双极电化学氧化降解水中苯胺

岑世宏¹,宋晓焱¹,褚衍洋²*

(1. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083; 2. 青岛科技大学环境与安全工程学院,青岛 266042) 摘要:采用钛基氧化物涂层材料(Ti/SnO₂-Sb₂O₅)为阳极,石墨为阴极,在含 Fe²⁺和不含 Fe²⁺ 2 种电解质条件下研究了苯胺的 电化学氧化降解效率和机制.结果表明,Ti/SnO₂-Sb₂O₅ 阳极氧化降解有机物的电位约 2.0 V ± 0.1 V,而石墨阴极还原 O₂ 生成 H₂O₂ 的优化电位为 – 0.65 V. H₂O₂ 单独作用不能氧化苯胺,当电解质中不存在 Fe²⁺时,苯胺的降解主要依赖于阳极氧化作 用;而当电解质中存在 Fe²⁺时,阴极电 Fenton 氧化和阳极氧化(双极电化学氧化)均能有效降解水中苯胺,但前者作用更大.在 阴极电位为 – 0.65 V,初始 pH 值 3.0、初始 Fe²⁺浓度为 0.5 mmol·L⁻¹条件下,处理 180 mg·L⁻¹苯胺水溶液 10 h,COD 的去除 率为 77.5%,去除 COD 的电流效率达到 97.8%.该研究表明,以 Ti/SnO₂-Sb₂O₅ 为阳极,控制合理的阳极和阴极电位,可以实 现双极电化学氧化有效降解水中有机物,并且获得较高的电流效率.

关键词: 钛基涂层阳极; 阳极氧化; 电 Fenton 氧化; 苯胺;降解

中图分类号:X703.1 文献标识码:A 文章编号:0250-3301(2011)08-2305-06

Degradation of Aniline by a Dual-Electrode Electrochemical Oxidation Process

CEN Shi-hong¹, SONG Xiao-yan¹, CHU Yan-yang²

(1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; 2. School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China)

Abstract: The efficiency and the mechanism of aniline degradation by an electrochemical oxidation process using a Ti/SnO₂-Sb₂O₅ electrode as the anode and a graphite electrode as the cathode, were studied in two aqueous electrolytes with/without Fe²⁺. The results showed that the reasonable anodic potential was about 2. 0 V ± 0. 1 V for Ti/SnO₂-Sb₂O₅ electrode to oxidize organic compounds, while the optimum cathodic potential was -0.65 V for graphite electrode to reduce O₂ generating H₂O₂. The oxidation degradation of aniline could not take place only by the single action of H₂O₂. Anodic oxidation was accounted for the degradation of aniline in the absence of Fe²⁺, while in the presence of Fe²⁺ both electro-Fenton oxidation and anodic oxidation (dual-electrode electrochemical oxidation) could degradate aniline effectively, and in this case the former was the main mechanism. Under the conditions of -0.65 V cathodic potential, pH 3.0 and 0.5 mmol·L⁻¹ Fe²⁺, the removal rate of COD was 77.5% after 10 h treatment and a current efficiency of 97.8% for COD removal could be obtained. This work indicates that the dual-electrode electrochemical oxidation is feasible for the degradation of organic compounds with a high current efficiency by using Ti/SnO₂-Sb₂O₅ as anode as well as the reasonable anodic and cathodic potentials.

Key words: titanium anode with coatings; anodic oxidation; electro-Fenton oxidation; aniline; degradation

近年来采用电化学技术降解水中有机物已成为 污水处理领域的重要研究方向.在众多研究中,关于 电化学阳极氧化和阴极电 Fenton 氧化降解有机污 染物的研究最为广泛^[1-3]. 阴极电 Fenton 氧化主要 采用合适的电极材料(如石墨、活性炭纤维和气体 扩散电极等),利用 O₂ 在阴极还原生成 H₂O₂,并使 之与外部投加的 Fe²⁺发生 Fenton 反应,生成具有强 氧化性的·OH 破坏有机物^[4-6];而电化学阳极氧化 则利用各类阳极产生的·OH、高价态氧化物或有效 氯等强氧化性物种将水中有机物降解^[7-9].目前实 验室研究结果表明上述 2 种电化学氧化技术均能有 效降解水中有机物,然而从实际应用出发,阳极氧化 存在电流效率低、能耗高的缺点^[10,11];电 Fenton 氧 化同样存在电流不能充分利用,且如果使用纯氧产 生 H_2O_2 则成本过高的缺陷^[12]. 尽管在电解系统中 阳极反应和阴极反应同时发生,但目前研究主要考 察工作电极的电化学反应过程,没有充分发挥对电 极降解有机物的作用,析氢或析氧副反应的抑制亦 不理想,因此导致电流效率不高^[13,14]. 若能在阴极 高效产生 H_2O_2 的同时控制合理的阳极电位,当介 质中存在 Fe^{2+} 时则可实现阴极电 Fenton 和阳极氧 化协同降解有机物(即双极电化学氧化),并大幅度 提高电流效率.

本研究以石墨为阴极(工作电极)、 Ti/SnO_2 -

收稿日期:2010-09-14;修订日期:2010-11-24

基金项目:国家自然科学基金项目(50808103)

作者简介:岑世宏 (1964 ~), 男,博士, 讲师, 主要研究方向为水污 染控制, E-mail: censhihong2008@ sohu.com

^{*} 通讯联系人, E-mail: cyyf200611@ qust. edu. cn

Sb₂O₅(对电极)为阳极,以空气为氧源,在恒电位模 式下系统分析了苯胺降解的效率、相关规律和机制, 力图在较高电流效率下实现双极电化学氧化降解有 机污染物.

1 材料与方法

1.1 实验仪器与装置

实验中线性伏安测试和电化学氧化过程均使用 由程序控制的 LK98B II 电化学工作站(天津兰力科 公司).实验装置如图1所示,以250 mL 烧杯为反应 容器,钛基氧化物涂层阳极尺寸为20 mm×100 mm;石墨阴极尺寸为38 mm×100 mm(2片),电极 平行放置,间距为10 mm,电极浸入溶液中的高度约 50 mm;采用饱和甘汞电极为参比电极;通过小型充 气泵向溶液中充入空气提供氧源,并设电磁搅拌器 搅拌溶液.反应过程中,电流可在电脑屏幕上直接 显示.

图1 实验装置示意

Fig. 1 Schematic diagram of experimental apparatus

1.2 实验方法

1.2.1 阳极材料制备

①取钛基体在沸腾的 5% 碳酸钠溶液中处理 60 min,然后浸入 10% 硫酸溶液于 95℃处理 2.5 h,继 而用乙醇清洗,并浸泡于乙醇中;②称取一定量的 SnCl₄和 SbCl₃溶于异丙醇,超声波搅拌使之混合均 匀.用手工方式将涂液涂覆于处理过的钛基体上,红 外灯 100~120℃ 干燥 10 min,然后在马弗炉内 480℃下加热氧化 15 min,取出空冷至室温.如此反 复涂覆-烧结-冷却多次,直至将预先按电极面积和 配方配置的料液全部涂完.最后在相同的热氧化温 度下退火 60 min,使涂层充分氧化后即得成品,其 Sn、Sb 含量分别为 2.00 mg·cm⁻²和 0.20 mg·cm⁻². 1.2.2 线性伏安扫描

在三电极体系下,采用线性伏安扫描技术分别 考察 Ti-SnO,-Sb,O, 电极的析氧电位和 O, 在石墨阴 极的还原特征. 前者以 Ti/SnO₂-Sb₂O₅ 为工作电极 (2.4 cm²),石墨为对电极;后者以石墨为工作电极 (9.6 cm²),而 Ti-SnO₂-Sb₂O₅ 为对电极. 该两部分线 形伏安扫描分别以 20 mL 和 90 mL 0.1 mol·L⁻¹ Na₂SO₄ 溶液为电解质(pH 值 3.0)在 100 mL 烧杯 中进行,以饱和甘汞电极为参比电极,工作电极与对 电极距离 10 mm,扫描速率为 20 mV·s⁻¹.

1.2.3 H₂O₂ 对苯胺的氧化性能

取 75 mg·L⁻¹苯胺 + 0.1 mol·L⁻¹Na₂SO₄ 混合 溶液 200 mL 于 250 mL 烧杯中,用 H₂SO₄ 溶液调节 其 pH 值为 3.0,然后加入 H₂O₂(均匀后其浓度为 420 mg·L⁻¹),控制电磁搅拌器速率 200 r·min⁻¹,定 时取样分析 H₂O₂ 和苯胺浓度.

1.2.4 苯胺的电化学氧化

采用图 1 所示实验装置, 取 180 mg·L⁻¹苯胺 + 0.1 mol·L⁻¹Na₂SO₄ 混合溶液 200 mL 于 250 mL 烧 杯中, 用 H₂SO₄ 溶液调节其 pH 值为 3.0, 然后加入 不同剂量 $FeSO_4 \cdot 7H_2O$, 开启电磁搅拌器, 控制其速 率为 200 r·min⁻¹, 利用小型充气泵(固定空气量 2.5 L·min⁻¹)使溶液的溶解氧始终处于饱和状态. 启动 电化学工作站, 在恒定阴极电位下进行苯胺的电化 学氧化, 电流自动由微机系统记录. 反应过程中定时 取样分析苯胺、H₂O₂ 及 COD 和 Fe^{2+} 浓度, 同时测定 阳极电位和 pH 值变化. 该研究所有实验在室温 18℃ ±2℃下至少进行 2 次.

1.2.5 分析方法

苯胺的测定采用 N-(1-萘基)乙二胺偶氮分光 光度法(GB 11889-89); H_2O_2 的测定采用四氯化钛 分光光度法(GBZ/T 160.32-2004);COD 采用重铬 酸钾法测定(GB 11914-89); Fe^{2+} 采用采用邻啡罗啉 分光光度法测定(HJ/T 345-2007);pH 值采用 pHS-25C 型酸度计测定.该研究所用试剂均为分析纯,所 有溶液均用去离子水配制,pH 值使用 H_2SO_4 溶液 调节.

去除 COD 的电流效率(CE)以下式计算^[15]:

$$CE = FV \frac{(COD_0 - COD_t)}{8It}$$

式中,COD₀和 COD_t分别为初始和时间 t 时的化学 需氧量($g \cdot L^{-1}$),I为电流强度(A),F为法拉第常数 (96 485 C·mol⁻¹),V为电解质体积(L),t为反应 时间(s).

2 结果与讨论

2.1 电极的线性伏安特征

阳极材料是电化学阳极氧化降解有机物最关键 的因素^[16].含有 Sn、Sb 氧化物的钛基涂层电极是近 年发现的用于有机物降解的优良材料,其性能与 Sn、 Sb 金属含量及制备过程密切相关^[17].该研究自行制 备了 Ti/SnO₂-Sb₂O₅ 电极,并以 0.1 mol·L⁻¹ Na₂SO₄ 溶液为电解质,测定了其线性伏安曲线.研究表明尽 管析氧降低电流效率,但为实现阳极氧化有效降解有 机物,阳极电位仍应控制在"适量析氧电位区"^[18].适 量析氧有助于增大电极反应数量,同时避免阳极因吸 附有机物而导致钝化.由图 2 可知,该电极具有较高 的析氧起始电位(约1.7 V);当阳极电位 > 2.1 V 后, 析氧电流快速增加,其"适量析氧电位区"约为 2.0 V ±0.1 V,因此阳极氧化降解有机物过程中阳极电位 应控制在 2.0 V ± 0.1 V 范围内.

0. 1 mol·L $^{-1}\,\mathrm{Na}_2\,\mathrm{SO}_4$ solution at pH 3. 0

图 3 给出了石墨电极在氧气存在条件下的线性 伏安特征,由图 3 可知,在 – 0.65 V 附近存在 1 个还

原峰,该峰对应了 O_2 在石墨电极得到 2 个电子还原 为 H_2O_2 的反应. 当阴极电位低于 -0.80 V 后,电流 增加明显(尤其是低于 -0.90 V),这主要是由于析氢 反应导致. 很显然,利用石墨为阴极进行阴极电 Fenton 氧化降解有机物时,为了实现高效率连续产生 H_2O_2 ,其电极电位应控制在 -0.65 V 附近,而电位低 于 -0.90 V 时,产生 H_2O_2 的电流效率将显著降低.

2.2 H₂O₂ 对苯胺的氧化

电 Fenton 氧化降解有机物主要是利用·OH 的 强氧化性,但由于 H_2O_2 也具有一定的氧化性,因此 研究苯胺降解的作用机制时,应考虑到 H_2O_2 本身 是否具有氧化苯胺的能力.图 4 反映了在 pH 为 3.0 的 Na_2SO_4 溶液中 H_2O_2 与苯胺浓度几乎不随时间 发生变化,两者变化趋势说明:① H_2O_2 的氧化性 弱,其单独存在(无催化剂)对苯胺氧化降解作用可 以忽略;② H_2O_2 的化学分解速率缓慢,在数小时内 导致的 H_2O_2 浓度衰减不显著.

图 4 H₂O₂ 和苯胺随时间的变化

Fig. 4 Variations of H_2O_2 and aniline with time in 0.1 mol·L⁻¹ Na₂SO₄ solution at pH 3.0

2.3 无 Fe²⁺条件下苯胺的电化学氧化

控制初始 pH 值为 3.0,恒定阴极电位分别为 -0.65、-0.80 和 -1.00(对应的平均电流分别约 为 21、26 和 50 mA),考察了不存在铁离子条件下 苯胺的电化学氧化.由图 5(a)可知,随着阴极电位 越负,苯胺浓度下降越快.由于 H_2O_2 单独存在不能 降解苯胺,因此在电解质不含 Fe^{2+} 条件下,苯胺的 降解主要归因于 Ti/SnO₂-Sb₂O₅ 电极的阳极氧化作 用.根据 Comninellis 等^[19]的研究结果,阳极析氧过 程伴随着强氧化性的·OH 产生,使用 Ti/SnO₂-Sb₂O₅ 为阳极(以 M 表示),苯胺降解过程可由方程(1)和 (2)表述,其中 R 表示有机中间体.在恒定阴极电位 模式下, 阴极电位越负则阳极电位越正, 电流则越 大, 阳极氧化苯胺的能力增强. 当阴极电位控制在 -1.00 V(阳极电位约2.10~2.23 V)时, 阴极析氢 和阳极析氧反应明显, 尽管苯胺氧化效果较好, 但电 流效率很低.

$$M + H_2 O \longrightarrow M(\cdot OH) + H^+ + e \qquad (1)$$

 $M(\cdot OH) + 苯胺→ M + R + CO₂ + H₂O(2)$ 由图 5(b)可知,苯胺的阳极氧化过程中,相同反应时间的 H₂O₂ 累积浓度随电位越负而降低,产生 H₂O₂ 的最佳阴极电位约为 – 0.65 V,这一点也可从图 3 得到证实.在酸性介质中,溶解氧在阴极可通过反应(3)被还原为 H₂O₂,但同时存在 H₂O₂ 分解过程,当达到稳态时 H₂O₂ 的生成速率与分解速率相等,其浓度保持稳定.可能导致 H₂O₂ 的分解过 程包括其自身的化学分解[方程(4)]、阴极还原[方 程(5)]和阳极氧化[方程(6)]等^[20],但该研究中 H_2O_2 自身的化学分解可忽略(图4可证实),而 H_2O_2 的阴极还原需要在比 – 1.00 V更负的电位下 才能进行,因此阳极氧化作用是该体系中 H_2O_2 分 解的主要原因.

$$O_2 + 2H^+ + 2e \longrightarrow H_2O_2$$
 (3)

$$2H_2O_2 \longrightarrow O_2 + H_2O \tag{4}$$

$$\mathrm{H}_{2}\mathrm{O}_{2} + 2\mathrm{H}^{+} + 2\mathrm{e} \longrightarrow 2\mathrm{H}_{2}\mathrm{O} \tag{5}$$

$$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e \tag{6}$$

图 5 的实验结果说明在阳极氧化降解有机物的 同时,可以实现 O₂ 在阴极有效还原生成 H₂O₂,这为 实现阳极氧化和电 Fenton 氧化协同降解有机物奠 定了基础.

2.4 存在 Fe²⁺条件下苯胺的电化学氧化

在初始 pH 值 3.0,恒定阴极电位 -0.65 V 条件 下考察了 Fe^{2+} 剂量对苯胺降解的影响. 由图 6 可 见,随着 Fe^{2+} 剂量的增加,苯胺浓度下降越快,而在 0.5 mmol·L⁻¹和 1.0 mmol·L⁻¹条件下获得了近似 的苯胺降解效果,因此最佳的初始 Fe^{2+} 剂量约为 0.5 mmol·L⁻¹. 当不投加 Fe^{2+} (0 mmol·L⁻¹)时,苯 肢降解归结于阳极氧化作用,而当存在 Fe^{2+} 时氧化 体系通过反应(7)又引入了电 Fenton 氧化机制,实 现了双极氧化(即阳极氧化和阴极电 Fenton 氧化) 苯胺的目的,因此降解效果得以大幅度提高. 通过对 比不同 Fe^{2+} 剂量条件下的浓度变化还可以看出,在 该研究的双极氧化体系中,阴极电 Fenton 氧化与阳 极氧化均为苯胺降解的重要机制,但作用程度前者 大于后者.

$$H_2O_2 + Fe^{2+} + H^+ \longrightarrow \cdot OH + Fe^{3+} + H_2O \qquad (7)$$

Fig. 6 Influence of Fe^{2+} on the oxidation of aniline

图 7 给出了苯胺降解过程中 H_2O_2 和 Fe^{2+} 的浓 度变化. 在反应开始时铁离子全部为 Fe^{2+} (28 mg·L⁻¹),而 H_2O_2 浓度为0,随着反应进行, H_2O_2 在 阴极连续产生,同时通过 Fenton 反应过程及阳极氧 化而消耗,但消耗速率小于产生速率,因此 H_2O_2 浓 度呈现略有增加的趋势. Fe^{2+} 被 Fenton 反应过程迅 速消耗而生成 Fe^{3+} ,但体系中也存在多种途径使 Fe^{3+} 还原为 Fe^{2+} ^[21]. H_2O_2 和 Fe^{2+} 浓度变化表现出 了较好的对应关系:在 120 ~ 360 min 内 Fe^{2+} 浓度略 有上升, H_2O_2 则几乎不变;而在 360 ~ 600 min 内, Fe^{2+} 浓度降低则 H_2O_2 增大. 另外,对比图 5(a)和图 7 的 H_2O_2 浓度变化可知,存在 Fe^{2+} 的氧化体系中 H_2O_2 主要被 Fenton 反应过程消耗,阳极氧化成为 相对次要原因.

图 7 苯胺氧化过程中 H₂O₂和 Fe²⁺浓度变化 Fig. 7 Variations of H₂O₂ and Fe²⁺ during the course of aniline oxidation

表1给出了双极电化学氧化降解苯胺过程中各 参数随时间的变化.由表1可以看出,在阴极电位 $-0.65 V_{re}^{2+}$ 剂量 0.5 mmol·L⁻¹和 pH 值 3.0 条 件下,经过 10 h 电化学氧化,COD 的去除率为 77.5%,而电流效率则达到 97.8%.阳极电位在 1.97~2.00 V 之间,恰好处于 Ti/SnO₂-Sb₂O₅ 电极 发挥阳极氧化功能且析氧反应并不剧烈的电位范围 内,同时阴极电位恒定于 -0.65 V则抑制了析氢副 反应.在一定电量条件下,阴极电 Fenton 氧化和阳

表1 苯胺氧化过程中各参数与 COD 随时间的变化

Table 1 Variations of several parameters and COD removal with time during the course of aniline oxidation

with time during the course of untille official						
时间	阳极电位	pH	电流	COD 去除率	CE	-
/min	/ V		∕mA	/%	/%	
0	—	3.00	—	0	—	_
120	1.97	3.05	23.5	16.2	96.7	
240	1.98	3.05	22.1	35.7	98.5	
360	1.99	3.06	21.0	56.8	101.4	
480	1.99	3.02	19.8	68.7	98.2	
600	2.00	3.01	19.4	77.5	97.8	

极氧化都发挥了降解有机物的作用,且阴极和阳极 副反应得到有效抑制,这是电流效率达到近 100% 的原因.该实验条件下,平均电流和阳极电流密度分 别约为 20 mA 和 1.0 mA·cm⁻²,与目前报道的研究 相比^[3,10],电流密度更小,反应条件更加温和,有利 于电能的充分利用.

3 结论

(1) 石墨阴极产生 H_2O_2 的最佳阴极电位约为 -0.65 V; 利用 Ti/SnO₂-Sb₂O₅ 进行阳极氧化降解 有机物的适宜电位约在 2.0 V ± 0.1 V 范围内.

(2) 在不存在 Fe^{2+} 条件下,以石墨为阴极、 Ti/SnO₂-Sb₂O₅为阳极的电化学氧化体系可有效降 解苯胺,同时获得较高的 H_2O_2 产生量,由于 H_2O_2 单独存在不能氧化苯胺,因此该体系下苯胺降解的 主要机制为阳极氧化;而存在 Fe^{2+} 的电化学氧化体 系中,电 Fenton 氧化与阳极氧化共同作用,使苯胺 降解效果得到大幅度提高,实现了双极电化学氧化 降解有机物,但作用程度前者大于后者.

(3) 在阴极电位 - 0.65 V、平均阳极电流密度 1.0 mA·cm⁻²、初始 pH 值 3.0 条件下,最佳的 Fe²⁺ 剂量为 0.5 mmol·L⁻¹.在上述实验条件下,经过 10 h 氧化处理,COD 去除率为 77.5%,而电流效率达 到 97.8%.

参考文献:

- Zhu X P, Shi S Y, Wei J J, et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode [J]. Environmental Science and Technology, 2007, 41(18): 6541-6546.
- [2] Brillas E, Sirés I, Oturan M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction Chemistry [J]. Chemical Reviews, 2009, 109 (12): 6570-6631.
- [3] 王辉,王建龙. Pd/C 气体扩散电极用于电化学降解五氯酚 钠的研究[J].环境科学,2009,**30**(2):600-605.
- Oturan M A, Peiroten J L, Chartrin P, et al. Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method [J]. Environmental Science and Technology, 2000, 34 (16): 3474-3479.
- [5] Özcan A, Şahin Y, Koparal A S, et al. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium [J]. Journal of Electroanalytical Chemistry, 2008, 616(1-2): 71-78.
- [6] Zhang H, Zhang D B, Zhou J Y. Removal of COD from landfill leachate by electro-Fenton method [J]. Journal of Hazardous

Materials, 2006, 135(1-3): 106-111.

- [7] Cañizares P, Lobato J, Paz R, et al. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes [J]. Water Research, 2005, 39(12): 2687-2703.
- Scialdone O, Galia A, Filardo G. Electrochemical incineration of 1, 2-dichloroethane: Effect of the electrode material [J]. Electrochimica Acta, 2008, 53(24): 7220-7225.
- [9] 刘淼,王丽,刘波,等.不同涂层电极和抑制剂对电化学氧化 降解苯酚的影响 [J].环境科学,2007,28(12):2745-2749.
- [10] Carlos A M H, Sergio F. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes [J]. Chemical Society Reviews, 2006, 35 (12): 1324-1340.
- [11] 庞雅宁,赵国华,刘磊,等.金刚石膜电极电化学氧化提高 废水可生化性的研究 [J].中国环境科学,2009,**29**(12): 1255-1259.
- [12] Wang C T, Hu J L, Chou W L, et al. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode [J]. Journal of Hazardous Materials, 2008, 152 (2): 601-606.
- [13] Panizza M, Cerisola G. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation [J]. Journal of Hazardous Materials, 2008, 153(1-2): 83-88.
- [14] Chu Y Y, Wang W J, Wang M. Anodic oxidation process for

the degradation of 2, 4-DCP in aqueous solution and the enhancement of biodegradability [J]. Journal of Hazardous Materials, 2010, **180** (1-3): 247-252.

- [15] Panizza M, Cerisola G. Electro-fenton degradation of Synthetic dyes [J]. Water Research, 2009, 43(2): 339-344.
- [16] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research, 2003, 37(10): 2399-2407.
- [17] 孙智权,陆海彦,任秀彬,等.刷涂热分解法制备 Ti/SnO₂-Sb₂O₅阳极及其性能[J].物理化学学报,2009,**25**(7): 1385-1390.
- [18] Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants [J]. Chemical Reviews, 2009, 109 (12): 6541-6569.
- [19] Comminellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutions for waster water treatment [J]. Electrochimica Acta, 1994, 39(11-12): 1857-1862.
- [20] Agladze G R, Tsurtsumia G S, Jung B I, et al. Comparative study of hydrogen peroxide electro-generation on gas-diffusion electrodes in undivided and membrane cells [J]. Journal of Applied Electrochemistry, 2007, 37(3): 375-383.
- [21] Jiang C C, Zhang J F. Progress and prospect in electro-Fenton process for wastewater treatment [J]. Journal of Zhejiang University Science A, 2007, 8(7): 1118-1125.