Post Offices in China
国外总统		中国国际图书贸易总公司	Foreign		China International Book Trading Corporation (Guoji
二八 心の	~ 11	(北京399信箱)	r or eign		Shudian), P. O. Box 399, Beijing 100044, China
		(ADAY VAA INTE)			Shudian / ,1. O. Box 399, beijing 100044, China

中国标准刊号: ISSN 0250-3301 CN 11-1895/X

国内邮发代号: 2-821

国内定价:120.00元

国外发行代号: M 205

国内外公开发行